THE 4 f-5 d INTERACTIONS IN SAMARIUM, GADOLINIUM AND TERBIUM

N. Spector

- To cite this version:

N. Spector. THE 4 f-5 d INTERACTIONS IN SAMARIUM, GADOLINIUM AND TERBIUM. Journal de Physique Colloques, 1970, 31 (C4), pp.C4-173-C4-188. 10.1051/jphyscol:1970429 . jpa00213884

HAL Id: jpa-00213884

https://hal.science/jpa-00213884

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE 4 f-5 d INTERACTIONS IN SAMARIUM, GADOLINIUM AND TERBIUM

N. SPECTOR
Israel Atomic Energy Commission, Soreq Nuclear Research Center Yavne, Israel.

Abstract

Résumé. - Des niveaux d'énergie récemment établis qui appartiennent aux sous-configurations $4 f^{6}(7 \mathrm{~F}) 5 \mathrm{~d}$ du samarium ionisé une fois (Sm II), $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right.$) 5 d du gadolinium ionisé une fois (Gd II) et $4 f^{8}(7 \mathrm{~F}) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ du terbium neutre ont été utilisés pour obtenir des valeurs pour les six paramètres électrostatiques (Slater) et les deux de spin orbite autour de la demi-couche 4 f . Il y a 57 niveaux dans chaque atome; 54 de $\mathrm{Sm}^{+}, 45$ de Gd^{+}et 27 de Tb sont optimisés avec une erreur de $168 \mathrm{~cm}^{-1}\left(1,24 \%\right.$ du domaine étudié) $239 \mathrm{~cm}^{-1}(1,76 \%)$ et $152 \mathrm{~cm}^{-1}(1,76 \%)$ respectivement. Les niveaux peuvent être désignés en utilisant les notations du couplage $L-S$, malgré quelques mélanges. Des vecteurs propres notablement différents de ceux publiés précédemment ainsi que des prévisions pour les niveaux manquants sont présentés. Environ 70 raies de Gd II sont classées.

Abstract

The newly established levels of the subconfigurations $4 \mathrm{f}^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ of singly ionized samarium (Sm II), $4 \mathrm{f}^{\mathrm{s}}\left({ }^{(7 \mathrm{~F}}\right.$) 5 d of singly ionized gadolinium (Gd II) and $4 \mathrm{f}^{\mathrm{s}}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ of neutral terbium (Tb I) are used to obtain reliable values for the six electrostatic (Slater) and two spinorbit interaction parameters around the half filled 4 f shell. Out of 57 possible levels in each case, 54 of $\mathrm{Sm}, 45$ of Gd^{+}and 27 of Tb are fitted with an $r m s$ error of $168 \mathrm{~cm}^{-1}(1.24 \%$ of total width $)$, $239 \mathrm{~cm}^{-1}(1.76 \%)$ and $152 \mathrm{~cm}^{-1}(1.76 \%)$ respectively. $L-S$ coupling notations can be used for level designations despite some heavy admixtures. Eigenvectors differring significantly from previously given ones, as well as predictions for missing levels are tabulated. About 70 Gd II lines are classified.

I. Introduction. - Our knowledge of the $4 \mathrm{f}-5 \mathrm{~d}$ interactions around the middle of the 4 f shell has, until now, been limited to cases based on a single state of a $4 f$ electron. The reason is that only configurations of the type $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}_{3 \frac{1}{2}}\right)$ nhn' l ' have been observed in the spectra europium and gadolinium. The high symmetry of the $4 \mathrm{f}^{7}$ core configuration results in the vanishing of the coefficients of the direct Slater parameters F_{2} and F_{4} for these configurations. Thus, observed term splittings in Eu I, Eu II, Gd I and Gd II depend only on the single exchange integral $G=G_{1}+4 G_{3}+22 G_{5}$. Values for the individual G_{k} 's as well as for the F_{k} 's needed for a full understanding of the $4 \mathrm{f}-5 \mathrm{~d}$ interaction around the half-filled 4 f shell could not, thus, be derived.

Recently we [1] have observed levels belonging to the $4 f^{8}\left({ }^{7} F\right) 5 d$ subconfiguration of Gd II. Similar observations, including Zeeman effect data, were made by Blaise and Van Kleef [2]. Blaise et al. [3] also observed levels of $4 f^{6}\left({ }^{7} F\right) 5 d$ in Sm II. Klinkenberg et al. [4] have improved on some of their previously published levels of $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ of Tb I .

This recent accumulation of observational material seemed to us well worthy of a theoretical interpre-

[^0]tation. The high number of fully observed terms warrants the convergence of a least squares calculations involving the radial electrostatic parameters. In Gd II and Sm II we were able to obtain reliable values for each of the G_{k} 's separately as well as for the F_{k} 's. The latter appear for the first time as independent variables in least squares calculations around the middle of the 4 f shell. We present here the results of our optimization process in $\mathrm{Sm}^{+}, \mathrm{Gd}^{+}$and Tb .
II. Theoretical Calculations. - The assumption underlying our theoretical treatment of the observed levels is the purity of the ${ }^{7} \mathrm{~F}$ term in $L-S$ coupling. This assumption has been carefully established both theoretically and experimentally in various instances and is now commonly accepted. The theoretical predictions of the $4 f^{6}\left({ }^{7} F\right) 5 \mathrm{~d}$ and $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ levels and their g-values involve diagonalizing the energy matrix that is a linear combination of electrostatic and spin orbit interactions. In this section we describe the calculation of the angular coefficients (matrix elements) of this linear combination.
A. The calculation of the electrostatic matrix elements. - The $4 f^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ subconfiguration has 10 terms: five sextets and five octets, ${ }^{6,8} \mathrm{PDFGH}$. Since the f_{k} 's (coefficients of F_{k} 's) are functions of the orbital angular momentum only, they are the same for
the two multiplicities of each L. For the ${ }^{7} \mathrm{~F}$ parent all spins are parallel. There is one electron missing from the half-filled 4 f shell, which in the orbital space, can be considered as a closed shell. Thus the $f^{6}\left({ }^{7} F\right) d$ is the almost closed shell conjugate of fd . According to Racah [5] (eq. (74)), therefore, the f_{k} 's for the terms of $f^{6}\left({ }^{7} F\right) 5 d$ have simply the same magnitude but the opposite sign of the corresponding ones in $\mathrm{fd}^{(6)}$.
For the g_{k} 's wa used the procedure outlined in ref. 1, equations (1) to (6). Modifying eq. (6) of ref. 1 to fit our case we obtain :
$g^{(k)}=\frac{1}{2}\left[3+2\left(S_{\mathrm{f}} \cdot S_{\mathrm{d}}\right)\right] C_{32 k}\left[\frac{35}{2 k+1} \delta_{L k}-7\right]$.
Since $2\left(S_{\mathrm{f}}, S_{\mathrm{d}}\right)=S(S+1)-\frac{51}{4}$ we can write (1) as:
$g^{(k)}=\frac{7}{12}\left[S(S+1)-\frac{39}{4}\right] C_{32 k}\left[\frac{5}{2 k+1} \delta_{L k}-1\right]$.
We denote with bars the corresponding expressions for the almost closed shell conjugate of $f^{6}\left({ }^{7} F\right) d$ namely $\mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) \mathrm{d}$. The transition from $f^{(k)}$ to $\bar{f}^{(k)}$ is
accomplished by a change of sign. In order to obtain $\bar{g}^{(k)}$ we use the following relation by Judd [7]:
\[

\bar{g}^{(k)}\left({ }^{6} L\right)=\left[$$
\begin{array}{lll}
3 & k & 2 \tag{3}\\
0 & 0 & 0
\end{array}
$$\right]^{2}+\frac{8}{7} g^{(k)}\left({ }^{6} L\right)
\]

which gives $\bar{g}^{(h)}$ in terms of the $g^{(k)}$ s obtained from eq. (2).

$$
\bar{g}^{(k)}\left({ }^{8} L\right)=-7\left[\begin{array}{lll}
3 & k & 2 \tag{4}\\
0 & 0 & 0
\end{array}\right]^{2}
$$

The coefficients of the Slater exchange integrals for all octet terms of $f^{8}\left({ }^{7} F\right) d$ are independent of the term's L. It is thus seen that the observation of terms with next to higher multiplicity is an essential condition for the independent determination of all three Slater exchange parameters G_{1}, G_{3} and G_{5}, in $\mathrm{f}^{\mathcal{N}} \mathrm{d}$ configuration when $N>7$. As we shall see in Section III this condition is satisfied in Gd II but not in Tb I. For $N<7$ the condition is not essential since even terms with highest multiplicity contain different linear combinations of all G_{k} 's.

In Table I we give the $f^{(k)}, g^{(k)}$ and $\bar{g}^{(k)}$ for the ${ }^{6,8}$ PDFGH of $f^{6}\left({ }^{7} F\right) d$ and $f^{8}\left({ }^{7} F\right) d$.

Table I
Electrostatic matrix elements for $\mathrm{f}^{6}\left({ }^{7} \mathrm{~F}\right) \mathrm{d}$ and $\mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) \mathrm{d}$

	f_{2}	f_{4}	g_{1}	g_{3}	g_{5}	$\overline{\mathrm{g}}_{1}$	$\overline{\mathrm{g}}_{3}$	$\overline{\mathrm{g}}_{5}$
	--	-	-	--	-	-	-	--
${ }^{8} \mathrm{P}$	-24	-66	14	-84	- 462	- 21	-84	- 462
D	-6	99	- 21	-84	- 462	-21	- 84	-462
F	11	-66	- 21	- 24	-462	- 21	- 84	-462
G	15	22	- 21	-84	- 462	- 21	- 84	-462
H	-10	-3	-21	-84	- 252	- 21	- 84	- 462
${ }^{6} \mathrm{P}$	-24	-66	$-\frac{7}{3}$	14	77	$\frac{7}{3}$	-14	- 308
D	- 6	99	$\frac{7}{2}$	14	77	7	63	$-\frac{231}{2}$
F	11	- 66	$\frac{7}{2}$	4	77	$-\frac{7}{2}$	$-\frac{49}{6}$	$\frac{77}{6}$
G	15	22	$\frac{7}{2}$	14	77	$\frac{91}{6}$	$-\frac{161}{6}$	$\frac{325}{6}$
H	-10	- 3	$\frac{7}{2}$	14	42	- 14	$\frac{7}{3}$	$\frac{455}{6}$

B. The calculation of the spin-orbit matrix elements. - We calculated the coefficients of ζ_{f} and ζ_{d} according to the following formulas :

For ζ_{f} :

$$
\begin{aligned}
& \left(3 \frac{1}{2} S 32 L J\left|\sum_{i}\left(s_{\mathrm{f}} \cdot 1_{\mathrm{f}}\right)\right| 3 \frac{1}{2} S^{\prime} 32 L^{\prime} J\right)= \\
& \quad=(-1)^{\frac{1}{2}+L^{\prime-L .-J}} \times
\end{aligned}
$$

$$
\begin{align*}
& \times 14 \sqrt{(2 S+1)\left(2 S^{\prime}+1\right)(2 L+1)\left(2 L^{\prime}+1\right)} \\
& \times W\left(S L S^{\prime} L^{\prime} ; J 1\right) W\left(3 L 3 L^{\prime} ; 21\right) \\
& \times W\left(3 S 3 S^{\prime} ; \frac{1}{2} 1\right) . \tag{5}
\end{align*}
$$

For ζ_{d} :
$(-1)^{s-S^{\prime}-J-\frac{1}{2}} \times$

$$
\begin{aligned}
& \times 3 \sqrt{5(2 S+1)\left(2 S^{\prime}+1\right)(2 L+1)\left(2 L^{\prime}+1\right)} \\
& \times W\left(\frac{1}{2} S \frac{1}{2} S^{\prime} ; 31\right) W\left(S L S^{\prime} L^{\prime} ; J 1\right) \\
& \times W\left(2 L 2 L^{\prime} ; 31\right) .
\end{aligned}
$$

The matrices for these coefficients are given in the Appendix.
C. - It should be noted that if we assign to the F_{k} 's and G_{k} 's the set of values given in Table II the complete electrostatic energy expression

$$
\sum_{k} f^{(k)} F_{k}+g^{(k)} G_{k}+\bar{g}^{(k)} \bar{G}_{k}
$$

vanishes for each term separately. This may serve as a check for the angular coefficients.

Table II

Values for checking the electrostatic matrix elements

$$
\begin{array}{ll}
F_{0}=3465 & G_{1}=-\bar{G}_{1}=297 \\
F_{2}=165 & G_{3}=-\bar{G}_{3}=77 \\
F_{4}=45 & G_{5}=-\bar{G}_{5}=25
\end{array}
$$

III. The Observed Levels. - The recent observational material used in the present calculations includes the following :

1. Sm II. - In addition to the group of $284 \int^{6}\left({ }^{7} F\right) 5 d$ levels given by Albertson [8] we had a group of 28 new levels, 8 in the range of Albertson's observations and 20 above them, given in ref. 3. All but 4 of these Sm II levels were accompanied by g-values. Russell Saunders designations were used throughout the list.
2. Gd If. - $\left.\wedge 114 f^{8}{ }^{7} \mathrm{~F}\right)$ 5d levels are the results of recent investigations (ref. 1, 2). The previous work on this atom by Russell [9] contained configurations with $4 f^{7}$ as the only core configuration. As mentioned in ref. 1. the lower levels of $4 i^{8}\left({ }^{7} F\right)$ 5d are well isolated from the rest of the even levels, and the higher ones overlap those belonging to $4 f^{7}\left({ }^{8} S\right) d p$ and $4 f^{7}\left({ }^{8} S\right) \mathrm{sp}$. This overlap, which increases the configuration interaction between the group of even levels results in the breaking of the strict selection rules observed in ref. 1 to govern the pure

$$
4 f^{8}\left({ }^{7} F\right) 5 d \rightarrow 4 f^{7}\left({ }^{8} S\right) 5 d 6 s
$$

transitions involving the isolated part of $4 f^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$. The 16 levels of $4 f^{8}\left({ }^{7} F\right) 5 d$ reported in ref. 1 were supplemented by 29 other even levels later selected from Table 1 of ref. 2.
3. Tb I. - - The most recent compilation by Klinkenberg et al. [10] gives 27 corrected $4 f^{8}\left({ }^{7} F\right) 5 d 6 s^{2}$ levels. Of these all but one are members of the octet
system. All are accompanied by $L-S$ designations and g-factors.
IV. Calculations and results.-A. Sm II. $4 \mathrm{f}^{\circ}\left(^{7} \mathrm{~F}\right) 5 \mathrm{~d}$. - We selected 54 levels out of the 56 ones designated as belonging to $4 r^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ in ref. 3 , and fitted them to the predicted cigenvalves. A preliminary set of predicted positions was obtained using values for the radial parameters that were derived by interpolation from other spectra. In Table III we give the values used in the final diagonalization and those obtained

Table III
Parameters for $4 f^{6}\left({ }^{7} F\right) 5 \mathrm{~d}$ of Sm II
Diagonalization Least squares

Name	(in cm^{-1})	$\text { (in } \mathrm{cm}^{-1} \text {) }$
-		
A	16600	16597 ± 36
F_{2}	138	138 ± 3
F_{4}	9	8.6 ± 0.7
G_{1}	183	182 ± 5
G_{3}	11	10 ± 2
G_{5}	2.3	2.4 ± 0.2
ζ_{5}	1150	1139 ± 26
$\zeta_{\text {d }}$	400	403 ± 42
rms error		168
in \% of total width		1.24 \%

after the optimization process (least squares). Since the rms error is only $168 \mathrm{~cm}^{-1}(1.24 \%$ of the total width) and the parameters were invariant - within their definition - to the least squares adjustment we conclude that convergence has been reached.

An interesting outcome is the small value of ζ_{0} that was also anticipated by Eremin et al. [11].

In Table IV we give the comparison between calculated and observed levels and g-factors, as well as $L-S$ coupling notations. While the ${ }^{8} \mathrm{H}$ and ${ }^{8} \mathrm{D}$ are pure. heavy admixtures are indicated between ${ }^{8} G-{ }^{8} F,{ }^{8} P-{ }^{-1} P$. and ${ }^{6} F-{ }^{\circ} D-{ }^{\circ} G$. Still. $L-S$ notations have a major component that is higher than 50 "\% in 90 ". of the casces and therefore Russell --- Saunders scheme is suitable for level designations in this case. There is quite a satisfactory agreement between the observed and calculated levels and g-factors, except for the two levels with $J=0 \frac{1}{2}$ where the observed to calculated correspondance dictated by the positions contradicts the one indicated by the g-factors predictions. At this stage we decided to follow the theoretical predictions for the level positions rather than the g-factor considerations for the following reasons: 1) The interchange would involve a deviation of more than $1000 \mathrm{~cm}^{-1}$ for the ${ }^{6} \mathrm{~F}_{01}$. We believe our calculations are better than such a deviation. 2) A change of the parameters causing only a second order change in the prediction of level position will cause a first order correction to the g-factors. This sensitivity of the g-factors to small changes in the

Table IV
Calculated positions, g-values and percentages in L-S coupling for the $4 f^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ levels of Sm II

Observed designation	J	Percentage composition	Observed level $\left(\mathrm{in} \mathrm{~cm}^{-1}\right)$	Calculated level $\left(\mathrm{in} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} O-C \\ \left(\text { in } \mathrm{cm}^{-1}\right) \end{gathered}$	$g_{\text {obs }}$.	$g_{\text {calc }}$.
-	--	-	-	-	-	-	--.
${ }^{8} \mathrm{H}$	$1 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	7135	7348	- 213	-0.385	-0.397
${ }^{8} \mathrm{H}$	$2 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	7525	7645	- 120	0.70	0.687
${ }^{8} \mathrm{H}$	$3 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	8046	8062	- 16	1.055	1.049
${ }^{8} \mathrm{H}$	$4 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	8679	8602	77	1.210	1.214
${ }^{8} \mathrm{H}$	$5 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	9407	9266	141	1.300	1.302
${ }^{8} \mathrm{H}$	$6 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	10214	10056	158	1.35	1.355
${ }^{8} \mathrm{H}$	$7 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	11094	10973	121	1.38	1.389
${ }^{8} \mathrm{H}$	$8 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	12045	12021	24	1.412	1.412
${ }^{8} \mathrm{D}$	$1 \frac{1}{2}$	$85 \%^{8} \mathrm{D}$	8578	9069	-491	2.62	2.727
${ }^{8} \mathrm{D}$	$2 \frac{1}{2}$	$88 \%{ }^{8} \mathrm{D}$	9410	9531	- 121	2.01	2.030
${ }^{8} \mathrm{D}$	$3 \frac{1}{2}$	$86 \%{ }^{8} \mathrm{D}$	10181	10071	110	1.79	1.790
${ }^{8} \mathrm{D}$	$4 \frac{1}{2}$	$81 \%{ }^{8} \mathrm{D}$	10960	10770	190	1.685	1.677
${ }^{8} \mathrm{D}$	$5 \frac{1}{2}$	$79 \%{ }^{8} \mathrm{D}$	11791	11724	67	1.636	1.617
${ }^{8} \mathrm{G}$	$0 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{~F}$	10372	10413	- 41	0.36	3.536
${ }^{8} \mathrm{G}$	$1 \frac{1}{2}$	$72 \%{ }^{8} \mathrm{~F}+22 \%{ }^{8} \mathrm{G}$	10518	10588	- 70	1.335	1.769
${ }^{8} \mathrm{G}$	$2 \frac{1}{2}$	$59 \%{ }^{8} \mathrm{~F}+34 \%{ }^{8} \mathrm{G}$	10873	10897	- 26	1.435	1.580
${ }^{8} \mathrm{G}$	$3 \frac{1}{2}$	$50 \%{ }^{8} \mathrm{~F}+41 \%{ }^{8} \mathrm{G}$	11395	11345	50	1.465	1.530
${ }^{8} \mathrm{G}$	$4 \frac{1}{2}$	$41 \%{ }^{8} \mathrm{~F}+46 \%^{8} \mathrm{G}$	12045	11941	104	1.470	1.512
${ }^{8} \mathrm{G}$	$5 \frac{1}{2}$	$49 \%{ }^{8} \mathrm{G}+35 \%{ }^{8} \mathrm{~F}$	12789	12675	114	1.47	1.507
${ }^{8} \mathrm{G}$	$6 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{~F}+42 \%{ }^{8} \mathrm{G}$	13605	13436	169	1.477	1.501
${ }^{8} \mathrm{G}$	$7 \frac{1}{2}$	$96 \%{ }^{8} \mathrm{G}$	14504	14791	- 287	1.455	1.463
${ }^{8} \mathrm{~F}$	$0 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{G}$	10743	10840	- 97	2.32	-0.873
${ }^{8} \mathrm{~F}$	$1 \frac{1}{2}$	$69 \%{ }^{8} \mathrm{G}+20 \%{ }^{8} \mathrm{~F}$	11155	11126	29	1.64	1.315
${ }^{8} \mathrm{~F}$	$2 \frac{1}{2}$	$55 \%{ }^{8} \mathrm{G}+31 \%^{8} \mathrm{~F}$	11798	11570	89	1.57	1.504
${ }^{8} \mathrm{~F}$	$3 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{G}+37 \%{ }^{8} \mathrm{~F}$	12232	12115	117	1.532	1.482
${ }^{8} \mathrm{~F}$	$4 \frac{1}{2}$	$52 \%{ }^{8} \mathrm{G}+44 \%^{8} \mathrm{~F}$	12842	12785	57	1.526	1.496
${ }^{8} \mathrm{~F}$	$5 \frac{1}{2}$	$46 \%{ }^{8} \mathrm{~F}+49 \%{ }^{8} \mathrm{G}$	13466	13518	- 52	1.520	1.501
${ }^{8} \mathrm{~F}$	$6 \frac{1}{2}$	$55 \%{ }^{8} \mathrm{G}+44 \%{ }^{8} \mathrm{~F}$	14084	14220	- 136	1.54	1.490
${ }^{6} \mathrm{P}$	$1 \frac{1}{2}$	$77 \%{ }^{6} \mathrm{P}$	11047	11071	- 24	2.510	2.310
${ }^{6} \mathrm{P}$	$2 \frac{1}{2}$	$42 \%{ }^{6} \mathrm{P}+40 \%{ }^{8} \mathrm{P}$	11798	11490	308	1.99	1.976
${ }^{6} \mathrm{P}$	$3 \frac{1}{2}$	$63 \%{ }^{6} \mathrm{P}+31 \%{ }^{8} \mathrm{P}$	13777	14089	- 312	1.78	1.786
${ }^{8} \mathrm{P}$	$2 \frac{1}{2}$	$52 \%{ }^{8} \mathrm{P}+41 \%{ }^{6} \mathrm{P}$	12567	12681	- 114	2.16	2.079
${ }^{8} \mathrm{P}$	$3 \frac{1}{2}$	$62 \%{ }^{8} \mathrm{P}+30 \%{ }^{6} \mathrm{P}$	12987	12655	332	1.86	1.850
${ }^{8} \mathrm{P}$	$4 \frac{1}{2}$	$94 \%{ }^{8} \mathrm{P}$	14115	14268	-153	1.778	1.771
${ }^{6} \mathrm{~F}$	$0 \frac{1}{2}$	$86 \%{ }^{6} \mathrm{D}$	16162	16041	121	0.300	2.835
${ }^{6} \mathrm{~F}$	$1 \frac{1}{2}$	$64 \%{ }^{6} \mathrm{D}+31 \%{ }^{6} \mathrm{~F}$	16078	16147	- 69	1.35	1.596
${ }^{6} \mathrm{~F}$	$2 \frac{1}{2}$	$49 \%{ }^{6} \mathrm{D}+45 \%{ }^{6} \mathrm{~F}$	16429	16420	9	1.355	1.477
${ }^{6} \mathrm{~F}$	$3 \frac{1}{2}$	$52 \%{ }^{6} \mathrm{~F}+36 \%{ }^{6} \mathrm{D}$	17005	16914	91	1.405	1.459
${ }^{6} \mathrm{~F}$	$4 \frac{1}{2}$	$55 \%{ }^{6} \mathrm{~F}+34 \%{ }^{6} \mathrm{D}$	17718	17627	91	-	1.460
	$5 \frac{1}{2}$	$72 \%{ }^{6} \mathrm{~F}$		19102			1.424
${ }^{6} \mathrm{D}$	$0 \frac{1}{2}$	$86 \%{ }^{6} \mathrm{~F}$		17105			-0.165
${ }^{6} \mathrm{D}$	$1 \frac{1}{2}$	$55 \%{ }^{6} \mathrm{~F}+31 \%{ }^{6} \mathrm{D}$	17568	17449	119	1.183	1.58
${ }^{6} \mathrm{D}$	$2 \frac{1}{2}$	$30 \%{ }^{6} \mathrm{~F}+42 \%{ }^{6} \mathrm{D}$	18050	17954	96	1.54	1.345
${ }^{6} \mathrm{D}$	$3 \frac{1}{2}$	$46 \%{ }^{6} \mathrm{D}+34 \%{ }^{6} \mathrm{G}$	18808	18574	234	1.52	1.404
${ }^{6} \mathrm{D}$	$4 \frac{1}{2}$	$53 \%{ }^{6} \mathrm{D}+34 \%{ }^{6} \mathrm{G}$	19400	19206	194	-	1.444

Tabie IV (contd.)

Observed designa- tion	J	Percentage composition	Observed level (in cm^{-1})	Calculated level (in cm^{-1})	$O-C$ (in cm^{-1})	$g_{\text {obs. }}$	$g_{\text {calc. }}$
$\overline{-} \mathrm{H}$	$2 \frac{1}{2}$	$100 \%{ }^{6} \mathrm{H}$	14193	14431	-238	0.295	0.291
${ }^{6} \mathrm{H}$	$3 \frac{1}{2}$	$97 \%{ }^{6} \mathrm{H}$	14668	14772	-104	0.84	0.832
${ }^{6} \mathrm{H}$	$4 \frac{1}{2}$	$97 \%{ }^{6} \mathrm{H}$	15243	15232	11	1.080	1.077
${ }^{6} \mathrm{H}$	$5 \frac{1}{2}$	$96 \%{ }^{6} \mathrm{H}$	15897	15828	69	1.21	1.208
${ }^{6} \mathrm{H}$	$6 \frac{1}{2}$	$96 \%{ }^{6} \mathrm{H}$	16615	16575	40	1.295	1.286
${ }^{6} \mathrm{H}$	$7 \frac{1}{2}$	$98 \%{ }^{6} \mathrm{H}$	17392	17484	-92	1.34	1.337
${ }^{6} \mathrm{G}$	$1 \frac{1}{2}$	$85 \%{ }^{6} \mathrm{G}$	18478	18498	-20	0.01	0.164
	$2 \frac{1}{2}$	$69 \%{ }^{6} \mathrm{G}+25 \%{ }^{6} \mathrm{~F}$	19035	19060	-25	-	1.012
	$3 \frac{1}{2}$	$56 \%{ }^{6} \mathrm{G}+31 \% \%{ }^{6} \mathrm{~F}$	19628	19729	-101	1.30	1.269
	$4 \frac{1}{2}$	$53 \%{ }^{6} \mathrm{G}+34 \% \%{ }^{6} \mathrm{~F}$	20179	20386	-207	1.35	1.359
	$5 \frac{1}{2}$	$72 \%{ }^{6} \mathrm{G}$	20648	20853	-205	1.35	1.371
	$6 \frac{1}{2}$	$96 \%{ }^{6} \mathrm{G}$		21150			1.383

Table V
Eigenvectors in L-S scheme for $4 \mathrm{f}^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ of Sm II

Level	J	${ }^{6} \mathrm{P}$	${ }^{8} \mathrm{P}$	${ }^{\circ} \mathrm{D}$	* D	${ }^{6} \mathrm{~F}$	${ }^{\text {s }}$ F	${ }^{1} \mathrm{G}$	*G	${ }^{\circ} \mathrm{H}$	${ }^{8} \mathrm{H}$
			-					-	-		
7272	12	-. 0001		. 0004	-. 0001	-. 0041	. 0020	. 0426	-. 0365		. 9984
7570	21	$-.0002$	0	. 0008	-. 0004	-. 0059	. 0043	-. 0400	-. 0571	-. 0106	. 9975
7990	31	$-.0002$	0	. 0010	-. 0006	-. 0064	. 0067	-. 0361	-. 0734	-. 0149	. 9965
8532	$4 \frac{1}{2}$		0	. 0007	-. 0007	--. 0056	. 0084	. 0305	-. 0869	$-.0171$. 9957
9200	$5 \frac{1}{2}$				-. 0007	-. 0036	. 0088	. 0233	$-.0905$	-. 0173	-. 9954
9994	$6 \frac{1}{2}$. 0070	. 0143	-. 0878	-. 0153	. 9959
10917	72								$-.0721$	-. 0110	.9973
11971	$8 \frac{1}{2}$										1
9043	12	. 3611		$-.0310$. 9185	-. 0040	$-.1572$. 0009	-. 0168		. 0010
9503	$2 \frac{1}{2}$	--. 1859	. 1081	. 0147	$-.9412$. 0153	. 2566	-. 0040	-. 0408	. 0007	- . 0036
10043	$3 \pm$	$-.0605$. 1546	-. 0133	--. 9279	. 0334	. 3250	-. 0098	$-.0662$. 0025	$-.0970$
10747	$4 \pm$.1397	-. 0288	-. 9086	. 0540	. 3766	-. 0180	-. 0939	. 0060	-. 0109
11710	$5 \frac{1}{2}$				-. 8946	. 0740	.4193	-. 0279	$-.1316$. 0121	-. 0151
10372	$0 \frac{1}{2}$. 1206		-. 0314	. 9488		-. 2904		
10546	11	$-.0728$		--. 0967	$-.1303$. 0486	$-.8595$. 0019	$-.4763$. 0192
10855	21	-. 0085	-. 0914	. 0919	. 2266	-. 0573	. 7688	---. 0054	-. 5796	. 0082	$-.0365$
11305	31	-. 0166	-. 1063	. 0767	. 2722	-. 0576	. 7015	-. 0125	--. 6402	. 0199	-. 0514
11904	41		-. 0849	. 0521	. 3207	-. 0531	. 6436	$-.0201$	--.6815	. 0367	$-.0624$
13500	$5 \frac{1}{2}$				-. 2195	-. 0155	-. 6834	. 0388	$--.6902$. 0579	-. 0568
13406	61						. 7471	--. 0592	-. 6546	. 0783	$-.0610$
10790	01			. 0329		. 0981	. 2902		. 9513		
11083	11	$-.2673$. 0858	.1702	. 0749	. 4500	-. 0068	--. 8265		. 0299
11533	21	-. . 2835	$-.2083$. 0069	$-.0909$	-. 0729	-. 5644	. 0151	$-.7363$. 0100	-- . 0407
12083	31	. 0551	. 1415	-. 0642	$-.1416$	$-.0512$	-. 6130	. 0204	$-.7554$. 0231	-. 0523
12760	4!		. 0831	-. 0412	$-.1875$	-. 0355	-. 6605	. 0292	-. 7164	. 0383	-. 0561
12645	51				$-.3808$. 0474	-. 5947	. 0311	. 7002	-. 0583	. 0671
14202	61						. 6603	-. 0480	. 7416	-. 0895	. 0600
14765	71								. 9489	-. 1588	. 0694
11038	11	$-.8815$. 1089	. 3302	-. 0438	-. 1458	. 0033	-. 2806		-. 0104
11450	2 2	. 6570	. 6440	$-.1519$	$-.0780$	-. 0066	-. 1248	. 0020	-. 3294	. 0049	$-.0181$
14069	31	.7915	$-.5610$	$-.1890$	$-.1385$. 0597	. 0023	$-.0120$	--. 0112	. 0091	. 0003
12641	$2 \frac{1}{2}$. 6428	$-.7224$	$-.1355$	$-.2132$. 0302	-. 0085	$-.0033$	-. 0146	. 0010	-. 0003
12623	31	. 5497	. 7930	$-.1508$. 1464	. 0290	. 1448	-. 0078	. 0540	-. 0005	. 0039
14240	4 $\frac{1}{2}$. 9742	$-.1197$. 1794	.0115	. 0637	-. 0055	. 0133	. 0012	. 0011
17080	$0 \frac{1}{2}$. 3531		. 9298	-. 0432		-. 0950		
17444	$1 \frac{1}{2}$. 0597		. 5561	-. 0108	. 7396	-. 0644	$-.3612$	-. 0716		. 0158
17966	$2 \frac{1}{2}$	--. 1100	-. 0081	-. 6475	. 0164	$-.5462$. 0690	. 5093	. 0494	. 0545	-. 0200
16913	$3 \pm$. 2013	. 0163	. 5975	-. 0633	--. 7195	-. 0325	. 2651	. 0640	. 0715	$-.0088$
17613	41		. 0920	. 5756	$-.0612$. 7411	. -. 0051	. 3101	. 0531	. 0899	--. 0081

Table V (contd.)

Level	J	${ }_{6} \mathrm{P}$	${ }^{8} \mathrm{P}$	${ }^{6} \mathrm{D}$	${ }^{8} \mathrm{D}$	${ }^{6} \mathrm{~F}$	${ }^{8} \mathrm{~F}$	${ }^{6} \mathrm{G}$	${ }^{8} \mathrm{G}$	${ }_{6}{ }^{\text {H }}$	${ }_{8} \mathrm{H}$
19100	5 $\frac{1}{2}$. 0716	. 8512	-. 0402	-. 5048	-. 0405	-. 1089	. 009 i
16063	$0 \frac{1}{2}$. 9272		-. 3535	-. 1173		. 0401		
16155	$1 \frac{1}{2}$	$-.1101$		-. 8045	. 0356	. 5605	. 0920	-. 1141	-. 0614		. 005
16421	$2 \frac{1}{2}$. 1645	. 0031	. 6907	$-.0530$	-. 6661	-. 0628	. 1982	. 0676	. 0390	-. 0079
18598	3交	$-.1442$	-. 0273	-. 6873	. 0154	-. 3892	. 0654	. 5843	. 0329	. 0844	-. 0197
19241	$4 \frac{1}{2}$		-. 0873	$-.7315$. 0013	-. 3217	. 0577	. 5833	. 0245	. 0966	$-.0159$
14222	2 2	. 0034	-. 0005	. 0070	-. 0015	-. 0238	. 0007	. 0911	$-.0101$	-. 9954	-. 0150
14768	$3 \frac{1}{2}$. 0145	-. 0041	. 0094	-. 0043	-. 0400	. 0031	. 1312	-. 0247	-. 9898	-. 0217
15233	$4 \frac{1}{2}$		-. 0052	-. 0123	. 0041	. 0478	-. 0065	$-.1537$. 0470	. 9854	. 0260
15836	5 $\frac{1}{2}$				$-.0049$	-. 0376	. 0093	. 1549	$-.0783$	$-.9837$	-. 0281
16592	$6 \frac{1}{2}$						-. 0091	-. 1277	. 1164	. 9845	. 027 3
17511	$7 \frac{1}{2}$. 1576	. 9872	. 0223
18498	$1 \frac{1}{2}$	-. 0108		-. 1185	. 0004	-. 3589	. 0081	-. 9245	. 0278		. 039 C
19063	$2 \frac{1}{2}$. 0326	. 0033	. 2314	. 0006	. 4976	-. 0115	. 8313	$-.0333$. 0667	$-.0317$
19739	$3 \frac{1}{2}$. 0532	. 0129	. 3192	. 0065	. 5638	-. 0071	. 7543	-. 0299	. 0822	-. 0249
20403	$4 \frac{1}{2}$		-. 0345	-. 3374	-. 0210	-. 5812	-. 0083	$-.7331$. 0209	-. 0921	. 019
20873	5 $\frac{1}{2}$				$-.0382$	-. 5158	-. 0411	--.8470	. 0057	-. 1148	. 0168
21184	$6 \frac{1}{2}$. 0756	. 9888	. 0131	. 1277	-. 0111

parameters makes position calculations a better criterion for the fitting of observed levels.

The small $O-C$ values for both ${ }^{8} \mathrm{~F}$ and ${ }^{6} \mathrm{~F}$ indicates the weakness of configuration interaction with $4 f^{6}\left({ }^{7} F\right) 6 \mathrm{~s}$.

In Table V we give the eigenvectors in $L-S$ coupling for the 57 levels of $\mathrm{f}^{6}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ of Sm II.
B. Gd II $4 f^{8}\left({ }^{7} F\right) 5 \mathrm{~d}$. - From the available lists of even levels of Gd II established by Russell [9], Spector [1] and Blaise and Van Kleef [2] we picked 45 for the least squares calculations. From its first member, ${ }^{8} \mathrm{G}_{7 \frac{1}{2}}$ at around $18400 \mathrm{~cm}^{-1}$ up to approximately $25000 \mathrm{~cm}^{-1}$ the $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ group of levels is well isolated from other groups. In the region above $25000 \mathrm{~cm}^{-1}$ where about half of its levels lie, it overlaps levels of $4 f^{7}\left({ }^{8} S\right) 5 d 6 p$ and $4 f^{7}\left({ }^{8} S\right) 6 s 6 p$. Accurate predictions for both positions and g-factors are essential for the correct selection of experimental levels. In the case of ${ }^{6} \mathrm{D}$, our predictions fit well, both in positions and g-factors, a certain ${ }^{6} \mathrm{D}$ given in ref. 2 the designation $4 f^{8} 6 \mathrm{~s}$. Such designation seems, at present to need further corroboration. The theoretical prediction for the location of the center of gravity of the ${ }^{5} \mathrm{D}$ of $4 \mathrm{f}^{8}$ above the ${ }^{7} \mathrm{~F}$ is given by Elliott [12] et al. as $51.8 \quad F_{2}$ where.

$$
F_{2}=12.4(Z-34) \mathrm{cm}^{-1} .
$$

This puts ${ }^{5} \mathrm{D}$ about $19300 \mathrm{~cm}^{-1}$ above ${ }^{7} \mathrm{~F}$. Also in ref. 12 Table 3 we get values for the splitting factors that enable us to estimate the total splitting of each multiplet. For ${ }^{5} \mathrm{D}$ we get an estimated spread of about $9000 \mathrm{~cm}^{-1}$. Since the ${ }^{6,4} \mathrm{D}$ of $4 \mathrm{f}^{8}\left({ }^{5} \mathrm{D}\right)$ $6 s$ are obtained by adding 6 s electron to the ${ }^{5} \mathrm{D}$, we expect the two terms to follow closely the structure of ${ }^{5} \mathrm{D}$, as do the ${ }^{8,6} \mathrm{~F}$ of $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 6 \mathrm{~s}$. Also the transitions made from a ${ }^{6} \mathrm{D}$ belonging to $4 \mathrm{f}^{8}\left({ }^{5} \mathrm{D}\right) 6 \mathrm{~s}$ to the ground configuration $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}\right) 5 \mathrm{~d} 6 \mathrm{~s}$ should be quite different from those made from a ${ }^{6} \mathrm{D}$ which belongs to $4 f^{8}\left({ }^{7} F\right)$ 5d that overlaps $4 f^{7}\left({ }^{8} S\right) 6 s 6 p$.

While the new ${ }^{6} \mathrm{D}$ indeed falls close to its predicted position its spread of about $2300 \mathrm{~cm}^{-1}$ is far from what can be expected from the same prediction. On the other hand its structure agrees with the predictions of our calculation. Furthermore, this ${ }^{6} \mathrm{D}$ makes transitions to the ground configuration which are very similar in character to those made by the neighboring sextet belonging to $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ (see Table IX). We see, therefore, no reason to exclude it at this stage from the least squares calculation.
The final parameters obtained after the optimization process are given in Table VI. In Table VII we give our predictions for the positions and g-values of the levels of $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ and compare these to the available observed levels. The agreement is quite satis-

Table VI
Parameters for $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ of Gd II

Name	Diagonalization (in cm^{-1})	Least squares (in cm^{-1})
A	27500	27527 ± 87
F_{2}	147	144 ± 4
F_{4}	12	10 ± 1
$G_{\text {t }}$	144	129 ± 9
G_{3}	15	15 ± 2
G_{5}	2.5	2.5 ± 0.5
$\zeta_{\text {f }}$	1240	1219 ± 39
$\zeta_{\text {d }}$	550	607 ± 73
rms error		239
in \% of total width		1.76 \%

factory. Again there is no evident perturbation of either ${ }^{6} \mathrm{~F}$ or ${ }^{8} \mathrm{~F}$ by their analogues in $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 6 \mathrm{~s}$. The rms error is $239 \mathrm{~cm}^{-1}$ which is 1.76% of the total width of this configuration.
Table VIII presents the eigenvectors in $L-S$ coupling of the levels of this subconfiguration.

Table VII

Calculated positions, g factors and $L-S$ percentages for the $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ levels of Gd II

Observed designation	J	Percentage composition	Observed level $\left(\mathrm{in} \mathrm{~cm}^{-1}\right)$	$\begin{aligned} & \text { Calculated } \\ & \text { level } \\ & \text { (in } \mathrm{cm}^{-1} \text {) } \end{aligned}$	$\begin{gathered} O-C \\ \text { (in } \mathrm{cm}^{-1} \text {) } \end{gathered}$	$g_{\text {obs }}$.	$g_{\text {calc }}$.
-	-	-	-	-	-	-	-
${ }^{8} \mathrm{G}$	$7 \frac{1}{2}$	$98 \%{ }^{8} \mathrm{G}$	18367	18687	- 320	1.465	1.464
	$6 \frac{1}{2}$	$72 \%{ }^{8} \mathrm{G}$	18389	18618	- 229	1.46	1.472
	$5 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{G}+30 \%{ }^{8} \mathrm{~F}$	18690	18852	- 162	1.515	1.494
	$4 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{G}+30 \%{ }^{8} \mathrm{~F}$	19377	19379	- 2	1.51	1.493
	$3 \frac{1}{2}$	$66 \%{ }^{8} \mathrm{G}+25 \%{ }^{8} \mathrm{~F}$	20098	20010	88	1.440	1.456
	$2 \frac{1}{2}$	$79 \%{ }^{8} \mathrm{G}$	20631	20596	39	1.325	1.354
	$1 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{G}$	21006	21060	- 54	1.01	1.034
	$0 \frac{1}{2}$	$98 \%{ }^{8} \mathrm{G}$	21227	21356	- 129	-1.21	- 1.198
${ }^{8} \mathrm{D}$	$5 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{D}+30 \%{ }^{8} \mathrm{G}$	20093	20381	- 288	1.555	1.559
	$4 \frac{1}{2}$	$50 \%{ }^{8} \mathrm{D}+32 \%{ }^{8} \mathrm{G}$	20574	20849	- 275	1.58	1.586
	$3 \frac{1}{2}$	$48 \%{ }^{8} \mathrm{D}+25 \%{ }^{8} \mathrm{G}$	21365	21500	- 135	1.675	1.644
	$2 \frac{1}{2}$	$40 \%{ }^{8} \mathrm{~F}+40 \%{ }^{8} \mathrm{D}$	22062	22103	- 41	1.860	1.775
	$1 \frac{1}{2}$	$64 \%{ }^{8} \mathrm{~F}+26 \%{ }^{8} \mathrm{D}$	22677	22597	80	2.32	2.111
${ }^{8} \mathrm{~F}$	$6 \frac{1}{2}$	$76 \%{ }^{8} \mathrm{~F}$	21158	20845	313	1.515	1.517
	$5 \frac{1}{2}$	$56 \%{ }^{8} \mathrm{~F}+32 \%{ }^{8} \mathrm{D}$	22533	22389	144	1.555	1.565
	$4 \frac{1}{2}$	$55 \%{ }^{8} \mathrm{~F}+27 \%{ }^{8} \mathrm{D}$	23025	22912	113	1.585	1.606
	$3 \frac{1}{2}$	$50 \%{ }^{8} \mathrm{~F}+40 \%{ }^{8} \mathrm{D}$	23473	23485	- 12	1.66	1.688
	$2 \frac{1}{2}$	$53 \%{ }^{8} \mathrm{D}+40 \%{ }^{8} \mathrm{~F}$	23697	23862	- 165	1.84	1.892
	$1 \frac{1}{2}$	$72 \%{ }^{8} \mathrm{D}+25 \%{ }^{8} \mathrm{~F}$	23732	24067	- 335	2.385	2.575
	$0 \frac{1}{2}$	$98 \%{ }^{8} \mathrm{~F}$	23255	22926	329	3.93	3.861
${ }^{8} \mathrm{H}$	$8 \frac{1}{2}$	$100 \%{ }^{8} \mathrm{H}$	22531	22615	- 84	1.412	1.412
	$7 \frac{1}{2}$	$88 \%{ }^{8} \mathrm{H}$	23270	23048	232	1.375	1.385
	$6 \frac{1}{2}$	$92 \%{ }^{8} \mathrm{H}$	23970	23604	366	1.350	1.353
	$5 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{H}$	24528	24107	421	1.355	1.303
	$4 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{H}$	24852	24524	328	1.215	1.218
	$3 \frac{1}{2}$	$94 \%{ }^{8} \mathrm{H}$		24862			1.055
	$2 \frac{1}{2}$	$98 \%{ }^{8} \mathrm{H}$		25119			0.693
	$1 \frac{1}{2}$	$98 \%{ }^{8} \mathrm{H}$		25300			-0.390
${ }^{6} \mathrm{~F}$	$5 \frac{1}{2}$	$90 \%{ }^{6} \mathrm{~F}$	24412	24580	- 168	1.470	1.449
	$4 \frac{1}{2}$	$85 \%{ }^{6} \mathrm{~F}$	25438	25521	- 83	1.415	1.440
	$3 \frac{1}{2}$	$86 \%{ }^{6} \mathrm{~F}$	26373	26373	0	1.385	1.394
	$2 \frac{1}{2}$	$90 \%{ }^{6} \mathrm{~F}$	27130	27109	21	1.305	1.308
	$1 \frac{1}{2}$	$94 \%{ }^{6} \mathrm{~F}$	27662	27677	- 15	1.05	1.059
	$0 \frac{1}{2}$	$100 \%{ }^{6} \mathrm{~F}$	27990	28033	- 48	-0.61	-0.639
${ }^{8} \mathrm{P}$	$4 \frac{1}{2}$		25608	25443	165	1.750	1.754
	$3 \frac{1}{2}$	$90 \%{ }^{8} \mathrm{P}$	27418	27293	125	1.905	1.924
	$2 \frac{1}{2}$	$96 \%{ }^{8} \mathrm{P}$	28629	28623	6	2.315	2.277
${ }^{6} \mathrm{D}$	$4 \frac{1}{2}$	$85 \%{ }^{6} \mathrm{D}$	28443	27993	450	1.515	1.528
	$3 \frac{1}{2}$	$73 \%{ }^{6} \mathrm{D}$	28562	28805	-243	1.560	1.561
	$2 \frac{1}{2}$	$85 \%{ }^{6} \mathrm{D}$	29716	29639	77	1.700	1.638
	$1 \frac{1}{2}$	$94 \%{ }^{6} \mathrm{D}$	30403	30259	144	1.89	1.859
	$0 \frac{1}{2}$	$100 \%{ }^{6} \mathrm{D}$	30758	30636	122	3.33	3.309

Table VIII

Eigenvectors components in L-S scheme for $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}$ of Gd II

Calc. LeveI											
(in cm ${ }^{-1}$)	J	${ }^{6} \mathrm{P}$	${ }^{8 P}$	${ }^{6} \mathrm{D}$	${ }^{8} \mathrm{D}$	${ }^{6} \mathrm{~F}$	${ }^{8} \mathrm{~F}$	${ }^{6} \mathrm{G}$	${ }^{8} \mathrm{G}$	${ }^{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
					-	-	-				
18687	$7 \frac{1}{2}$. 9866	-. 0535	. 1541
18618	$6 \frac{1}{2}$. 4784	-. 1010	. 8598	-. 0404	. 1415
18852	$5 \frac{1}{2}$. 3299	$-.0523$. 5569	$-.0892$. 7456	-. 0273	. 1175
19379	$4 \frac{1}{2}$. 0712	-. 0040	. 3333	$-.0384$. 5504	-. 0767	. 7491	-. 0201	. 1096
20010	$3 \frac{1}{2}$. 0059	. 0453	. 0058	. 2565	-. 0138	. 5057	-. 0652	. 8127	-. 0144	. 1060
20596	$2 \frac{1}{2}$. 0054	. 0187	. 0123	. 1606	. 0120	. 4223	-. 0509	. 8853	-. 0081	. 0938
21060	$1 \frac{1}{2}$	-. 0029		-. 0128	-. 0717	-. 0341	-. 3033	. 0327	-. 9466		--.0668
21356	$0 \frac{1}{2}$. 0080		. 0489	. 1582		. 9862		
20381	$5 \frac{1}{2}$. 7469	$-.1009$. 3256	. 0433	-. 5556	. 0272	$-.1209$
20849	$4 \frac{1}{2}$. 2007	-. 0321	. 7062	$-.0887$. 3405	. 0422	$-.5665$. 0205	-. 1145
21500	$3 \frac{1}{2}$	-. 0166	$-.1539$. 0166	-. 6896	. 0863	$-.4743$	-. 0301	. 5078	$-.0126$. 0945
22103	$2 \frac{1}{2}$	-. 0222	-. 0924	$-.0047$	-. 6392	$-.0783$	-. 6342	-. 0172	. 4116	-. 0056	. 0651
22597	$1 \frac{1}{2}$. 0212		. 0285	. 5102	$-.0618$. 8050	. 0071	$-.2923$		-. 0327
20845	$6 \frac{1}{2}$						--. 8749	-. 0012	. 4615	-. 0377	. 1419
22389	$5 \frac{1}{2}$				-. 5739	-. 0659	. 7501	-. 0014	$-.2880$. 0310	$-.1403$
22912	$4 \frac{1}{2}$		-. 2928	. 0594	-. 5183	$-.0882$. 7383	. 0020	- . 2684	. 0231	-. 1295
23485	$3 \frac{1}{2}$. 0166	. 2177	$-.0599$. 6208	. 0777	$-.7062$	-. 0018	. 2196	$-.0135$. 1004
23862	$2 \frac{1}{2}$. 0269	. 1446	-. 0566	. 7305	. 0568	-. 6391	-. 00015	. 1627	-. 0051	. 0586
24067	$1 \frac{1}{2}$	$-.0386$. 0451	-. 8556	-. 0313	. 5041	. 0008	-. 0946		--.020 5
22926	$0 \frac{1}{2}$. 0522		$-.0361$. 9856		-. 1568		
22615	$8 \frac{1}{2}$										1
23048	$7 \frac{1}{2}$								-. 1630	-. 3038	. 9387
23604	61						. 0610	. 0514	-. 1952	-. 2738	. 9384
24107	$5 \frac{1}{2}$. 0312	. 0310	-. 0832	-. 0640	. 1996	. 2309	-. 9455
24524	$4 \frac{1}{2}$. 0421	$-.0056$. 0171	. 0231	-. 0754	-. 0720	. 1828	. 1862	-. 9583
24862	$3 \frac{1}{2}$. 0008	. 0148	-. 0040	. 0245	. 0161	-. 0643	-. 0740	. 1551	. 1405	-. 9725
25119	$2 \frac{1}{2}$. 0006	. 0047	-. 0027	. 0165	. 0094	-. 0401	-. 0731	. 1170	. 0907	-. 9853
25300	$1 \frac{1}{2}$. 0002		-. 0011	. 0057	. 0044	-. 0167	-. 0713	. 0725		-. 9946
24580	$5 \frac{1}{2}$				-. 0522	$-.9598$	$-.1192$	-. 2460	. 0159	--. 0301	-. 0100
25521	$4 \frac{1}{1}$. 1614	. 2131	-. 0212	. 9171	. 1304	. 2611	-. 0258	. 0337	$-.0006$
26373	31	-. 0379	. 0211	-. 2443	-. 0297	--. 9287	-. 0905	-. 2551	. 0283	-. 0306	. 0106
27109	21	-. 0274	. 0045	-. 2100	-. 0135	-. 9473	$-.0698$	-. 2254	. 0370	-. 0204	. 0134

Table VIII (contd.)

Calc. Level (in cm^{-1})	J	${ }_{6} \mathrm{P}$	${ }^{8} \mathrm{P}$	${ }^{6} \mathrm{D}$	${ }^{8} \mathrm{D}$	${ }^{6} \mathrm{~F}$	sF	${ }^{6} \mathrm{G}$	${ }^{8} \mathrm{G}$	${ }^{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
-	-		-								
27677	11	. 0129		. 1541	. 0052	. 9721	. 0469	. 1629	-. 0461		-. 0117
28038	0 2			. 0822		. 9949	. 0236		$-.0538$		
25443	$4 \frac{1}{2}$. 9110	-. 1234	-. 3472	-. 1447	. 1051	$-.0362$	$-.0242$	-. 0087	. 0192
27293	32	--. 0027	$-.9591$. 0581	. 2657	-. 0340	-. 0679	-. 0164	. 0098	-.002 1	-. 0017
28623	21	-. 0026	-. 9837	. 0395	. 1721	$-.0103$	-. 0296	-. 0134	. 0025	-. 0023	. 0003
27993	41		. 1000	. 9195	. 0138	-. 2868	$-.0491$. 2085	. 0337	. 1221	. 0107
28805	31	. 3488	. 0656	. 8571	. 0133	-. 2892	-. 0569	. 1940	. 0311	. 1184	. 0043
29639	21	. 2642	. 0420	. 9238	. 0167	$-.2329$	-. 0587	. 0998	. 0193	. 0824	. 0008
30259	$1 \frac{1}{2}$. 1640		. 9704	. 0152	-. 1605	-. 0571	. 0458	. 0111		$-.0032$
30636	0 2			. 9952		-. 0807	-. 0549		. 0048		
25075	$6 \frac{1}{2}$. 0438	. 9667	. 0948	. 2316	. 0315
26343	$5 \frac{1}{2}$				-. 0151	$-.2422$. 0015	.9161	. 1053	. 2986	. 0246
27346	41		. 0335	. 2970	. 0131	. 1849	-. 0022	$-.8813$	$-.0940$	-. 3012	-. 0056
28151	31	. 0810	. 0270	.2698	. 0081	.1790	-. 0012	-. 8945	-. 0818	$-.2841$. 0166
28770	2 t	. 0343	. 0180	. 1602	. 0035	. 1892	. 0027	-. 9374	-. 0677	-. 2279	. 0420
29196	12	. 0089		. 0709	. 0018	. 1518	. 0024	-. 9824	-. 0461		. 0677
25545	71								. 0034	. 9512	. 3085
26921	62						. 0076	. 2295	. 0250	$-.9319$	-. 2797
28030	$5 \frac{1}{2}$				-. 0024	-. 0429	. 0019	. 2920	. 0354	$-.9242$	-. 2397
28916	$4 \frac{1}{2}$. 0033	. 0333	-. 0010	-. 0619	--- . 0032	. 3122	. 0355	-. 9258	-. 1979
29605	$3 \frac{1}{2}$. 0245	. 0019	. 0327	-. 0004	-. 0596	-. 0045	. 2934	. 0284	-. 9402	$-.1544$
29820	2 2	. 0155	. 0016	. 0452	. 0005	-. 0444	$-.0044$. 2282	. 0172	-. 9657	-. 1041
30252	$3 \frac{1}{2}$. 9325	-. 0358	-. 3528	-. 0310	. 0565	. 0186	-. 0129	$-.0042$. 0039	. 0014
31510	$2 \frac{1}{2}$. 9627	-. 0210	-. 2644	-. 0407	. 0311	. 0149	-. 0042	$-.0021$. 0005	. 0003
32368	11	. 9854		$-.1613$	-. 0458	. 0126	. 0095	$-.0009$	$-.0008$. 0001

Table IX
Classified lines of Gd II

λ	Intensity in arc	$\begin{gathered} \sigma \\ \text { (in } \mathrm{cm}^{-1} \text {) } \end{gathered}$	Odd level (in cm^{-1})	J	Even level (in cm^{-1})	J
	---					--
8598.760	50	11626.39	19223	$3 \frac{1}{2}$	30849	$4 \frac{1}{2}$
7963.250	500	12554.23	19750	$5 \frac{1}{2}$	32304	$4 \frac{1}{2}$
7535.290	6	13267.23	19223	$3 \frac{1}{2}$	32490	$3 \frac{1}{2}$
7220.390	5	13845.85	19750	$5 \frac{1}{2}$	33596	$4 \frac{1}{2}$
7201.410	150	13882.34	9142	$3 \frac{1}{2}$	23025	$4 \frac{1}{2}$
7069.930	80	14140.51	8884	$4 \frac{1}{2}$	23025	$4 \frac{1}{2}$
6909.900	15	14474.28	8551	$5 \frac{1}{2}$	23025	$4 \frac{1}{2}$
5982.420	60	16711.01	19750	$5 \frac{1}{2}$	36461	$5 \frac{1}{2}$
5901.670	10	16939.66	12776	$2 \frac{1}{2}$	29715	$2 \frac{1}{2}$
5524.600	150	18095.83	19750	$5 \frac{1}{2}$	37846	$4 \frac{1}{2}$
5469.050	100	18279.63	19750	$5 \frac{1}{2}$	33029	$4 \frac{1}{2}$
5460.660	15	18307.72	19750	$5 \frac{1}{2}$	33057	$4 \frac{1}{2}$
5412.642	200	18470.13	10091	$4 \frac{1}{2}$	28561	31
5368.284	10	18622.75	19223	$3 \frac{1}{2}$	37846	$4 \frac{1}{2}$
5316.801	100	18803.07	19750	$5 \frac{1}{2}$	38553	$5 \frac{1}{2}$
5315.794	20	18806.63	19223	$3 \frac{1}{2}$	38029	$4 \frac{1}{2}$
5285.830	8	18913.24	10802	$1 \frac{1}{2}$	29715	$2 \frac{1}{2}$
5173.455	30	19324.06	10391	$3 \frac{1}{2}$	29715	$2 \frac{1}{2}$
5123.652	60	19511.89	10633	$2 \frac{1}{2}$	30145	$3 \frac{1}{2}$
5121.930	3	19518.45	18955	$2 \frac{1}{1}$	38473	$2 \frac{1}{2}$
5061.063	100	19753.19	10391	$3 \frac{1}{2}$	30145	31
5052.416	60	19786.94	19750	$5 \frac{1}{2}$	39537	$4!$
5048.785	50	19801.22	19223	$3!$	39024	$2!$
4985.300	100	20053.37	10091	$4 \frac{1}{2}$	30145	$3!$

Table IX (contd.)

λ	Intensity in arc	$\begin{gathered} \sigma \\ \text { (in } \mathrm{cm}^{-1} \text {) } \end{gathered}$	Odd level (in cm^{-1})	J	Even level (in cm^{-1})	J
-	-	--	-	-	-	-
4933.452	20	20264.12	9451	$1 \frac{1}{2}$	29715	$2 \frac{1}{2}$
4919.210	15	20322.79	18150	$3 \frac{1}{2}$	28473	$2 \frac{1}{2}$
4859.400	30	20572.92	9142	$3 \frac{1}{2}$	29715	$2 \frac{1}{2}$
4851.862	25	20604.88	10633	$2 \frac{1}{2}$	31238	$2 \frac{1}{2}$
4760.020	2	21002.13	9142	$3 \frac{1}{2}$	30145	$3 \frac{1}{2}$
4752.650	4	21035.01	19750	$5 \frac{1}{2}$	40785	$5 \frac{1}{2}$
4702.311	8	21260.19	8884	$4 \frac{1}{2}$	30145	$3 \frac{1}{2}$
4606.641	8	21701.71	19223	$3 \frac{1}{2}$	40924	$4 \frac{1}{2}$
4588.763	10	21786.26	9451	$1 \frac{1}{2}$	31238	$2 \frac{1}{2}$
4570.360	1	21873.94	19223	$3 \frac{1}{2}$	41097	$3 \frac{1}{2}$
4563.030	4	21909.12	9328	$2 \frac{1}{2}$	31238	$2 \frac{1}{2}$
4536.560	5	22036.95	19223	$3 \frac{1}{2}$	41260	$2 \frac{1}{2}$
4429.500	2	22569.57	18319	$4 \frac{1}{2}$	40888	$5 \frac{1}{2}$
4152.025	10	24077.84	4483	$3 \frac{1}{2}$	28561	$3 \frac{1}{2}$
4105.792	15	24348.96	4212	$2 \frac{1}{2}$	28561	$3 \frac{1}{2}$
4065.610	15	24589.61	3972	$4 \frac{1}{2}$	28561	$3 \frac{1}{2}$
3962.105	30	25231.97	4483	$3 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3952.600	1	25292.65	4852	$4 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3923.569	4	25479.78	3082	$2 \frac{1}{2}$	28561	$3 \frac{1}{2}$
3919.99	6	25503.05	4212	$2 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3891.680	4	25688.56	4027	$1 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3802.850	40	26288.60	3427	$3 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3753.560	10	26633.81	3082	$2 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3741.770	4	26717.72	3427	$3 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3694.030	80	27063.00	3082	$2 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3612.880	15	27670.86	10802	$1 \frac{1}{2}$	38473	$2 \frac{1}{2}$
3596.903	1	27793.76	3444	$3 \frac{1}{2}$	31238	$3 \frac{1}{2}$
3594.709	6	27810.73	3427	$3 \frac{1}{2}$	31238	$3 \frac{1}{2}$
3586.576	10	27973.79	10599	$3 \frac{1}{2}$	38473	$2 \frac{1}{2}$
3550.630	8	28155.97	3082	$2 \frac{1}{2}$	31238	$3 \frac{1}{2}$
3522.446	50	28381.25	2856	$1 \frac{1}{2}$	31238	$2 \frac{1}{2}$
3500.182	30	28561.77	0	$2 \frac{1}{2}$	28561	$3 \frac{1}{2}$
3444.705	3	29021.75	9451	$1 \frac{1}{2}$	38473	$2 \frac{1}{2}$
3411.570	50	29303.61	19750	$5 \frac{1}{2}$	49053	$4 \frac{1}{2}$
3394.151	40	29453.99	261	$3 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3387.511	4	29511.73	633	$4 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3364.241	500	29.715 .85	0	$2 \frac{1}{2}$	29715	$2 \frac{1}{2}$
3352.512	40	29819.81	0	$2 \frac{1}{2}$	29819	$2 \frac{1}{2}$
3352.271	3	29821.85	11066	$4 \frac{1}{2}$	40888	$5 \frac{1}{2}$
3345.412	100	29883.09	261	$3 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3324.860	4	30067.80	19223	$3 \frac{1}{2}$	49291	$3 \frac{1}{2}$
3320.317	20	30108.94	19223	$3 \frac{1}{2}$	49332	$3 \frac{1}{2}$
3316.342	100	30145.03	0	$2 \frac{1}{2}$	30145	$3 \frac{1}{2}$
3296.782	6	30323.87	19223	$3 \frac{1}{2}$	49547	$2 \frac{1}{2}$
3288.165	20	30403.34	0	$2 \frac{1}{2}$	30403	$1 \frac{1}{2}$
3246.099	25	30797.32	10091	$4 \frac{1}{2}$	40888	$5 \frac{1}{2}$
3227.361	6	30976.12	261	$3 \frac{1}{2}$	31238	$2 \frac{1}{2}$
3200.312	50	31237.93	0	$2 \frac{1}{2}$	31238	$2 \frac{1}{2}$
3132.340	15	31915.76	0	$2 \frac{1}{2}$	31915	$1 \frac{1}{2}$
3123.694	100	32004.10	8884	$4 \frac{1}{2}$	40888	$5 \frac{1}{2}$
2902.220	2	34446.29	4027	$1 \frac{1}{2}$	38473	$2 \frac{1}{2}$
2853.914	150	35029.31	3444	$3 \frac{1}{2}$	38473	$2 \frac{1}{2}$
2824.702	6	35391.55	3082	$2 \frac{1}{2}$	38473	$2 \frac{1}{2}$

C. TbI $4 f^{8}\left({ }^{7} F\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$. - The $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ subconfiguration of neutral terbium has been the subject of several theoretical calculations. If it turns out to be the ground configuration of neutral terbium it will provide a glaring exception to both Hund's rule and Landé interval rule. Its lowest term is not of highest L value, as required by Hund's rule. Its lowest level is not of highest J in this term as required by Lande's rule. This situation is quite well known in configurations where a 5 d electron coexists with a $4 \mathrm{f}^{N}$ core. Our theoretical calculations accurately reproduce this situation.

Even if it is not the ground configuration it is low enough as to be a significant contributor to states appearing in atomic beam experiments. Such experiments determine magnetic dipole and electric quadrupole moments, and a set of good eigenvectors is essential for their determinations. The first published attempt to predict levels of this subconfiguration was made 5 years ago by Arnoult and Gerstenkorn [13]. They selected initial radial parameters for the electrostatic and spin orbit parameters and diagonalized its energy matrix. Their predictions fitted will the then available observed levels, established by Klinkenberg. But difficulties arose when attempts were made to establish further levels of $4 f^{8}\left({ }^{7} F\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ of Tb I. Several newly found ones did not retain the good agreement to their predicted positions as did the first levels. A calculation of the magnetic and quadrupole moment of Tb I by Childs and Goodman [14] using the eigenvectors of ref. 11 did not produce satisfactory results.

Ref. 11 did not mention a possibility for improving the initial values of the radial parameters by optimizing the theoretical prediction using the available observed levels. It also did not give a value for ζ_{f}. But it was clear that any attempt at performing a least squares calculation based on the levels used in ref. 13 would
give reliable values to the F_{2} and F_{4}, but not to G_{1}, G_{3}, G_{5}. We followed the gradual unravelling of the $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~S}^{2}$ of Tb I in a series of articles by Klinkenberg et al. Each time we inserted more levels to the least squares calculations. But it was clear that before some sextet levels are found, not all G_{k} ' s would be usable in such calculations. At a certain point, a value was given to ${ }^{6} \mathrm{H}_{6 \frac{1}{2}}$ [15]. Its inclusion in an optimization process resulted in negative values to most of the electrostatic parameters and extremely large rms errors for the two spin orbit parameters. It was later concluded in ref. 10 that this level belonged to another configuration: the $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d}^{2} 6 \mathrm{~s}$.

When the final list of observed $4 f^{8}\left({ }^{7} F\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ levels was published [10] we attempted another least squares calculation. This time very reasonable values for all parameters were obtained when G_{5} was made equal to $2 \mathrm{~cm}^{-1}$ in the diagonalization and then held fixed during the least squares process. The results of this calculations are given in Tables X and XI. The

Table X
Parameters for $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ of Tb I

Name	Diagonalization in cm $^{-1}$)	Least squares (in cm^{-1})	
-	-	-	
A	10000	$10334 \pm$	376
F_{2}	144	$147 \pm$	5
F_{4}	12	$16 \pm$	1
G_{1}	140	$124 \pm$	19
G_{3}	15	$26 \pm$	9
G_{5}	2	fixed	
$\zeta_{\text {f }}$	1620	$1618 \pm$	31
ζ_{d}	750	$793 \pm$	53
$r m s$ error		152	
in $\%$ of total width		1.76%	

Table XI

Calculated positions, g-factors and L-S coupling percentages for the $4 \mathrm{f}^{8}\left({ }^{7} \mathrm{~F}\right) 5 \mathrm{~d} 6 \mathrm{~s}^{2}$ levels of Tb I

Observed designation	J	Percentage composition	$\begin{gathered} \text { Observed } \\ \text { level } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Calculated } \\ \text { level } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} O-C \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$g_{\text {obs }}$.	$g_{\text {calc }}$.
-		-	-	-	-	-	
${ }^{8} \mathrm{G}$	$6 \frac{1}{2}$	$66 \%{ }^{8} \mathrm{G}+28 \%{ }^{8} \mathrm{~F}$	0	193	- 193	1.464	1.475
${ }^{8} \mathrm{G}$	$7 \frac{1}{2}$	$95 \%{ }^{8} \mathrm{G}$	176	277	- 101	1.455	1.462
${ }^{8} \mathrm{G}$	$5 \frac{1}{2}$	$41 \%{ }^{8} \mathrm{G}+36 \%^{8} \mathrm{~F}$	224	366	- 142	1.517	1.514
${ }^{8} \mathrm{D}$	$4 \frac{1}{2}$	$40 \%{ }^{8} \mathrm{G}+36 \%^{8} \mathrm{~F}$	1085	1056	29	1.537	1.531
${ }^{8} \mathrm{G}$	$3 \frac{1}{2}$	$52 \%{ }^{8} \mathrm{G}+33 \%{ }^{8} \mathrm{~F}$	2133	1976	157	1.48	1.504
${ }^{8} \mathrm{G}$	$2 \frac{1}{2}$	$66 \%{ }^{8} \mathrm{G}+25 \%{ }^{8} \mathrm{~F}$	2889	2825	64	1.35	1.412
${ }^{8} \mathrm{G}$	$1 \frac{1}{2}$	$83 \%{ }^{8} \mathrm{G}$	3420	3477	- 57	1.015	1.099
${ }^{8} \mathrm{G}$	$0 \frac{1}{2}$	$96 \%{ }^{8} \mathrm{G}$	3732	3879	- 147	-1.22	-1.111

Table XI (contd.)

Table XII
Eigenvectors components in L-S scheme for $4 f^{8}\left({ }^{7} F\right) 5 d 6 s^{2}$ of Tb I

Calc. Level

(in cm^{-1})	J	${ }_{6} \mathrm{P}$	${ }^{8 P}$	${ }^{6} \mathrm{D}$	${ }^{8} \mathrm{D}$	${ }^{6} \mathrm{~F}$	${ }^{8} \mathrm{~F}$	${ }^{6} \mathrm{G}$	${ }^{8} \mathrm{G}$	${ }_{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
-	-		-	-	-	-	-	-	-	-	-
512	$6 \frac{1}{2}$. 5341	--. 1426	. 8147	$-.0596$. 1650
653	$7 \frac{1}{2}$. 9754	$-.0885$. 2018
721	$5 \frac{1}{2}$. 4286	-. 0888	. 6040	$-.1115$. 6447	$-.0348$. 1192
1421	$4 \frac{1}{2}$. 1286	-. 0133	. 4470	--. 0676	. 5990	$-.0908$. 6320	-. 0248	. 1086
2342	$3 \frac{1}{2}$. 0119	. 0808	. 0058	. 3581	-. 0323	. 5755	$-.0785$. 7167	-. 0189	. 1122
3203	$2 \frac{1}{2}$. 0113	. 0345	. 0194	. 2365	. 0066	. 5049	- . 0628	. 8197	-. 0114	. 1074
3884	$1 \frac{1}{2}$	$-.0063$		-. 0224	-. 1108	-. 0425	$-.3778$. 0412	-. 9133		. 0821
4318	$0 \frac{1}{2}$. 0146		. 0678	. 2021		. 9769		
2440	$5 \frac{1}{2}$. 7117	$-.1285$. 1927	. 0759	-. 6287	. 0480	-. 1673
3038	41		. 2682	-. 0544	. 6580	-. 1023	. 1658	. 0718	-. 6504	. 0356	-. 1575
3944	$3!$. 0240	. 1972	-. 0311	. 6760	-. 1080	. 3284	. 0509	-. 6012	. 0228	-. 1362
4789	$2 \frac{1}{2}$	$-.0330$	-. 1194	. 0003	-. 6588	. 1047	-. 5253	-. 0209	. 5030	-. 0105	. 0988
5519	11	. 0329		. 0357	. 5541	$-.0869$. 7396	. 0119	-. 3650		-. 0522
3292	$6 \frac{1}{1}$						$-.8366$	$-.0117$. 4968	$-.0771$. 2172
5081	$5 \frac{1}{2}$				-. 5422	-. 1424	. 7312	-. 0133	-. 2985	. 0702	. 2387
5617	$4 \pm$		--. 4296	. 0912	$-.3720$	$-.1534$. 7130	$-.0015$	$-.3026$. 0478	-. 2072
6429	$3 \underline{1}$	-. 0228	$-.2826$. 0853	$-.5391$	$-.1303$. 7136	$-.0039$	$-.2494$. 0310	-. 1798
6918	21	. 0368	. 1797	$-.0818$. 6761	. 0932	$-.6659$. 0017	. 1934	-. 0124	. 1130
7129	$1 \frac{1}{2}$	$-.0509$. 0672	-. 8220	$-.0517$. 5460	. 0002	$-.1213$		-.0411
6086	$0 \frac{1}{2}$. 0745		$-.0532$. 9757		. 1993		
4672	$8 \frac{1}{2}$										1
5130	$7 \frac{1}{2}$								-. 2193	$-.4770$. 8511
5969	$6 \frac{1}{2}$. 1080	. 1045	-. 2576	$-.3797$. 8757
6736	$5 \frac{1}{2}$				--. 0323	. 4570	. 2361	. 2495	$-.2443$	$-.2319$. 7474
7289	$4 \frac{1}{3}$. 1426	-. 0156	$-.0187$. 0656	$-.0931$	$-.1087$. 2307	. 2393	$-.9186$
7770	$3 \frac{1}{2}$. 0026	. 0412	$-.0101$. 0457	. 0432	$-.1143$	$-.1112$. 2069	. 1783	$-.9456$
8122	$2 \frac{1}{2}$. 0022	. 0135	$-.0076$. 0377	. 0225	-. 0758	$-.1075$. 1558	. 1146	$-.9711$
8369	11	. 0009		-. 0031	. 0141	. 0093	-. 0307	$-.1023$. 0950		-. 9896
6645	$5 \stackrel{1}{\text { ¢ }}$. 0759	. 8178	. 0870	. 1758	. 1115	. 1980	-. 4851
7772	$4 \frac{1}{2}$		-. 2804	. 3231	. 2075	. 8354	. 0642	. 2633	$-.0109$	$-.0429$	-. 0228
8916	$3 \frac{1}{2}$	$-.0702$. 0282	-. 3283	-. 0378	-. 8880	-. 1235	-. 2788	. 0451	-. 0367	. 0128
9916	21	$-.0482$. 0069	$-.2817$	$-.0160$	-. 9174	--. 0920	--. 2530	. 0532	-. 0262	. 0209
10706	12	. 0226		. 2088	. 0061	. 9547	. 0601	. 1904	$-.0650$		-. 0193
11221	0 t			. 1133		. 9902	. 0297		$-.0766$		
8038	$4 \frac{1}{2}$. 7793	. 0169	$-.4303$. 3003	. 2918	. 1284	-. 0940	$-.0060$. 0810
10285	$3 \frac{1}{2}$. 0106	-. 9243	. 0905	. 3444	$-.0460$	$-.1187$	--. 0462	. 0198	$-.0079$	-. 0040
11963	$2 \frac{1}{1}$. 0195	. 9454	. 0165	-. 2083	. 0628	. 0461	--. 2263	-. 0296	-. 0610	. 0160
10340	41		. 0999	. 6811	. 0069	-. 4052	-. 0785	. 5359	. 1052	. 2396	. 0082
10945	$3 \frac{1}{1}$. 3073	. 1041	. 6127	. 0001	$-.0222$	$-.0402$	--. 6833	$-.0751$	-. 2095	. 0271
12357	$2 \frac{1}{1}$. 3150	. 0910	. 8101	. 0067	$-.3414$	$-.0870$. 3072	. 0544	. 1203	-. 0163
13125	1 1	. 2019		. 9410	. 0189	$-.2272$	-. 0854	. 1172	. 0254		$-.0116$
13604	$0 \frac{1}{2}$. 9907		$-.1102$	$-.0797$. 0094		
7090	$6 \frac{1}{1}$. 0562	. 9596	. 1437	. 2340	. 0223
8765	$5 \frac{1}{1}$				$-.0205$	-. 2748	-. 0124	. 8977	. 1560	. 3057	. 017
9907	$4 \pm$. 1036	. 6474	. 0169	. 0173	-. 0333	$-.7091$	$-.0984$	-. 2365	. 0069
11359	$3 \frac{1}{2}$. 3638	. 0580	. 5350	. 0015	-. 4025	-. 0777	. 5840	. 0988	. 2429	-. 0124
11890	$2 \pm$	$-.1164$. 2208	-. 3830	-. 0653	-. 1129	. 0292	. 8472	. 0785	. 2144	-. 0575
12517	11	. 0268		. 1552	. 0040	. 1563	$-.0022$	--. 9684	$-.0631$. 0952
7429	$7 \frac{1}{2}$								-. 0210	. 8744	. 4847
9213	$6 \frac{1}{2}$. 0054	. 2184	. 0502	$-.8897$	--. 3978
10646	5 b				-. 0026	-. 0458	-. 0021	. 2875	. 0589	-. 8973	-. 3266
11783	43		. 0030	. 0252	$-.0009$	-. 0670	-. 0078	. 3145	. 0556	-. 9074	-. 2635
12649	$3 \frac{1}{2}$. 0907	$-.0043$	-. 0189	-. 0042	-. 0551	-. 0042	. 2965	. 0419	-. 9261	-.2023
13278	21	. 0160	. 0006	. 0217	$-.0001$	-. 0466	-. 0054	. 2371	. 0256	9600	3n?
12892	31	. 8710	-. 06611	-. 4622	--.. 0452	. 1106	. 0407	--. 0557	-. 0162	. 0659	OLS
14547	$2 \frac{1}{2}$. 9390	-. 0341	$-.3315$	-. 0594	. 0528	. 0289	$-.0104$	--. 005	(002 5	(00) +
15676	11	. 9769		-. 2014	-. 0664	. 0206	. 0175	-. 0021	-.002 1		(0)

Appendix 1
Spin orbit matrices for the f and d electrons of $\mathrm{f}^{6}\left({ }^{7} \mathrm{~F}\right) \mathrm{d}$

$$
\zeta_{d} \quad \begin{array}{cccccc}
J=6 \frac{1}{2} & { }^{8_{F}} & { }^{6}{ }_{G} & { }^{8}{ }_{G} & { }^{6} H & { }^{8} H \\
\frac{3}{8} & \frac{5 \sqrt{7}}{14} & -\frac{5 \sqrt{35}}{56} & 0 & \\
& -\frac{1}{2} & \frac{3 \sqrt{5}}{10} & \frac{3 \sqrt{2}}{14} & -\frac{4 \sqrt{5}}{35} \\
& & \frac{13}{40} & \frac{6 \sqrt{10}}{35} & -\frac{16}{35} \\
& & & -\frac{2}{7} & \frac{12 \sqrt{10}}{35} \\
& & & & & \frac{3}{35}
\end{array}
$$

ζ d	$\mathrm{J}=4 \frac{1}{2}{ }^{8} \mathrm{p}$	${ }_{6} 0$	${ }^{8} 0$	${ }^{6} \mathrm{~F}$	${ }^{8}$ F	${ }_{6} \mathrm{G}$	${ }^{6}$	${ }^{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
	$-\frac{1}{2}$	$\frac{6 \sqrt{35}}{35}$	- $\frac{\sqrt{2310}}{70}$	0	0	0	0	0	0
		0	0	$\frac{\sqrt{2310}}{98}$	$-\frac{6 \sqrt{385}}{49 \cdot 5}$	0	0	0	0
			0	$\frac{6 \sqrt{35}}{98}$	$-\frac{10 \sqrt{210}}{49 \cdot 5}$	0	0	0	0
				$-\frac{1}{14}$	$\frac{5 \sqrt{6}}{28}$	$\frac{5 \sqrt{21}}{49}$	$-\frac{5 \sqrt{546}}{49 \cdot 4}$	0	0
					$-\frac{3}{56}$	$\frac{25 \sqrt{14}}{49 \cdot 4}$	$-\frac{25 \sqrt{99}}{49 \cdot 8}$	0	0
						$\frac{1}{10}$	$\frac{3 \sqrt{26}}{20}$	$\frac{\sqrt{546}}{70}$	$-\frac{2 \sqrt{91}}{35}$
							$-\frac{11}{40}$	$\frac{2 \sqrt{21}}{35}$	$-\frac{4 \sqrt{14}}{35}$
$\zeta_{\text {d }}$	$J=8 \frac{1}{2}{ }^{8} H$							$\frac{2}{5}$	$\frac{2 \sqrt{6}}{5}$
	1								$\frac{3}{5}$

ζ_{p}	$\mathrm{J}=5 \frac{1}{2}^{8} \mathrm{D}$	${ }^{6}$ F	${ }^{8} \mathrm{~F}$	${ }_{6} \mathrm{G}$	${ }^{8} \mathrm{G}$	${ }^{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
	1	$\frac{\sqrt{6}}{14}$	$\frac{\sqrt{78}}{14}$	0	0	0	0
		$\frac{15}{14}$	$-\frac{3 \sqrt{13}}{56}$	$\frac{5 \sqrt{195}}{126}$	$-\frac{5 \sqrt{39}}{504}$	0	0
			$\frac{3}{7}$	$\frac{5 \sqrt{15}}{168}$	$\frac{5 \sqrt{3}}{14}$	0	0
				$\frac{13}{30}$	$-\frac{13 \sqrt{5}}{120}$	$\frac{32 \sqrt{21}}{315}$	$-\frac{\sqrt{210}}{200}$
					0	$\frac{2 \sqrt{105}}{315}$	$\frac{\sqrt{42}}{4}$
						$-\frac{6}{35}$	$-\frac{3 \sqrt{10}}{35}$
							$-\frac{3}{7}$

$\zeta \mathrm{Cd}$	$\mathrm{J}=5 \frac{1}{2}{ }^{8} \mathrm{D}$	${ }^{6} \mathrm{~F}$	${ }^{8}$	${ }_{6}{ }^{\text {G }}$	${ }^{8} \mathbf{G}$	${ }^{6} \mathrm{H}$	${ }^{8} \mathrm{H}$
	0	$\frac{3 \sqrt{6}}{7}$	$-\frac{\sqrt{78}}{14}$	0	0	0	0
		$-\frac{15}{56}$	$\frac{3 \sqrt{13}}{28}$	$\frac{5 \sqrt{195}}{168}$	$-\frac{5 \sqrt{39}}{84}$	0	0
			$\frac{1}{7}$	$\frac{5 \sqrt{15}}{28}$	$-\frac{5 \sqrt{3}}{14}$	0	0
				$-\frac{7}{40}$	$\frac{7 \sqrt{5}}{20}$	$\frac{8 \sqrt{21}}{105}$	$-\frac{\sqrt{210}}{35}$
					0	$\frac{4 \sqrt{105}}{105}$	$-\frac{\sqrt{42}}{14}$
						$\frac{3}{35}$	$\frac{12 \sqrt{10}}{35}$
							$-\frac{2}{7}$

$$
\begin{array}{cccc}
\zeta_{d} & J=7 \frac{1}{2} & { }_{G} & { }^{6} H
\end{array}{ }^{8} H \quad \begin{array}{lcc}
\frac{7}{10} & \frac{3 \sqrt{70}}{35} & -\frac{\sqrt{714}}{70} \\
& & -\frac{5}{7} \\
& \frac{2 \sqrt{255}}{35} \\
& & \\
& & \frac{18}{35}
\end{array}
$$

former gives the adjusted values for the radial parameters resulting in an rms error of $152 \mathrm{~cm}^{-1}$, which is 1.76% of the total width. The latter gives the predictions for level position and g-values as well as a comparison between them and the available experimental values. $L-S$ designations can be used throughout the Table, despite some heavy admixtures. Marked differences between our designation and the ones used in ref. 10 and 13 are noticed for ${ }^{8} \mathrm{D}_{4 \frac{1}{2}}$ and ${ }^{8} \mathrm{G}_{4+1}$. Also the level at $8647 \mathrm{~cm}^{-1}$ whose observed designation is ${ }^{6} \mathrm{~F}_{5_{\frac{1}{2}}}$ fits well to our ${ }^{6} \mathrm{G}_{5_{\frac{1}{2}}}$. When made to correspond to the predicted value of ${ }^{6} \mathrm{~F}_{5_{\frac{1}{2}}}\left(1700 \mathrm{~cm}^{-1}\right.$ below) unreasonable values for the radial parameters are obtained in the least squares. The most noticeable variation from ref. 13 is provided by our Table XII where eigenvectors for this low subconfiguration are given in $L-S$ coupling (as was done in ref. 13). Differences in magnitude of various components and, in particular, prominent changes of phases are noteworthy.

With the scanty experimental material yet established there is a remarkable sensitivity of the optimized
parameters to the presence or absence of even a single level or parameter. To demonstrate this sensitivity we give, in Tables XIII, the results of four least squares on the same diagonalization parameters. In l. s. $1 G_{5}$ was free for adjustment and the level $8647 \mathrm{~cm}^{-1}$ with $J=5 \frac{1}{2}$ was included. All G_{k} 's have unreasonable values. The situation does not improve upon eliminating this level, nor yet upon fixing G_{5} while the level is still out. Only when G_{5} is held fixed and the level is restored to its place do we get acceptable values for all the parameters. It is seen that exactly then the rms error becomes the biggest. But it is also evident that the other rms errors, though smaller, are totally meaningless.

Contrary to the previous two sections the results reported in the present one for TbI should be considered merely as preliminary. Only when the sextets of this subconfiguration are established could we hope to have a more significant optimization for the parameters. Meanwhile the calculated positions for the missing levels given in Table XI should serve as guidelines for searching the latter.

Table XIII
Various least squares in Tb I

Name	Diagonalization	G_{5} free, 8647 in		G_{5} free, 8647 out		$\begin{aligned} & G_{5} \text { fixed, } \\ & 8647 \text { in } \end{aligned}$	G_{5} fixed, 8647 out
---	--			--		-	-
A	10000	6505 ± 1373		8089 ± 1758		10333 ± 376	9234 ± 463
F_{2}	144	$147 \pm$	4	$147 \pm$	4	147 ± 5	148 ± 4
F_{4}	12	$16 \pm$	1	$16 \pm$	1	$16 \pm$	$17 \pm$
G_{1}	140	- $46 \pm$	62	$-30 \pm$	62	124 ± 19	0 ± 42
G_{3}	15	$-145 \pm$	60	$-26 \pm$	104	26 ± 9	44 ± 9
G_{5}	2	$33 \pm$	10	$14 \pm$	17	fixed	fixed
ζ_{r}	1620	$1654 \pm$	30	$1632 \pm$	33	1618 ± 31	1619 ± 27
ζ_{d}	750	$830 \pm$	47	$800 \pm$	51	793 ± 53	783 ± 43
rms error		131		128		152	126

V. Conclusion. - New values for the $4 \mathrm{f}-5 \mathrm{~d}$ interaction parameters around the half-filled 4 f shell have been obtained. The theoretical prediction are capable of reproducing quite accurately recent observational data in the $4 f^{6}\left({ }^{7} F\right) 5 d$ and $4 f^{8}\left({ }^{7} F\right) 5 d$
subconfiguration. The reliability of the parameters is manifest by their regular behaviour from Sm to Tb , by the accuracy of their reproducing observed level position and g-values, and by their being determined by 126 low levels observed in these atoms.

References

[1] Spector (Nissan), J. Opt. Soc. Am., 1970, 60, 763.
[2] Blatse (J.) and Van Kleef (Th. A. M.), C. R. Acad. Sci., 1969, 268, 792.
[3] Blaise (J.), Marillon (C.), Schweighofer (MarieGabrielle) et Verges (J.), Spectrochim. Acta, 1969, 24B, 405.
[4] Klinkenberg (P. F. A.), Physica, 1967, 37, 197.
[5] Racah (G.), Phys. Rev., 1942, 62, 138.
[6] Condon (E. U.) and Shortley (G. H.), Theory of Atomic Spectra, Cambridge University Press, 1963.
[7] Judd (B. R.), Phys. Rev., 1962, 125, 613.
[8] Albertson (W.), Astroph. J., 1936, 84, 26.
[9] Russell (H. N.), J. Opt. Soc. Am., 1950, 40, 550.
[10] Klinkenberg (P. F. A.) and Meinders (E.), Physica, 1969, 42, 213.
[11] Eremin (M. V.) and Maryakhina (O. I.), Optics and Spectroscopy, 1969, 26, 479.
[12] Elliott (J. P.), Judd (B. R.) and Runciman (W. A.), Proc. Roy. Soc., 1957, 240, 509.
[13] Arnoult (C.) and Gerstenkorn (S.), J. Opt. Soc. Am., 1966, 56, 177.
[14] Childs (W. J.) and Goodman (L. S.), J. Opt. Soc. Am., 1969, 59, 875.
[15] Meinders (E.) and Klinkenberg (P. F. A.), Physica, 1968, 38, 253.

[^0]: Index headings : Atomic spectra, theory: samarium ; gadolinium ; terbium.

