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Résumé. - Cet article est le premier d’une s6rie consacrée à l’étude systématique du transport
électronique linéaire dans les plasmas denses fortement couples, comportant plusieurs espèces
ioniques classiques plongées dans un jellium électronique fortement dégénéré. Le formalisme
retenu, spécialisé ici au cas des coefficients thermoélectroniques et du transport mécanique
(viscosité), repose pour l’essentiel sur l’extension de la th6orie de Boltzmann-Ziman, dans le

cadre de l’approximation Lorentzienne. Les conditions de validité de cette dernière sont

largement développées, et l’accent mis sur les corrections de température finies et les corrections
inélastiques. Les coefficients de transport sont exprimés analytiquement sous forme de quantités
réduites, à la fois dans le cas élastique et inélastique, respectivement au moyen des solutions
exactes et variationnelles de l’équation de transport. Ceci permet un calcul simplifié des
corrections précédemment mentionnées, calcul qui sera détaillé dans l’article II de cette série.

Finalement, nous démontrons la validité de la méthode en reproduisant, dans les limites

appropriées, les formules de Ziman et d’Edwards pour la résistivité, ainsi que d’autres résultats
bien connus.

Abstract. - This is the first paper in a series devoted to a systematic investigation of linear
electronic transport properties in strongly coupled plasmas consisting of a multicomponent and
classical ionic mixture embedded in a highly degenerate electron jellium. The basic formalism
rests upon suitable extensions of the Boltzmann-Ziman theory as explained in this work. It is
hereafter specialized in a thorough investigation of thermoelectronic and mechanical transport
coefficients. Validity conditions for the Lorentzian approximation are first carefully examined.
High temperature and inelastic corrections are emphasized. Basic transport quantities are

expressed under an analytic and compact form both in the elastic and inelastic cases, through
exact and variational solutions of the transport equation, respectively. This allows for an easy
algebraic treatment of finite degeneracy and inelastic corrections, to be given in the next paper II
in this series. Finally, the validity of the method is demonstrated by recovering Ziman’s and
Edwards’ resistivity formula, and other well-known results, in the appropriate limits.
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1. Introduction.

Equilibrium and transport properties in very dense and strongly coupled plasmas consisting of
a fully or partially ionized multicomponent ionic mixture interacting through the (screened)
Coulomb potential and embedded in a highly degenerate electron jellium, play a central role
in several areas of Statistical Mechanics [1], Astrophysics [2, 3] and Liquid Metals Theory [4].
As a particular and very important example, let us mention the determination of equation of
state and transport properties of the strongly coupled hydrogenic binary ionic mixture H+-
He2+ retained to model the Jovian planets interior [2, 3]. Recently, we have already
investigated [1] the critical demixing properties of such systems, which were assumed in this
case to be in thermodynamical equilibrium. Basically, the key parameters in such analysis are
the classical ion plasma parameter T, and the degenerate electron jellium parameter
rs. This paper is devoted to a systematic investigation of linear and electronic transport
properties within a Lorentzian framework. This one is especially well-suited to a modelling of
the interaction between a nearly fully degenerate electron jellium and ion density fluctuations.
This interaction constitutes the very basis for the evaluation of all transport quantities.
Moreover the superposition of a fully degenerate electron gas to a strongly coupled ion fluid is
also central to building up the so called Binary Ionic Mixture model (BIM) [5] where the
dynamic and static properties of the classical ion plasma are decoupled from a mechanically
rigid and neutralizing electron background. Focusing attention on the electron component, let
us notice that its complete degeneracy allows a safe neglect of the electron-electron
interaction. This allows a simplified but accurate treatment of transport properties within a
Lorentzian approximation to the Boltzmann equation [6] which has already been extensively
applied to the one component plasma (OCP) model [7a, b]. The main formal characteristics
of this Boltzmann-Ziman (BZ) formalism relies upon simple expressions for time-indepen-
dent transport quantities. These simple expressions essentially consist of single quadratures of
electron-ion effective interactions factorized out by ion structure factors. The latter are

generally deduced from the nonlinear hypernetted chain (HNC) scheme extensively used in
the study of static and transport properties [1, 5, 7b].
Having in mind a thorough investigation of finite temperature and inelastic contributions

(Paper II) to the standard elastic scattering at T = 0, we detail at length in section 2 the
various parameters used in this analysis. Finite degeneracy and inelastic effects, parametrized
respectively with a = T/TF (TF, Fermi temperature) and ci = 8 hw (,B = 1 /kB T), are

shown to act significantly in well-decoupled domains A and B of the F-r. plane, which will
allow a further separate analysis of the previously mentioned contributions. In section 3, we
review the standard BZ formalism [6], hereafter specialized to a Lorentz gas interacting
weakly with a multicomponent ionic mixture. The investigated transport quantities include
electric and thermal conductivities, as well as the corresponding thermopower and the
(mechanical) shear viscosity. The bulk viscosity is seen to have an identically zero value in a
Lorentz gas.

Section 4 is devoted to a thorough dimensional investigation of the various transport
quantities of present concern. The latter are expressed in terms of basic reduced quadratures,
both in the purely elastic case (Sect. 4.2) where exact solutions of the transport equation are
available, and in the inelastic case (Sect. 4.3) where only approximate solutions may be
derived from the variational principle [6]. The significant contribution played by a number of
suitable r -rs-dependent prefactors is emphasized. In both elastic and inelastic situations, we
consider briefly the limiting a « 1 and J  1 cases, in view of evaluating finite degeneracy
and inelastic corrections to electron transport in terms of a 2 and w2 expansions respectively
(Paper II). The latter necessitates the underlying calculation of dimensionless quadratures
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(ijn&#x3E; 0 and (ij m&#x3E; 1 explained in this work. Our methodology is applied in section 4.2.2 to the
simultaneous a --+ 0 and cv --+ 0 limits, giving back straightforwardly the well-known Ziman
resistivity formula [6], the standard Lorentz number as well as classical thermopower and
shear viscosity expressions. Finally (Sect. 4.3.3), we intend to make a connection between the
variational approach and exact elastic transport calculations. For that purpose, we focus our
attention on some variational transport quantities computed with monomial trial functions in
the appropriate cv --+ 0 limit. We show that Edwards’ resistivity formula [8] as well as some
other transport expressions, belong to that specific class of solutions.

2. The Lorentz model.

2.1 NOTATIONS. - We consider a multicomponent mixture built of degenerate electrons and
Ps ion species subindexed with v, enclosed in the total volume Tf of a connex domain. Each
ion species is assumed to be fully or only partially ionized and endowed with atomic number
ZA, effective charge - Zv e (e denotes the electron charge), mass M1/ and particle number
N 1/. Conventionally, v = 1 refers to the smallest charge. The neutralizing background is of
opposite sign and contains Ne nearly free electrons. Electroneutrality thus reads as

Ne = ZN; where Ni = ¿ N 1/ and Z c, Zv is the mean valence. More generally, the
v v

average by concentration number of a given quantity X will be defined as

The ionic component is characterized by the densities n; = lim Ni/ v and n v = lim N,,/ v.
v - m v - m

The partial concentration numbers are CJI = N JI/Ni and fulfill the constraint L CJI = 1. We
p

choose the ion sphere radius a; = [3/ (4 7Tni) ]1/3 as a convenient unit of length and we define
the classical plasma parameter as T = {3e2/ai. The quantum jellium, endowed with electron
density ne = lim Ne/V, is parametrized with rs = ae/ao where ao is the Bohr radius and

v - 00

ae = [3/(4 7Tne) ]1/3 = ail ZI/3 is the electron sphere radius. This unit of length allows to define
r’ = {3e2/ae as another plasma parameter. The effective strength of the plasma coupling is
measured by rerr = rZ;rr. By reference to the ion-sphere model of Salpeter [9], the effective
quadratic charge Z ff can be chosen as (Ref. [10]) Z;rr = ZI/3 ZS3.
Throughout this paper, A will stand for the numerical constant (9 7T /4 )1/3. We will dénote

by ZJI = ZJI/Z a reduced charge number. Also, it will prove convenient to deal with the

variables :

which will be detailed in the sequel. Transport quantities investigated in this work will be
measured in atomic unit (a.u.), namely oo = e 2/ao h = 4.60 x 104 n-1 cm-l and

710 = À la) = 7.12 x 10- 3 poise, for electrical conductivity and viscosity respectively.

2.2 VALIDITY CRITERIA FOR THE LORENTZIAN APPROXIMATION. - As previously stated,
we restrict ourselves to the case of a classical and strongly coupled ionic component
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interacting weakly with a highly degenerate electron jellium. The latter assumption is written
in terms of the degeneracy parameter a as

so that T (K) = 6 x 105 rs 2. EF stands for the Fermi energy of the jellium which can be
treated nonrelativistically as long as EF/m, c2  1, i.e., rs &#x3E; 10- 2 (me, electron mass).
The weak coupling hypothesis (WCH) is ensured when EF remains larger than the

(absolute) coulombic e - -ion energy. This can be readily expressed by evaluating the latter for
each ion-species in a neutral sphere of radius a’ = [3 Zv/(4 -ff n)]1/3 and next performing the
c, average according to (2.1). This yields :

which typically restricts rs to be lower than unity in the hydrogen-helium mixture.

Alternatively, the WCH can be implemented as an adequate criterion validating the first Born
approximation in the calculation of the e--ion scattering cross-section. For our purpose, and
following Stevenson and Ashcroft [11], we write it in the form u app/ 4 7Ta2 ::;; 1, where the
« geometrical » cross-section 4 7Ta2 is evaluated with the characteristic Thomas-Fermi

screening length À TF = (6 7tune e2/EF)- 1/2 while 0-app, the apparent cross-section per ion, is

defined by the identity :

An obvious estimate for the time relaxation T is provided by the standard expression
a = ne e2 T /me for the electric conductivity. We thus arrive at (T / (T 0 Z/ 7r 2, , i.e., just a
lower bound for o,. A more suitable conclusion can however be reached, by making use of the
following reduced expression for the well-known Ziman resistivity formula including the Born
approximation, detailed in section 4 :

This yields

which formally corresponds to inequality (2.4). As we shall see, this assertion is corroborated
by the fact that the basic dimensionless quadrature Io entering in Ziman’s formula (2.6),
a) remains close to unity, b) only involves ion charges under their reduced form za and c) also
exhibits a smooth rs variation ( 1). Moreover, additional constraints such as a) the electron

(1) An upper-bound for 10 can be crudely derived with V (x) = (x2 + 0.166 rs)-1, the Thomas-Fermi
potential, and S(x) =0, the asymptotic limit of structure factor S(x). This provides
Io 1 (il/2) In (1 + 6.02 /rs ) which varies only from 2.86 to 0.40 times z 2 within the full range

0.02 -- r, -«--- 5.
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jellium remains only weakly polarized by ion density fluctuations, namely À TF a’, v and
b) the electron mean free path A e = VFr is large in comparison with ai, also agree with (2.4)
or (2.7) endowed with a z- 2/3 factor. We are thus led to conclude that in addition to the
previous (2.3), inequality (2.7) provides a correct criterion for the Lorentzian approximation,
including the Born one.
Looking at the thermodynamical coherence of the Lorentz model through the requirement

p =..e p, + pi -- 0 also provides another upper-bound for rs (Ref.[lb]), which amounts to

r, 5 (0.206 + 0.405 Z/Z)’ i.e., rs 5 1.6 for pure H and rs s 1.2 for pure He. Negative
pressure for non-negligible jellium correlations (typically rs - 1.5) can thus arise at large He
concentration. This is a warning that a polarized background should be introduced within the
so-called polarized BIM model (PBIM) (Ref. [1]) in lieu of the rigid BIM one.
The conditions derived above form the very basis for the Lorentz model under

investigation. It should be appreciated however that they do not match the condition that
atomic nuclei get completely stripped of their orbital electrons, especially at large
Z values. The latter requirement can be roughly derived by demanding the electronic pressure
p, - 2/5 ne EF to be large enough for pressure ionization to hold :

Even in the deep fluid interior of giant planets such as, say Jupiter, where (Ref. [12])
rs .-- 0.85, Feff -. 45 and cl -. 0.9, condition (2.8) indicates that the heaviest (helium)
component may be only partially ionized.
Turning to the ion component properties, we inquire for ion departure from their classical

behaviour, a feature which plays an important role within the BZ transport formalism, due to
the enhancement of inelastic electron-ion scattering processes at the Fermi surface. The latter
are usually measured by

where kF = (2 me EF) 1/2/h is the Fermi wavevector while 8 = A/ai defines a « one-fluid »

parameter with A = [{3h2/{2 1TM)] 1/2, the average thermal De Broglie wavelength. A
detailed analysis (Paper II) shows that inelastic scattering contributions to the BZ formalism
are to be measured in FyIlO units. For our purpose, the classical ion range is thus well-
characterized by y « 1 for r « 10 and y « IOIF for r 2: 10. Finally, the OCP fluid-solid
transition [13] also provides the upper bound Feff -- 171, i.e., T _ 171 for pure H and

F -- 42.75 for pure He.
The various F-r, domains featuring the overall inequalities described above are pictured in

figure 1, in the case of a 90 % H-10 % He mixture corresponding to Jupiter’s deep interior.
Inelastic contributions are expected to act significantly in domain B. Hopefully, this latter
appears well-decoupled from domain A where finite degeneracy (a-dependent) corrections to
the T = 0 jellium play an important role. This decoupling is the most conspicuous by-product
of the present analysis. It allows us to treat the corresponding transport formalism separately,
with a significant simplification of the required algebras. Those are explained in section 4 of
this paper and will be worked out in the following paper II in this series.
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Fig. 1. T-rs plane for the H+ -He2+ mixture at C2 = 0.1 (10 % He), corresponding to the deep-fluid
interior of Jupiter. Finite degeneracy and inelastic electron-ion scattering effects get significantly
enhanced in domains A and B respectively.

3. Boltzmann-Ziman transport theory.

Let us consider a jellium fluid submitted to an external electric field 9 and a thermal gradient
VT. We also introduce the local and macroscopic velocity v (r, t ) of the ionic component with
respect to the observer in order to account for viscosity effects - Vv. The v --+ 0 limit taken at
the end will ensure that we get the correct limit for transport coefficients in a frame where the
ions are at rest. In agreement with the Lorentzian approach, nearly-free electron states are
represented by plane waves of energy Ek = h2 k 2 / (2 m,) and velocity vk = kk/m,,. Then,
electron transport can be worked out through the linearized Boltzmann equation :

Function CP (k) within the collision term provides a standard linear estimate

f, - f e 0 - 0 (k) (8feo/ aE k) for the true electronic distribution f e in terms of the Fermi

function f °.
The e--ion transition probability per unit time F (k --+ p ) computed in the first Born

approximation can be written in a convenient compact form (q = k - p 1 ) :
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Here we define V(q) as an obvious linear combination

of the screened electron-ion pseudopotentials V,,(q) == Û,,(q)/s(q) (Ref. [4]), including a
static limit of the jellium dielectric function s (q) = lim s (q, ltJ). Hence the «one-fluid»

w - 0

structure factor S(q, £ù ) reads as :

The S,,,’s stand for partial ion-ion structure factors which are double Fourier transforms of t-
dependent correlation functions [10]. The physical meaning of definitions (3.3) and (3.4)
becomes clear in the coulombic case where the i-dependence is only contained within the
charge number Z,. This yields

and

Szz(q, úJ ) corresponds to the reduced charge density-charge density structure factor with the

emergence of reduced valences z 11 = Z,, 12, previously defined in section 2.1.
The neglect of e--e- collisions within F(k --* p ) (Eq. (3.2)) has obviously no practical

incidence in the calculation of electric conductivity. However, turning to the thermal

conductivity, we already know from Lampe’s analysis [ 15] that electronic interactions within a
partially degenerate electron-jellium could lower it by an amount of 25-50 % ! This is a

warning that linear transport theory within a Lorentzian framework has to be strictly
restricted to its range of applicability, delineated by inequalities (2.3) and (2.7).

Linearized transport equation (3.1) plays a fundamental role in assessing thermoelectronic
and viscosity transport. E = 6 - V J.L e/e behaves like an effective electric field. Another

possible choice, among others, reads as (Ref. [14b], Sect. 3.2) E’ = 6 - (Vil,,)Tle where the
gradient operator is taken at constant temperature. Then J.Le within equation (3.1 a) has to be

replaced by he, enthalpy per electron. li corresponds to the symmetrical and traceless part in
Vv. As in the classical case [14], the viscosity term does not exhibit an independent
contribution - div v. Consequently, the bulk viscosity [16] is seen to have an identically zero
value to all orders in the degeneracy parameter. This result can be proved on a rigorous basis
[1b] through a Chapman-Enskog-like treatment of the transport equation (3.1) belonging to
quantum Lorentz gases. It extends a previous and similar conclusion already obtained by
Abrikosov and Khalatnikov [17] at order a = 0 within the context of the Landau theory for
quantum liquids, and it agrees with the neglect of e--e- interactions.

Entropy production arising from all processes dissipating energy is readily deduced by
factorizing out (3. la) with - 0 (k) and next performing the sum on k (Ref. [6]). One gets
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with

Equations (3.8) provide the required microscopic expressions for electric and heat-flux

currents and the stress tensor, respectively. Supplementing transport equation (3.1 a), they
will allow us to determine thermoelectronic coefficients and the shear viscosity. This is

achieved by comparing them with their phenomenological homologues detailed in the next
section.

4. Basic transport quantities.

4.1 GENERAL. - Linear transport coefficients are defined by [6, 16]

L,, =- a- corresponds to the electric conductivity at constant temperature while the thermal
conductivity is defined by U == - K V T with J = 0, which implies K =
- (Lrr - LTE LET/LEE), Crossed quantities LTE and LET fulfill Onsager’s relation [14b],
LTE = - TLET. The Lorentz number C relates the thermal and electrical conductivities

through K = £ Ta-. Finally, the thermopower is defined as Q = - L ET /LEE -
Phenomenological equations (4.1 a-b) hold for the effective electric field E = F, - V» e e

retained throughout this work. With the alternative definition E’=82013 (VU,)Tle, the

thermal current (4.1 b) contains an additional term (Jle)(Tse) with se, entropy per electron ;
thus a and K remain unchanged but Q must be replaced by Q’ - Q - (se/e).

4.2 LINEAR TRANSPORT IN THE ELASTIC CASE. - We intend to solve linearized transport
equation (3. la) in the standard limit where electrons are elastically scattered by ionic density
fluctuations. The actual content of elastic diffusion is the following : through successive
collisions, the electron absorbs as much energy as it reemits. It is then sufficient to put
i = 6 hw --* 0, in agreement with the electron-ion cross section proportional to S(q, w )
(Eq. (3.4)). Also, it should be kept in mind that in the é - 0 limit, S(q, to ) as well as the

S,,,, (q, w )’s remain symmetric under w - - w, in agreement with the principle of detailed
balancing. As a consequence, emission or absorption of a quantum -hW is equally likely to
occur. With these premises taken into account, one gets
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for the basic Fo (k --+ p ) expression which actually depends on the static (classical) « one
fluid » structure factor :

Equation (3.1 a) also shows how intertwined the vectorial thermoelectronic coefficients are
with the order 2 tensorial shear viscosity. So, one is entitled to write 0 (k) = P 1 (k) + 0 2 (k)
where functions c/J t (k) and c/J 2 (k) correspond to separate solutions for thermoelectric and
mechanical transport respectively. Within the elastic limit, those can be derived exactly
because collision term (4.2) relates only p states located on k sphere. Therefore

c/Jt (k) and 0 2 (k) may be written as

with generalized relaxation times Tl(k) and T2(k) depending only on k. There is no need for
two distinct relaxation times in E and V T respectively, because (Ek - ,u, e ) remains constant on
k sphere. A similar reasoning would have easily convinced us that a hypothetical bulk
viscosity term - f (Ek - / e ) div v, where f is a given scalar function, should lead to a
vanishing elastic contribution.
Upon replacing formal solutions (4.4) in equation (3. la) yields after straightforward

identifications :

Ti l(k) is nothing but the well-known Ziman-like [6] integrant extending to a running upper
bound, while T2 1 (k) taken in the k --&#x3E; kF limit does the same for Baym’s viscosity formula [18]
in the elastic case.

4.2.1 Reduced quantities and methodology. - Bearing in mind a thorough investigation of a-
dependent contributions to the electronic transport (domain A of Fig. 1), it appears useful at
this stage to re-express (4.4) and (4.5) in a reduced form especially well suited for further
algebraic analysis and numerical integration. This will also prove convenient for investigating
inelastic corrections, as is detailed in section 4.3. First, let us introduce the dimensionless
variables 

t has to be taken as a function of q and a = T/ TF

With the help of the dimensionless variable x, the effective interaction V(q) (Eqs. (3.3) and
(3.5)) now reads as
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The jellium dielectric function e (x) within V (x) depends solely on x. Also, the structure
factor S(q = 2 kF x) is now simply denoted as S(x).

Electric conductivity and shear viscosity are respectively measured in a.u. (see Sect. 2.1).
We will also introduce the corresponding time unit

Generalized relaxation times rl(k) and T 2 ( k ) thus read as

with

Next, one introduces quadratures Kn, m such as

from which one derives

and

Equations (4.13) pertain to exact solutions of the transport equation at any temperature, in the
elastic limit. Numerical exploration would require a tabulation of L 1 ( t ) and L2 (t) deduced
from V (x), for a given E (x) suitably chosen in the temperature-density domain of interest. In
a forthcoming work, we shall give specific attention to the temperature extension of the
Lindhard dielectric function [19], worked out by Gouedard-Deutsch [20]. These functions
hereafter referred to as L and GD respectively, will play a central role in evaluating
L (t) and L2 (t), looking for an a 2 expansion of transport quantities of present concern within
the range rs :5 1 and F 1.
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Anticipating the main analysis displayed there, let us notice that an algebraic a expansion of
solutions (4.13) obviously necessitates an underlying expansion of the t-dependent part in the
integrant of quadrature K(i) -

This in turns brings about a simultaneous expansion of t(,q, a ) with respect to q leaving us
with the evaluation of quadratures such as (2)

where notation (2.2) has been used. Those quadratures are identically zero for n odd or
expressed analytically in terms of Bernoulli numbers in other cases [21], with the simplest
results :

The scheme described above constitutes the very basis of our methodology for evaluating
finite degeneracy corrections. It is straightforwardly applied in the sequel to the simple
a -.&#x3E; 0 limiting case. Let us emphasis however that the calculation of higher order terms in
expansion (4.14) is not an obvious matter. When dealing with L and GD dielectric functions
for exemple, this requires first a highly non trivial analysis of the singularities contained in the
derivatives of these functions at x = 1 (i.e., q = 2 kF). The net contributions of these

singularities have next to be resumed in order to get the correct T-dependence of transport
quantities, even at lowest a2 order.

4.2.2 Linear transport in the a --+ 0 limit. - At the lowest order, a expansion of

K(’) yields at once

Upon introducing these results into equations (4.13a-d), we obtain the required expressions
for the linear transport coefficients in the T - 0 limit. In order to avoid the repetition of
lengthy expressions, it appears useful to introduce the following notations

(2) For a « 1, quadratures (4.15) are simplified, replacing their lower bound - 6 JL e by - oo . This is
equivalent to neglecting terms -exp(- 16 £ e) - exp (- 1 /a ) arising from (- afl()l a 77 ).
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and

(5 = Dirac distribution) .

Then, one finally gets

which provide standard expressions for thermoelectronic coefficients 0- (), Ko and Q 0 as well as
for the shear viscosity °, expressed in a reduce form. It should be noticed that superscript 0
in our notation refers specifically to the simultaneous cv - 0 and a -+ 0 limits. (Lowerscript 0
on the other hand, refers to a.u.). It should also be appreciated that equation (4.20a) yields
back the well-known Ziman expression for electrical resistivity :

Q’o is at least of order a, in agreement with a term of order q arising from

Kl,IJ. In this case, the first non-zero contribution in expansion (4.14) behaves as

(t - 1). Moreover, in the a  1 limit, the Lorentz number retrieves its Wiedmann-Franz
value CO = ( 7r 2/3) (k]Ble )2 . Finally, transport coefficients in the elastic limit at T = 0 are
derived from the structure factor S(q) and the mean potential y ( q ) through It,
f and the local parameter (°. Physics thus lies in those dimensionless quantities. As we will
show in a forthcoming work, a salient feature is that pre-factors contained in expressions
(4.20) contribute mainly to the net behavior of the corresponding transport coefficients,
through their T and rs dependence (see previous footnote 1). This explains the interest of
introducing scaled expressions like (4.20) when studying analytical properties of those linear
transport quantities.

4.3 LINEAR TRANSPORT IN THE INELASTIC CASE. - We now turn to solve equation (3. la) in
the more general case where inelastic collisions between electrons and the ionic component
cannot be neglected. As already stressed, this feature arises in domain B of figure 1. In
contradistinction with the elastic case, only approximate solutions to the linear transport
equation can actually be derived, with the help of a well known variational method [6] which
we first outline in section 4.3.1. Next we display an « inelastic methodology » extending
previous results derived in section 4.2.2. Finally, we applied the latter formalism to the

specific case of variational transport taken in the elastic limit, with simple monomial trial
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functions. A few well known transport expressions such as Edwards’ resistivity formula [8] are
shown to belong to this class of solutions.

.4.3.1 Standard variational method. - Let us consider transport equation (3.1a) written in the
compact form X (k) = P 0 (k) where P e (k) = - 3 lin (0 (k» defines a linear, definite positive
and self-adjoint operator acting on a class of real trial functions e (k) = E y i e i (k). Entropy
balance (3.7) reads as : 

1

where brackets (... ) refer here to the scalar product ( 1 / V) E (... ). The variational principle
k

states that amongst all 0 (k) fulfilling equation (4.22), the exact solution of transport equation
optimizes the system entropy ( 0 (k), P fl (k) whereas the applied external fields are kept
constant. The scalar parameters ’Yi have to be variationally adjusted which provide the
variational solutions : 

--

Pii and P stand for matrix elements ( oj, P oj &#x3E; and (cPi’ P cPj) respectively. The tilde

refers hereafter to trial functions and other related quantities specialized to viscosity.
.l¡, Ui and fIi correspond to the rotational invariant part of currents (3.8), computed with trial
functions ei (k) which have to be introduced in the form

in order to produce a nonzero output. Unit vector û and tensor Û, which have arbitrary
directions in the elastic case, are removed from the variational currents (4.23) through an ad
hoc projection. For anisotropic systems, or when addressing the calculation of more

sophisticated transport quantities such as the Hall coefficient, a tensorial extension of the
variational method (D. Léger and C. Deutsch, to be published) can be worked out, which
allows us to completely circumvent the dependence of the trial functions on unphysical
û or û quantities.

4.3.2 Variational reduced expressions. - As was done for the elastic case, the required
variational transport coefficients may be given a more convenient form involving reduced
quadratures. In so doing, we first note that through reduced variables t and q (Defini-
tions (4.6)), one can derive the dimensionless currents :
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Functions ’P i ( ij) and ei(i7) correspond respectively to ’P i (k) and ej(k), the latter being
implicit functions of (Ek - .¿ e) or also /3 (E k - U E)IIT - = -4. From a general point of view,
çoe ; (77 ) and è (?7 ) may be taken as monomials 7jn, or chosen in any set of linearly independent
functions.

Let us now set to = Ip - k /2 kF and tl = (p + k )/2 kF and introduce dimensionless matrix
elements P ij and Èii as

where S(x, w ) stands for S(q = 2 kF x, W ). We also define dimensionless integrands

1JI’ij and Îj in terms of x and the new variables ii and fi ’ previously defined in (2.2) so that

and similarly for gii. Upon introducing :

and using similar definitions for À,, A 2 and A3 with ’Pi --+ Pi’ one arrives after a number of

lengthy algebraic manipulations at

Variable fi’ is useful in computing transport coefficients at a low temperature, i.e.,
a « 1. When adressing the computation of P;, and Èij, we should in fact consider quadratures
similar to

extending to the inelastic case integrals (7jn)o already considered in (4.15). The analytic
properties of these quadratures, both for monomials and other arbitrary functions, will be
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detailed in the following paper II. For our purpose, let us just note here that quadratures
(ij ") 1 are identically zero for odd n, while in other cases they express as

where n(cJ) = (e e - 1 ) - 1 refers to the Planck function, while pp(w2) is a polynomial of

degree p. Expressions (4.31) are thus especially useful in computing inelastic corrections
obtained as expansions in (à 2which again explains the basic methodology described above.

Finally, one gets the required transport coefficients in the reduced form

Once cP i ( 1j) and Pi ( 1j) are selected, these expressions allow for a variational calculation of
transport coefficients at any temperature. As is readily demonstrated from the basic content of
the variational principle itself, variational quantities a "1 Kvar and 7J v a ’have to be smaller than
their exact counterpart.

4.3.3 Variational transport coefficients in the elastic limit. - Before proceeding further with
the estimation of inelastic contributions (Paper II), it proves useful to briefly examine the
connection between variational techniques and the elastic transport calculations detailed in
previous sections. For that purpose, it is sufficient to derive variational results from the

simplest monomial trial functions n which produce a non-zero output for uvar, , Kvar and
7J ;ar. The elastic limit is characterized by lim to = 0, lim tl = t and also

Estimating p a, _ p 11 IJ,2 with ’P 1 ( 7j) = 1 provides straightforwardly

since JI - 1 in this case ; expression (4.33) can be shown to be identical to the well-known
Edwards formula for resistivity.

Similarly, the calculation of K"ar with ’P2( ij) = ij, is performed through
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in agreement with an expression recently derived within a different theoretical framework by
Ichimaru and Tanaka [22] for thermal conductivity in dense plasmas. However, it should be
appreciated that these authors have replaced the chemical potential g, in variable

fi = 8 (Ek - / 7r by he, enthalpy per electron. This is a simple consequence of the
definition retained for the effective electric field, as explained previously. Let us also notice
that a complete calculation of Kvar with the correction term - TL ET 2 IL EE requires at least two
trial functions in order to produce a non-vanishing output for the latter. The complete
expression is then much more involved that equation (4.34), even at a level of a two functions
approximation.

Finally we compute 7J:ar with §S, ( fi ) = 1, and obtain

Equations (4.33)-(4.35) derive from the variational principle with one single trial function
in each case. In the a - 0 limit, they reduce to exact results (4.20a) and (4.20c-d)
respectively. Another interesting problem would consist in demonstrating that a complete
basis of monomials r,n, or more involved functions, yield back the exact solutions at any
T provided in equations (4.13). A more immediate program would consist in selecting out
trial functions within a limit a « 1, giving back exact expansions of transport coefficients up
to a finite order a . By restricting to thermoelectronic coefficients, we have been able to
check out that the function pairs (1, 77) and (r" r,2) yield back respectively 0, and
K up to order a 2. So, one may conjecture that the thermopower Q should be retrieved at
order a2 with (1, fi, r, 2)..
Once we have chosen the given trial functions, we can thus apply the above formalism to

include inelastic effects. In this fashion, we shall be able to compute u at order

a 2, the inelastic contributions being included both into the zero-order term and in the
a 2 correction. This will be done in the next paper II.

5. Conclusion.

The theoretical framework for computing all the time-independent electronic transport
coefficients in strongly coupled and multicomponent ionic mixtures is laid down through the
Boltzmann-Ziman approach and the Lorentzian approximation. The latter rests on a few
number conditions on the basic parameters r and rs, which have been examined carefully.
The present analysis results in a crucial simplification arising from the decoupling depicted in
figure 1 of inelastic effects from temperature-dependent corrections. This remark paves the
way for a separate analysis given in the following paper II in this series, in terms of exact
a 2 and (j 2expansions. Specific features of Boltzmann-Ziman transport formalism within the
context of Lorentz gases have been reviewed with specific attention to the Chapman-Enskog-
like treatment of the transport equation. Finally, thermoelectronic and mechanical transport
coefficients have been rexpressed under a suitable reduced form, both in elastic and inelastic
cases, ready for further algebraic and numerical developments.
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