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Résumé. — La conductivité électrique et la force de rupture de syst¢tmes modeles fissurés a deux
dimensions sont étudiées expérimentalement. Deux cas sont considérés. Dans le cas 1, les fissures
sont disposées aléatoirement sur les liens d’un réseau carré dessiné sur le continuum. La taille
finie de nos systémes permet a peine d’atteindre le régime critique de la percolation et on mesure
plutot un comportement décrit par des théories de milieux effectifs. Dans le cas 2, les positions et
les orientations des fissures sont choisies aléatoirement sur le continuum (fromage « bleu
d’Auvergne »). Dans ce cas, de forts effets d’écrantage permettent d’atteindre le régime critique
et de mesurer les exposants critiques correspondants. Nous avons comparé ces mesures avec des
résultats théoriques récents qui prennent en compte les différents modes de déformation a
I’extrémité des fissures. En particulier, le flambement de feuilles minces joue un rle important et
peut changer les exposants critiques.

Abstract. — Experimental results on the conductivity and rupture properties of two-dimensional
continuum crack deteriorated model systems are presented. Two different systems are considered.
In case 1, cracks are randomly positioned on the bonds of a regular square lattice drawn on the
continuous system. Our finite size systems barely reach the critical percolation regime. The results
rather correspond to a mean field regime which may be described by effective medium theories.
In case 2, crack positions and orientations are randomly chosen in the 2D continuum (« blue
cheese »). In this case, strong screening effects allow us to obtain the critical regime and to
measure the corresponding critical exponents. The measurements are compared with recent
theoretical results which take account of the different modes of deformations occurring locally at
the crack level. In particular, buckling in thin foils is found to be an important deformation mode
which screens efficiently the stress enhancement at the tips of the cracks, thereby changing the
critical exponents.

1. Introduction.

Understanding the transport properties of heteregeneous or random media constitutes a
major challenge of present research activities and also receives strong incentive in the field of
applied and engineering science due to the many real and potential applications. Among the
heterogeneous media, systems containing crack play a fundamental role : cracks are the
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primary enemy to fight in order to prevent fatigue and eventually failure of mechanical
systems. Damage occurs in a system by the apparition of micro-cracks which eventually
coalesce and create a macro-crack which may destabilize and lead to global rupture. At
another level, it is through arrays of cracks that water or oil permeate in soil and can be
recovered. On the other hand, cracks or rather faults, as they are called in this context,
control the brittleness of the earth crust and thus the occurrence of earthquakes. One could
think of many other relevant examples where cracks play an important role.

Experimental and theoretical studies of crack deteriorated systems have essentially been
developed in the field of theoretical and applied mechanics. The continuing refinement of
these approaches is the subject of a very intense research effort in this field. However, focus
has been put on single or few crack problems like periodic lattices of cracks by using exact
analytical methods. For dilute crack concentration, homogeneization approaches have been
-used such as, for instance, effective medium theories [1-3] or continuous damage theory [4].
These approaches apply when certain symmetries exist or when the concentration of cracks is
not too large. However the weak crack concentration limit does not always apply in many
systems of physical and industrial interest. This is our main motivation for studying the other
limit of strong heterogeneity within the frame of the percolation model. A second motivation
is found from the field of statistical physics where it was realized that the critical behaviour of
electrical conductivity, fluid permeability, elasticity modulus and failure threshold was
different in discrete-lattice percolation and in a class of continuous percolation models
(« Swiss cheese » model [5]) pointing out the existence of at least two universality classes of
transport phenomena in percolation. Percolation of cracks (termed « blue cheese » model in
[6] has been shown to yield still another critical behaviour worth studying for its own sake.

Many studies have been devoted to the theoretical prediction of the conductivity in
disordered systems, but less work has been devoted to consideration of these predictions on
the experimental side [7]. Benguigui [8] has measured the electrical conductivity G of Cu and
Al foils punched with holes randomly distributed on a square lattice and on a continuum near
the percolation threshold. He finds that G oc (1 — N/N_) with ¢ = 1.1 = 0.2 where N is the
number of holes. Sofo et al. [9] have measured the conductance of randomly punched
metallized mylar sheets and find the critical conductivity exponent ¢ = 1.4 = 0.2. Lobb and
Forester [10] find the critical exponent ¢ = 1.24 + 0.13 for holes distributed on a continuum.
All these results confirm the prediction of Halperin et al. [5] that ¢ has the same value for
discrete lattice percolation network or for disordered continuum system in two dimensions.

In the following, we report experimental results on the conductivity and rupture properties
of two-dimensional continuum crack deteriorated model systems. In section 2, we define
more precisely the two types of systems which have been studied : in case 1, cracks are
randomly positioned on the bonds of a regular square lattice drawn on the continuous system.
In case 2, crack positions and orientations have random values on the continuous system. This
is the « blue cheese » model introduced in reference [6]. The geometrical properties of these
systems which are reported in a separate paper [11] and the theoretical transport properties
which have been previously analysed [6] are briefly summarized in section 2. In section 3, the
measured electrical conductivity and mechanical rupture properties of the two models are
described and compared to predictions. In the first case, the finite size of our system barely
allows us to reach the critical percolation regime. Both electrical and rupture properties could
be explained from effective medium approaches. In the second case, strong screening effects
allow us to obtain the critical regime for system sizes of the same order as in the first case and
to measure the corresponding critical exponents. The results of the rupture are compared with
the theoretical predictions of the « blue cheese » model which takes account of the different
modes of deformations occurring locally at the crack scale. In particular, buckling in thin foils
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is found to be an important deformation mode which screens efficiently the stress
enhancement at the tips of the cracks, thereby renormalizing the critical exponents to their
value for discrete lattices.

2. Theoretical properties of crack-deteriorated systems.

2.1 GEOMETRICAL PROPERTIES OF THE PERCOLATION MODELS. — We restrict ourselves to
the two-dimensional space displayed in figure 1. In model 1, empty rectangular holes of
length « a » with negligible width are distributed along the bonds of a square lattice drawn on
a uniform electric or elastic medium. In model 2, the cracks are randomly distributed in
position and orientation in a surface of size L x L. As the number n = N /L?* of cracks per
unit surface increases, a percolation threshold #, is reached corresponding to the geometrical
deconnection of the sample in multiple fragments. We denote n (1) and n.(2) for models 1
and 2 respectively. The relevance of these blue-cheese models is suggested from the crack
structure of many mechanical [12] (damaged crystals, solids, ceramics, rocks...) and natural
systems [13] (arrays of faults in geology in relation to oil recovery, geothermics and
earthquakes [14]...) which often consist in random arrays of micro-cracks of vanishing width.
The geometrical properties of model 1 are those of the discrete bond percolation model. In
particular, it is known exactly that n (1) = 1/2. For model 2, previous numerical studies have
shown that n.(2) decreases as the crack length a increase i.e. n.(2) ~ Ca~2[15-17], resulting
in the existence of a quasi-invariant C = n, a® independent of a. The intuitive idea is that each
crack defines an excluded surface of the order of a?around it. Hence, the critical percolation
threshold n.(2) corresponds to the presence of a constant average number of cracks in each
typical surface a% The value of the invariant C has been estimated by a number of authors. A
recent estimate [11] obtained from a careful analysis of finite size effects gives
C =5.640 £ 0.005 for the asymptotic limit a — 0. Thus, near threshold, the number of cracks
in a surface a?is of the order of the invariant C =~ 5.6 in contrast to the value « 1 » in the same
surface for model 1. In other words, almost six times as many cracks are needed in model 2
compared to model 1 to reach the percolation threshold, all other values being equal.

/ </_F, case 2
D\ ) "

e
\
>//

e

case 1 ~—

Fig. 1. — Different types of chosen crack distribution. a) case 1 : cracks are randomly positioned on the
bonds of a regular square lattice. b) case 2 : crack positions and orientations are randomly chosen in the
2D continuum.

2.2 TRANSPORT PROPERTIES. — In the so called « Swiss cheese » model, Halperin ez al. [5]
used a scaling analysis to estimate various critical exponents of the transport properties
(conductivity, permeability, Young modulus...) of systems punched with holes. In the « blue
cheese » model [6], Sornette extended this analysis to the case for which the transport
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medium is the space between randomly placed clefts. In both cases it was found that the
critical behavior of the electrical conductivity is the same for model 1 (discrete lattice) and
model 2 (continuum). The electrical conductivity obeys the power law 3/3,oc(p — p.)’ near
the percolation threshold with the universal value ¢ = 1.300 found numerically for two
dimensional systems [18].

2.3 RUPTURE PROPERTIES. — In a system containing cracks, brittle rupture following the
Griffith mechanism will occur under tensile stress (mode I[19]). This rupture scenario is
expected to be prominent for cracks with vanishing width. In this failure mechanism, the
stress concentration at the apex of a crack tends to open the two edges and to lengthen the
crack, thus leading to failure. This mechanism must be considered when the tips of the cracks
are sharp, i.e. without screening due for example to the presence of rounding or of a cavity at
the tips of the cracks. The Griffith criterion states that a crack growth is governed by the
balance between the mechanical energy released and the fracture surface energy spent as the
crack propagates. In the blue cheese model, each crack is surrounded by many other cracks
which interact with it, locally enhance or screen the stress concentration at the crack tip. It has
been argued in reference [6] that the Griffith criterion could be extended in the presence of
these interactions and the analysis could be reduced to the study of the generic configuration
involving one crack in close proximity (to within a distance 8) to a border created by another
crack (Fig. 2). The analysis of the stress enhancement in this configuration leads to the
prediction of the critical behaviour of the rupture threshold. In general the critical exponent
of the rupture is distinct from its discrete counterparts and crucially depends upon the
deformation mode. However if the sheet is thin, buckling (out of plane deformation) occurs in
order to relax more efficiently the in-plane elastic stresses [6]. In this case, it has been shown
that buckling suppresses the predicted additive correction (equal to 1/2) to the failure critical
exponent f =dv due to stress fluctuations at the crack tips in this continuous crack
percolation model (d is the dimensionality of the system and v is the critical exponent of the
correlation length). Hence, one recovers the discrete lattice exponent for the critical
behaviour.

This value of the failure exponent f = dv in the discrete case stems directly from the node-
link-blob structure of the percolation latice near threshold. The force felt by a bond in a

Fig. 2. — Typical configuration of two neighboring cracks of length a, showing the micro-bond topology
of thickness 8.
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macro-link is proportional to £~ ! due to enhancement coming from the bottleneck effect
that the force is transmitted only by the macro-links separated from each other by the typical
distance & An additional factor ¢ appears which stems from the lever arm effect which
increases the local force acting on a microbond to a value proportional to &4~ (N, - N)Y*.
The failure is thus proportional to £~ ¢ thereby yielding the rupture exponent dv [20].

3. Experimental resulits.

We have performed electrical conductivity and rupture stress experiments [21] on aluminium
sheets of thickness ~ 14 wm to 25 wm and typical size 30 x 30 cm. Each sheet is deteriorated
by N identical craks of same length in the range a = 1.5 to 3 cm and distributed following to
the rules of model 1 or 2. The cracks are cut with a thin blade and the width w of the cracks
are negligible as compared to their length a(w < a/100).

3.1 ELECTRICAL CONDUCTIVITY OF THE CRACK PERCOLATION MODELS. — To the best of
our knowledge, no such experimental results have been reported previously in crack
deteriorated systems. Cracks can represent for example the lines of fractures in rocks that
must be avoided for an electrical current to pass through the system.

Figure 3a (resp. 4a) shows the variation of the normalized conductance X;(N)/3;(0)
(resp. 3,(N)/2,(0)) as a function of the reduced crack number N /N for model 1 (resp. for
model 2) where cracks are distributed on a lattice (resp. on a continuum). In case 1 (resp. 2),
N._ is approximately equal to 340 (resp. 490). It is clear that N, > N since there is no
« excluded surface » effects in model 2 in contrast to model 1 in which cracks are allowed to
be in contact to others only by one extremity. This has already been discussed in section 2.1.
Note that the two figures are not directly comparable since the sizes of the aluminium sheets
were different for each system.

Note that the slopes at the origin of the two curves 3;(N)/2,(0) and 3,(N )/2,(0) are not
equal, contrary to what one could expect naively on the basis that, in this « isolated crack »
regime, the crack density is so small that interactions between different cracks can be
neglected. The difference can be traced back to the fact that the decrease of the conductance,
induced by the addition of a single crack oriented with an angle ¢ with respect to the average
horizontal equipotentials, is a non-linear function of ¢. We expect the conductance to depend
on the first moments of ¢ which are different in the two models. For example, in model 1, the
second moment is (¢?) = (7 /4)*~0.617 whereas in model 2, one must take the average
value ($2) over all possible crack orientations between 0 and /2 which gives
(¢ = (m/2)*/3 ~0.822. Note that this problem is related to the Einstein correction for
the viscosity in a suspension of rods as a function of the concentration of rods.

As the number of slits increases, the behaviour of 3, (N ) becomes even more different from
that of 3,(N). One can see clearly the upward curvature of 3,(N ) in figure 4a whereas this
phenomenon can only be seen in figure 3a for 3;(N) in the vicinity of N.. We propose to
explain this difference from the fact that transport properties of model 2 are controlled by
strong screening effects between cracks [6, 21, 22] coming from the existence of overlapping.
Indeed, near threshold, the number of cracks in a surface a2 is of the order of the invariant
C = 5.6 in model 2, in contrast to the value « 1 » in the same surface for model 1. We thus
expect that, for a same value of a/L, ratio of the crack length over the system size, model 2
will sooner enter the critical region, as observed experimentally.

This explains why we have been able to reach the scaling regime for 3;(N) in our finite
samples only in the vicinity of N : an upward curvature can be observed near N in figure 3a,
and increasing fluctuations are observed in this region. Trying to extract a critical exponent
gives the curve shown in figure 3b which represents the logarithm of the conductivity
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Log(Nc-N)

Fig. 3.—a) Normalized conductance 3,(N)/2;(0) of an aluminium sheet punched by cracks as a
function of the number N of cracks for a distribution on a square lattice (model 1). Three experiments
are reported corresponding to three different realizations of crack configurations all other parameters
being fixed. In these examples, the system size is 30 x 30cm, the length of the cracks is
a=15cm and the percolation threshold is found near N, ~330 for all three realizations. The
superposition of the three curves gives an idea about the uncertainty of the measurements. The
continuous line corresponds to the average values of the three measurements. b) Logarithm of the
normalized conductance 3;(N)/2;(0) averaged over three measurements (continuous line in Fig. 3a)
versus Log (N, — N) for a distribution of cracks on a square lattice. The straight lines 1 and 2 have a
slope respectively equal to 1 and 2.

averaged over the three experiments presented in figure 3a as a function of Log (N.— N)
with N =~ 338. Notwithstanding the limited range over which the scaling is expected to be
valid, we find that 3;(N) is well fitted, in the vicinity N = N_ by the functional form

2(N)~(N.-NY )
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Iy (N) 1 Z2(0) Ln 2y

5.7 58 59 6.0 6.1 6.2
Ln(N -N)

Fig. 4. — Normalized conductance 3,(N )/ 2,(0) of an aluminium sheet punched by cracks as a function
of the normalized number of cracks for a continuum distribution: a) linear scale, b) log-log
representation near the percolation threshold of the average over two experiments. In this example, the
system size is = 30 x 30 cm, the length of the cracks is a = 3 cm and the percolation threshold is
N, = 490.

with ¢t = 1.3 = 0.2. A similar fit carried over for each of the three experiments gives values
ranging from 1.2 to 1.4 confirming this result. Note that we have presented these fits for
completeness but remain aware of their limited value coming from the smallness of the range
over which they have been obtained.

In model 2, the scaling regime is clearly observed and a measure of the exponent ¢ can be
made with better confidence than for model 1. In figure 4b, the log-log plot version of
figure 4a is presented from which we deduce the critical exponent ¢ = 1.4 = 0.1 near the
percolation threshold, also in agreement with the theoretical value 1.3 [S, 6]. Local spatial
fluctuations of conductivity induced by the continuum do not appear to change the
conductivity critical exponent from its discrete value in two dimensions.

3.2 MECHANICAL RUPTURE PROPERTIES OF THE CRACK PERCOLATION MODELS. — Scaling
laws in rupture of percolation models have recently been much studied theoretically [23]. Yet
experimental results are scarse. For example, Benguigui et al. [24] have studied the rupture
stress of Cu and Al foils punched with holes distributed at random on a square lattice. They
find that the rupture force F, follows the behaviour F,~ (1 — N/N. ) with f =2.5+0.2
which compares well with prediction f =2 v = 2.66.

To our knowledge, no experimental results of rupture on crack deteriorated systems have
been reported previously. The experimental set-up is represented in figure 5. One bar is fixed
and an external force F is applied to the other mobile bar. Figure 6a represents the failure
threshold stress F, for model 2 as a function of the number of cracks. We see that a small
number of cracks decreases markedly F,. This decrease is stronger for the rupture stress than
for the conductivity and can be understood from the fact that the rupture stress is sensitive to
high order moments of the distribution of the stresses. At low concentrations, the failure
threshold could, in principle, be obtained from an effective medium approach [2] which
translates into the mechanical context the ideas developed, for example, in the determination
of an effective dielectric constant in a composite medium. In this approach, the effective stress
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Fig. 5. — Experimental set up which has been used for the measurement of the rupture force threshold.

felt by a given crack is considered as the sum of the external applied stress plus the stress
created by the presence of all the other cracks. Due to the slow decrease (r~2) of the dipole
stress created by a crack as a function of distance r, one must take into account the
contribution of many cracks [2]. The method of reference [2] is based on the superposition
technique and the ideas of self-consistency applied to the average traction on individual
cracks. In principle, it yields approximate analytical solutions for the stress intensity factor
accurate up to quite close distances between cracks. However, its implementation is quite
cumbersome. We do not try to compare our results with this approach and rather focus on the
critical behaviour near the percolation thresholds where all effective medium theories are
bound to fail.
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Fig. 6. — Rupture force threshold F, as a function of the number of cracks randomly distributed on a
continuum (model 2) : a) linear scale ; b) log-log representation near the percolation threshold for
different crack lengths a showing an average slope of 2.6. The broken line corresponds to the slope 3.16.

The behaviour of the failure threshold in models 1 and 2 are different. This is due to the
sensitivity of failure to the « weakest » part of the system or in other words to the largest and
« more dangerous » defect occurring in the system [22, 25]. Dangerous defects are assemblies
of neighboring cracks which interact constructively so as to create a strong tip enhancement
factor. Due to the different topology of the two models, one expects [and we verify] that the
failure threshold decreases, at first, more rapidly with N for model 1 than for model 2. This is
due to the fact that all cracks weaken the system efficiently in model 1. Furthermore there is a
larger probability for the occurrence of adjacent cracks which reinforce each other in model 1
due to its on-lattice construction than in the off-lattice model 2.

In the vicinity of the percolation threshold, we measure, on the log-log plot of figure 6b, a
rupture exponent F_, = 2.5+ 0.2 in agreement with the expected result 2 v = 2.66 for
model 2. It is remarkable that we are able to reach the critical regime in such small systems
(N <1000). This can be explained by the very efficient screening (also at work in the
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conductivity of section 3) of the stress concentration by the numerous random cracks
surrounding each crack. The result is the same for a variant of model 2 in which the positions
of the cracks are random but their orientation can be + 7 /4 with respect to the direction of
the applied stress.

Let us mention an interesting observation made on the system during its rupture. As we
apply an increasing tensile stress as the two ends of the sheet, we observe a complex buckling
and a marked tearing of the sheet. This is due to the fact that the macroscopic 2d-plate is not
rigidly clamped, and because of its small thickness, its elastic curvature modulus is very small
(proportional to £ where ¢ is the thickness of the foil). It is preferable for the elastic plate to
buckle out of the plane in order to relax the in-plane elastic stresses. The screening of the
strain by buckling is so efficient that one recovers the discrete-lattice exponents
fm = dv = 2.66 [6]. Without buckling, the predicted exponent should be f, = 3.16 [6] and
would correspond to the dashed line in figure 6b, which is clearly not suitable for fitting the
data.

The results of the failure threshold for model 1 are presented in figure 7. We measure an
apparent failure exponent around 1.4 + 0.2 which is very different from the expected value
2.66. We believe that this apparent exponent is the signature of the crossover from a mean
field behaviour to the critical regime. As for the conductivity problem, stress concentration
screening is much less efficient in this model than in model 2 and finite size effects are more
stringent. We have not tried to use larger systems because of the prohibitive time needed to
prepare them. Indeed, contrary to the case of the conductivity, one needs a different foil for
each measurement point since each determination of the failure threshold destroys the
sample.

Fr (daN)

30 L

10

[n
f»

0o 4+——7—-"-—"-F—"——
0 20 40 60 80 100

Fig. 7. — Rupture force threshold F, as a function of the number of cracks randomly distributed on the
bonds of a square lattice. The length of the cracks is a = 3 cm.

4. Conclusion and perspectives.

We have presented experimental results on the conductivity and rupture properties of crack
deteriorated systems. We have observed some of the regimes predicted in the theoretical
analysis developed in reference [6]. In the off-lattice model 2, we have been able to reach the
critical percolation regime and measure critical exponents. On the contrary, the behavior of
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the on-lattice models 1 is more akin to that of an effective medium clearly outside the critical
regime because of the finite size of our systems, except in the close vicinity of the percolation
threshold. The difference between the two models stems from different screening of the stress
enhancement by neighboring cracks which change the sensitivity to finite size effects. In a
sequel work, we intend to explore the regime of failure in the absence of buckling
deformation and to verify the existence of a directed percolation threshold for the mechanical
behaviour.
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