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Displacive transformations and quasicrystalline symmetries

Michel Duneau and Christophe Oguey

Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

(Reçu le 26 juillet 1989, accepté le 18 septembre 1989)

Résumé. 2014 La propriété, pour une structure quasi-périodique obtenue par coupe et projection ou
toute autre méthode équivalente, d’être liée à un réseau moyen par une déformation bornée est
une forte restriction sur la fenêtre définissant la bande, ou sur la surface atomique. Nous donnons
une condition suffisante (nécessaire à une dimension) pour l’existence d’une telle modulation vers
un réseau, qui stipule que la fenêtre pave l’espace orthogonal. Grâce à une construction spéciale
nous étendons notre preuve à des situations plus générales, bien que non génériques, incluant les
pavages du type Penrose.

Abstract. 2014 The property, for quasiperiodic structures built by the cut and project or any
equivalent method, to be related to a periodic lattice by a bounded deformation is a strong
restriction on the window defining the strip, or on the atomic surface. We give a sufficient
condition (which is also necessary in one dimension) for the existence of such a bounded
modulation to a lattice which requires that the window tiles the orthogonal space. Using a special
procedure we extend our proof to more general, albeit still non generic, situations including
tilings of the Penrose type.
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1. Introduction.

Generalising the definitions of quasiperiodic functions [1 ] , affine sections of periodic
structures in higher dimensions provide quasiperiodic patterns in the Euclidean space. As
such, they provide suitable templates to account for the atomic ordering in modulated crystals
and quasicrystals. For example, using the section method in 6 dimensions [2, 3], one can build
discrete sets of atomic sites with a pure point Fourier spectrum and icosahedral point
symmetry similar to the icosahedral phases of AIMnSi [4] or AlFeCu [5] alloys. Once the
quasi-periodicity is ensured and the symmetry constraints are satisfied, the 3-dimensional
patterns only depend on the shape and positions of the atomic surfaces - the codimension
3 surfaces providing the atomic sites by intersection with the physical space - in the 6-
dimensional unit cell. Although some models give reasonable fits for the Ico-AIMnSi phase,
the determination of the atomic surfaces cannot yet be considered as definitively solved.

In many cases, the quasicrystalline phases are obtained by fast quenching from the liquid
phase ; under annealing or spontaneous « ageing » at room temperature, a transition to
neighboring crystalline phases is often observed [6]. In other alloys such as the AlFeCu, the
quasicrystalline phase is believed to be a stable thermodynamic state. In this case the
coexistence of a quasicrystal and crystalline phase refers to a true first order phase transition.
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The present paper is devoted to transitions of the displacive type. By this we mean that the
change of the atomic positions, from one phase to the other, is described by local - bounded
- displacements of the atoms throughout the whole bulk material. In particular, such
transitions preserve the densities and concentrations. On the opposite, phase transitions
involving changes in, say, concentrations are of the diffusive type and imply atomic migrations
at a macroscopic scale (the scale of the monocrystalline grains). For example, the Ico-a
transition in the AIMnSi alloy is diffusive whereas the Ico-/3 transition might be of the
displacive type.
When the displacements are given by a periodic or quasiperiodic function, we speak of a

modulation. Modulated crystals are indeed characterized by a reference lattice- the
« unmodulated » lattice, which may or not be the Bravais lattice of an existing solid state of
the alloy - and a modulation inferred from the « satellite » spots in the diffraction patterns.
Modulated crystals may as well be described as affine sections of a periodic set of « atomic
surfaces » in n = d + d’ dimensions, d being the dimension of the physical space, d’ the
dimension of the frequency module of the hull function (d’  d if it is a periodic function) [7].
Another set of examples is provided by the quasiperiodic tilings ; because of the finite

number of local patterns - which is conjectured to correspond to a similar finiteness in the
local atomic configurations -, the « atomic surfaces » look like a collection of bounded
disconnected pieces with boundaries [8-12]. As in the case of modulated crystals, the higher
dimension n is equal to (or larger than) the number of basis vectors necessary to index the
diffraction spectrum, and the lattice parameters as well as the direction of the cut with respect
to the lattice are fixed, up to trivial equivalences [3, 7], by the coordinates of the diffraction
spots (this determination being greatly simplified by the high order point symmetries
observed in quasicrystals).
The very existence of a displacement which maps the quasiperiodic structure onto a

periodic one is already a non trivial statement. It may happen that 1) there exists no reference
lattice related to the quasiperiodic pattern by bounded displacements ; 2) in the cases where
such a map exists, the displacements may not be a modulation (the existence of a modulation
function being forbidden by topological obstruction).

Indeed, in the cut and project algorithms, if we choose and fix the direction of the cut, the
existence of a reference lattice - together with the displacement map - is a non generic
property of the profile of the strip or of the atomic surface in E1. The purpose of the present
paper is to provide a set of instances - in arbitrary dimension - where such a displacive
transform to a lattice is actually possible, and to give its explicit construction.

The non-genericity of the existence of the reference lattice was put to evidence in 1D tilings
generated by the multiples modulo 1 of an irrational number (the « circle map » algorithm)
[13]. Such statements go back to a theorem of Kesten in number theory [14]. In 1D, the
parameter of the candidate « average lattice » is uniquely provided by the inverse of the
density. From the connection between the circle map and the cut and project method in the
lowest dimension it is straightforward to deduce that 1D quasiperiodic tilings admit an
average lattice if and only if the width of the strip is a (2D) lattice vector.

In higher dimensions, tentatives to build quasiperiodic tilings by superposition of

modulated crystals were investigated by Spal [15] and by Kalugin et al. [16]. With our results,
a global reference lattice can be constructed for those models.
Formal definitions and a few notations are given in section 2.
Qualitatively, the argument in section 3 is the following. In previous tentatives to

approximate the quasicrystalline phase by periodic phases, the approximants were obtained
by a slight tilt of the section space (of the strip in the cut and project method) so as to give it a
rational orientation w.r.t. the lattice A. A different procedure keeps the section (strip) fixed,
but changes the atomic surface within a torus (equivalently : the kernel of the projector p) so
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that E’ = Ker (p ) becomes a lattice plane. This last method has received little attention (see
however Gratias [17]). A plausible reason is that if, on one hand, the projected lattice

L = p (A) is indeed a lattice in the physical space (isomorphic to the quotient l1/Lr by
Lr = A n Ker (p», on the other hand, the pattern Xr is in general nothing more than a
quasiperiodic subset of L. The only cases where this subset is periodic - counting degenerate
projections as coinciding atoms, a situation forbidden from the physical point of view - is
when Xr coincides with L ; this yields the « cell » constraint we state in theorem 3.1 to get a
reference lattice.

In section 4, the existence of a map to a crystal is shown to hold true for quasiperiodic
patterns which are superpositions - in a way analogous to an « inter-growth » [18] - of
patterns of the type considered in the previous section. This extended class contains all cases
of interest for crystallography. In particular, the set of vertices of the octagonal, icosahedral
or Penrose type tilings do map to a lattice in a one to one way. A central Lemma on
displacements between lattices with the same density is used in section 4 buts its proof and
discussion are postponed to section 5.
What is concemed in this paper is the geometrical map from an atomic structure to another.

Of course this map need not represent the real motion of the atoms during the possible
transition. Nor do we carry out the quantitative analysis (eventually) leading to an optimal set
of displacements (w.r.t. energetic or geometric criteria). Current work is in progress in this
area. To us, the surprise is that even such a weak condition as the mere existence of the

displacement - regardless of its detailed effect onto the local atomic ordering - provides
non-trivial (and actually severe) conclusions as to the atomic surfaces.

2. Définitions and settings.

Let X be a discrete subset of Rd such as the set of atomic sites in a condensed matter phase. A
displacive map is an injective (1) map f : X -&#x3E; Rd which is uniformly bounded in the following
sense : there is a finite constant cl 0 such that Il f (x) - x Il c for all x of X. The proper
displacement 8 (x ) = f (x ) - x is a uniformly bounded « vector field » on X.
The possible extension of f to a one to one, piecewise continuous, mapping of

OBd is not required in our definition but will be actually ensured by our construction.
Let Y = f (X ). Then the map f : X H Y is one to one ; it is the displacement from X to Y.
Given such a displacement f, the f-distance between X and Y = f (X ) is the length of the
largest displacement vector in the field : supxr= x Il f (x) - x Il. We also speak of the distance
between two discrete patterns X and Y as the smallest f-distance over all possible
displacements f from X to Y :

When there is no displacement between X and Y we set d(X, Y) = oo.
Let E (the physical space) be a d-dimensional subspace of If8" (0  d « n ) and let E’ be a

(n - d )-dimensional complement of E. Denote p and p’ the two complementary projectors
onto E (with kernel E’) and E’ (with kemel E).

(1) The map is injective if f(x) =1= f (x’ ) for any x =1= x’.
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Let A be a n-dimensional lattice in Rn generated by the basis {a1’...’ an} .

The projections of the lattice A into E and E’ are Z-modules L and L’ given by :

with

with e! = p’ (a1 ) for i = 1, ..., n.
Once the orientation of the physical space E in 0$n is given (for instance by symmetry
requirements) an important parameter of the construction is the relative translation between
E and the lattice A (leading to the « phason modes »). For simplicity we assume that the
physical space E is fixed (together with the strip) and that the lattice A undergoes this
translation : For any given T in 0$n define

Assume W is a bounded open subset of E’ and define the corresponding « strip » by

The cut and project method starts by selecting the set E, of lattice nodes which belong to the
strip :

Then this subset is projected onto E, yielding a d-dimensional Delaunay set X,r :

If the window W and the translation Tare such that the boundary aW of W does not meet
L’ then X, is a regular quasiperiodic pattern. When T runs through a fundamental domain of
.11 in Rn the various X, form a class of equivalent tilings of patterns (2).

3. Modulations.

In this section we describe quasiperiodic patterns which are basically equivalent to modulated
crystals. The displacements involved here are (eventually discontinuous) periodic or

quasiperiodic vector fields which we call modulations.

THEOREM 3.1. If W is a unit cell of a certain (n - d )-dimensional lattice Lo’ contained in L’
then the above defined structure X, may be mapped onto a lattice by a modulation.

(2) This is true only when E is completely irrational in A.
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Proof :
Since Lo is a sublattice of L’, there exists a (n - d )-dimensional sublattice Ao of A such that
Lo = p’ (Ao). Let Eo be thé subspace spanned by Ao and let il denote the intersection of Eo
with the strip S : f2 = Eo n S (see Fig. 1). Thus :

where, by hypothesis, f2 is a unit cell for Ao. The strip S has the equivalent definition

Now Ao is a sublattice of the intersection lattice 11 n Eo. We consider two cases according to
whether r1o is equal to, or strictly included in, A fl Eo.
Case 1 : Ao =An Eo.
By elementary linear algebra, there exists a complementary sublattice 111, spanning a
subspace El, such that we have the direct sums (see [19]) :

Define ir as the oblique projector with range E and kernel Eo.

Fig. 1. - The window W is the projection of a fundamental cell Q of the sublattice Ao which spans the
vector space Eo ; !11 is a complement of Ao. The oblique projection ir maps the lattice Ai onto
Li in the physical space E. The vertex e gives the orthogonal projection x in the quasiperiodic structure,
and xl = ir (e ) in the reference lattice.

We claim that a mean lattice for X, is given, up to a translation, by the oblique projection of
A, onto E :

Indeed the oblique projection 7r provides a one to one mapping between -z , and

i) Since ETc 11T we have the inclusion 7T (E T) c 7T (AT) = L1 + tl.
ii) On the other hand, for any xl in L1 + t1 there exists a point el of 1!T such that

x, = ir (e 1 ) = ff (Eo + e 1 ) (see Fil.1). By hypothesis the (n - p )-plane Eo + §i 1 has an
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intersection with the strip S which is a unit cell for the translated lattice Ao + §1 1 and therefore
(Eo + 1 ) rl S contains a unique lattice node § ; this point e belongs to the set E" and satisfies
’n’() = xl.
Now, the one to one bounded mapping between X, and Li + tl is easily obtained in the

following way : for any pointe which belongs to E" we consider the projection
x = p (e) in X, and x, = 7T (e) in Li + t 1 ; the mapping 0 is defined by 0 (x ) = xl . An upper
bound C for the distances /1 x - /J (x ) /1 follows merely from the assumption that W, and
therefore 1Ii, are bounded.

Case 2 : Ao e A n Eo.

In this case, Ao is a sublattice of 11 r1 Eo and there is a basis B (a finite set of points) such that

Define lil as a complement of A f1 Eo in A. The construction is similar to case 1. The only
difference is that the oblique projection 7T (E T) of ET onto Li + tl is no more injective ;
actually, for any point xi in LI + tl l there exists a point q in ET such that B + ruz is the

intersection of the lattice Ao + ruz with the strip S ; consequently, xl = 7T (B + q ). In other
words E T = HT 0153 B ; HT is the set of vertices selected by a window 1Ii which is a fundamental
domain of A n Eo, as in case 1.
Now map B into E in an injective way (B --&#x3E; B, r- E ; for ex. B, = p (B )). Then

’7-’, is in 1-1 bounded correspondence with the periodic set LI + Bi 1 z a lattice with a
structural basis .

Remarks :

- In the proof a global translation of Li can be used in order to decrease the constant Cl
is simply defined by * (x) = xi - ti + s where s is a vector in E ; similarly the basis

B, can be optimized.
- In the proof, the upper bound C is of the order of the diameter of ,f2. In most cases this is

far from optimal. Better bounds can be found by « relabelling » the atoms, that is, changing
the relation f : X - Y without changing the positions of the vertices in either X or Y [13]. This
relabelling causes the task of getting tight estimates of the displacements delicate.

SIMPLE APPLICATIONS. :

a) Canonical 1 D quasiperiodic tilings. Consider the case where d = 1. The physical space
E is generated by a vector u :

and we can assume that

E is supposed to be completely irrational w.r.t. the lattice A ; in particular all the

coordinates ui are different from 0. E’ is the hyperplane orthogonal to E and the strip is
E x W where W is the projection p’ ( y ) of the unit cube y of the lattice A.
We first show :

LEMMA 3.2. - W is the unit cell of a (n - 1 )-dimensional lattice Le) c L’ .
(Notice that for n = 3 W is a hexagon and for n = 4 W is a rhombic dodecahedron).

Proof :
W is the zonohedron Z (ei , ..., en ) spanned by the n vectors e! = p’ (ai ) ; the boundary of W is
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made of zonohedra Zij (e’, ..., e’n ) where et, e} are omitted (these are the (n - 2 )-dimensional
facets of W) which are translated either by 0 and e! + e!, or by et and ej’ (this is easily seen in
the 2-plane generated by {ei, ej’)) ; the first case corresponds to 0 being on the boundary of
W whereas the second case corresponds to 0 being an interior point of W. After possibly
changing some signs in the definition of the basis {al’ ..., an} we can assume that all
coordinates ui of u are positive ; this implies that 0 is an interior point of W and consequently
that the facets of W are congruent modulo (et - e}). These n (n - 1 ) vectors span a
(n - 1 )-dimensional lattice Il a basis of which is given for instance by the n - 1 vectors
e’i - e’n for i - 1, ..., n - 1.

COROLLARY 3.3. In these d = 1 settings, the mean lattice is Zu.

Proo f :
For a generic translation T (see the discussion of the general case) the corresponding one-
dimensional quasiperiodic structure is XT = p (l1T rl S ). In the notations of the lemma,
Lo’ is the projection of the lattice Ao generated by {ai - an 1 i = 1, ..., n - 1 } and

Ao spans a hyperplane Eo. A complement of Ao is for instance the one-dimensional lattice
lll = Z. an generated by an. Following the above procedure we obtain the mean lattice of
X, as the oblique projection 7T (A1) onto E where 7T is the projector of range E and kernel
Eo. The mean lattice LI = 7T (111 ) is generated by 7T (an ) and since u = L Ui . (ai - an ) + an it

. i = 1

is easily checked that 7T (an) = u.

b) Codimension 1 systems. - When d = n - 1 the strip is a slice whose profile along the line
E’ is a segment.

COROLLARY 3.4. - If the width of the strip is a vector of the module L’, then there exists a d-
dimensional lattice at bounded distance from X,.

Proo f :
Let x’ E L’ be the width of S. The interval [0, x’ ) is a cell for the sublattice Lo = Z. x’ of L’.
The theorem concludes.

In particular, the (n - 1 ) D canonical tilinos can be mapped onto a lattice by a modulation
(3) since, once projected into E’, the unit cube yn coincides with one of its diagonals.
Remark. - Basically, these settings in n = d + 1 dimension are closely related to de Wolf-
Janner-Janssen’s description of modulated crystals [7]. In their method, the atomic lines are
continuous and project onto closed loops in the torus Tn. Any such loop can be deformed into
a basic circle which provides the lattice by section with E. The condition stated in corollary 3.4
(1 SnE’ 1 E L’ ) essentially means that the atomic segment, once projected in Tn, are

equivalent to closed loops ; the « horizontal » segment necessary to close the loop (joining the
origin to the end of the « vertical » atomic segment) may be chosen in E, which makes it
invisible in generic sections E + T.

4. Generalizations.

Using the results of section 3 we extend the existence of a reference lattice to more general
situations. The problem reduces to the study of displacements between conventional lattices,
an exercise which will be handled in the next section.

(3) Conventionally, one would state things the other way around : the quasiperiodic pattern is a
modulated lattice ! t
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THEOREM. 4.1. - Suppose the window W is a disjoint union of cells W1, ..., Wk, each cell
Wi being a fundamental cell for a (n - d)-dimensional lattice Li contained in L’. Then

X, may be mapped onto a lattice by displacement.

Proof :
Since X, is in 1-1 correspondence with W n LT in the complementary space E’, the partition
W = U W, induces a partition of X, into X(1)r, ... , T.

i

Each XT(i) satisfies the hypothesis of theorem 3.1 so that it is related to a reference lattice

Li by a modulation. The whole set X, is thus related to the union U Li of the various lattices.
i

By corollary 4.3, below, this union is in turn related to a single common lattice L.

Remarks :
1. The displacement involved in this theorem is not a modulation. Different modulations

apply to uniformly spread subsets of the pattern.
2. The union U Li is in general not a Delaunay set. It is relatively dense but satisfies no

minimum distance condition. This is of no importance since this structure is only an
intermediate step in the proof ; we do not pretend that the real motion of the atoms follows
such a path..

LEMMA 4.2. - Let LI, L2 be two 1D lattices. There exists an average lattice L for the union
Li U L2.

Proof :
Without restriction, we may suppose LI = a. Z and 1,2 = Z + b with 0 : a :5 1 and
0b1.
Let x E R. In the interval (0, x ] there are n = Int (x/a ) + Int (x - b ) points of

Li U L2. This implies that Xn  x  xn + a, le. IXn - xl : a, where xn is the n’th point of the
pattern starting from 0.
On the other hand, by definition of n, 1 (xla + x) - n 1 --5 3, which implies

lx - nal(a + 1)1 :5 3 al(a + 1).
Gathering those bounds yields

Remark : the density of LI U L2 is of course the sum of the densities n (Ll ) + n (L2 ).

LEMMA 4.3. - Let Ll, L2 be two n-D lattices in Rn. Then there exists a lattice L at finite
distance from LI U L2.

Proof :
Let L1 = [a1, ..., an] and L2 = [b1, ..., bn] and n (L ) be the density of L. Set

r = n (L,)/n (L2). The lattice L3 = [a,, an - 1, r . an] has the same density as L2. So, by
theorem 5.2 in the next section, there is a displacement mapping L2 onto L3. Define L as
L = [a1’ ..., an - 1’ r (r + 1 )-1 . an ] . Then the end of the proof is a straightforward conse-
quence of lemma 4.2 since L1, L3 and L only differ on the an axis. QED

Further extensions.

W can be decomposed into a disjoint union of Wis and there exist translations

tr in L’ such that the subsets Wi + t! are pairwise disjoint and the new window
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W’ = U (Wi + tj’) satisfies the condition of Theorem 4.1. Actually, the structures defined by
the windows Wi and Wi + t[ only differ by a finite translation ti such that Ti - (ti, t’j) is a
vertex of A.

Consequences.
In most of the usual examples of quasiperiodic tilings the simple condition that the window

W is a unit cell is not fulfilled. For instance, the window for the octagonal tiling is an octagon
whereas the window of the 3D Penrose tiling is a triacontahedron. Here the obstruction is a
consequence of the symmetry requirement.
However these tilings fall into the possible extensions stated here. The case of the octagonal

tiling is handled in detail in appendix 1. Conceming the 3D Penrose tiling, we can observe
that the triacontahedron W splits into 10 large rhombohedra and 10 small ones. Each
rhombohedron is a fundamental cell for some 3D lattice in the module L’. Actually this is a
common feature of all « canonical » quasiperiodic tilings which are built by cutting a set
atomic surfaces obtained as the E’-projection of a primitive cell of the lattice A. The projected
unit cube is trivially tiled by a subset of its d’-dim. facets and these facets are primitive cells for
d’-dim. sublattices of A.

5. Displacements in crystals ! 

In this section we show that if two n-dimensional lattices have the same density in

Rn then a bounded one to one mapping between them can be constructed.
First, we need a simple result as to the profiles of primitive cells.

LEMMA 5.1. Let

and

be the two centered parallelohedra generated by the basis (a1, ..., an}’ {b1,..., bn}
respectively. Assume na and nb have equal volume. Then there is a unit vector u in

R’ such that the orthogonal projections of n a and of f2b onto the line spanned by u are equal.

Proo f :
Let K be the convex hull of the union of n a and n b ; K is a parallelohedron which is

symmetric with respect to the origin. The vertices of K are vertices of either n a or
nb. Moreover there is a facet with at least one vertex in those of na and another vertex in
those of f2b (otherwise one of the cells contains the other one, which contradicts the equal
volume hypothesis unless na = f2b). By central symmetry, a second facet of K enjoys the
same property. Choose u to be perpendicular to those two facets ; the orthogonal projections
of na and nb (and K) onto R . u are equal (see Fig. 2). QED

THEOREM 5.2. - Let Aa and Ab be two n-dimensional lattices in R n and assume they have the
same density. Then there exist a constant C and a one to one mapping f between
lla and Ab such that the distance il x - f (x) il  C for all x in lla.
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Fig. 2. - Construction of a direction u on which the two cells il a and f2b, of equal volume, have the
same projection.

Proo f :

Suppose Aa = [al, ..., an]’ Ab = [bl, ..., bn] and let na, ab denote the unit cells spanned by
the respective basis (as in Lemma 5.1, after eventual global shifts). We have
det {al’ ..., an} =:f: det {b1, ..., bn}.
We proceed by recurrence on the dimension n.
If n = 1, the result is obvious since Aa and Ab must be equal to have the same density.

Consider now the n-dimensional case and assume the property is true up to dimension
n - 1.

Let u be a unit vector provided by Lemma 5.1 and set r = (diaga, u) = (diagb, u ). Let H be
the orthogonal complement of the line U = R . u. The related pair of complementary
projectors is given by

Note that both unit cells project onto the same interval [- r/2, r/2) in U.
Partition the space Rn into slices Sk, k in Z,

a generic shift t is put here to insure that no lattice node falls on the boundaries of those strips.
For each k and i = a, b, pH (Sk rl Aï) is a codimension 1 canonical tiling. By corollary 3.4
there is a lattice Li in H and a displacement fi, k from the projected pattern to

Li (by including a shift in fi, k the lattice Li can be chosen independent of k). Now
La and Lb are (n - 1 )-dim. lattices with the same density (= r. n (Aa) = r. n (Ab)). By the
, recurrence hypothesis there is a displacement f’ : La H Lb, so that in each slice

Sk a bounded one to one mapping between A,, n Sk and Ab n Sk can be constructed. So an
overall displacement f is obtained. QED

6. Conclusion.

We have shown under what circumstances quasiperiodic systems built by general section
methods, that is by cut of a periodic set of arbitrary (reasonable) atomic surfaces or by the
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related cut and project algorithm, can be mapped in a displacive way onto a periodic pattern.
By periodicity in the higher dimensional space, the atomic surfaces may be considered

modulo the n-D lattice (i.e. projected into the torus Tn). In the example of modulated
crystals, these surfaces are closed manifolds without boundaries and can be deformed into a
d’-dimensional torus in the torus Tn. In the case of quasicrystals, it has been argued by several
authors that the atomic surfaces actually are closed manifolds in T" [20-22]. Any closed d’-D
surface can be decomposed in the way stated in theorem 4.1. So our net result is that the
correspondence with a lattice exists when the atomic surface is a union of closed manifolds in
T·n .
We conjecture that this condition, which we have proved to be sufficient, is also necessary.

This is indeed the case in one dimension as a corollary of Kesten’s theorem.
Another interest in the average lattice is that it provides a local, and numerically efficient,

algorithm to build the quasiperiodic pattern [23]. If we know both the reference lattice and
the displacements as a function of the lattice node - as in the instances where it is a
modulation - then it is straightforward to recover the quasiperiodic structure.
One might also think of using the map to a lattice to treat some statistical mechanical

problems on quasi-lattices. At least to the extend where the physical properties do not depend
so much on the detailed topology of the network as on the range of the interactions, we may
expect to get insight to solutions through such mappings.

Appendix.

An example : the mean lattice of the octagonal tiling. -

The octagonal tiling is obtained by the cut and project method from R4 in which we consider
the hypercubic lattice li = Z4 with the standard orthonormal basis {a1’..., a4}. The two
orthogonal planes E and E’ are defined as the ranges of the following orthogonal projectors :

where (
The projections L = p (A) and L’ = p’(A) are dense Z-modules respectively generated by

{e1, ..., e4} and {e1, ..., e’4} where ei = p (ai) and el = p’(ai). In orthonormal coordinates

The octagonal tilings correspond to a strip S = E x W where W is the octagon obtained as
the projection p’(f? ) of the unit cube of R4. W is the zonohedra generated by the four vectors
{e’1, ..., e’4} (see Fig. 3).
W is not a fundamental domain for any tiling of E’ and consequently, the construction given

in theorem 3.1 cannot apply directly. However the octagon can be cut in two pieces, an
hexagon WH. and a « boat » WB, shown in figure 3, which are prototiles. More precisely,
WH is a unit cell for the 2-dimensional lattice LH generated by hi = et - 1 e3 and
h2 = e3 + e4 whereas WB is a unit cell for the 2-dimensional lattice LB generated by
b1 = e1 - e3 +e’ 4 and b2 = e2.
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Fig. 3. - The projection of the unit cube of (R4 is a regular octagon which can be decomposed into two
pieces B and H ; B is a unit cell for the lattice generated by { b1, b2} and H is a unit cell for

[h’1, h’]. The projected basis {e’1, e2, e3’ e’4} of 7L4 is shown on the right.

Thus, if T is a generic translation, the vertices X T = p (A, n S ) of the corresponding
octagonal tiling can be split in two complementary subsets XH, T and XB, T respectively
associated to the substrips SH and SB defined by SH = E x W H and SB = E x WB:

Since WH tiles E’, the general method can be applied to build a mean lattice for the
structure XH, T : define AH as the 2-dimensional sublattice of A generated by q i = a1 - a3 and
17 2 = a3 + a4 (in such a way that LH = p’ (AH)) and let EH be the 2-dimensional lattice plane
containing rlH.

Notice that {17l, 172’ al’ a2} is a basis of A and consequently {al’ a2} generates a 2-
dimensional sublattice which is a complement of AH.

If 7TH denotes the oblique projector with range E and kernel EH then thé mean lattice
LH of XH, T is the oblique projection 7TH (A) into E. Elementary linear algebra shows that
LH is generated by

This lattice is rectangular and the one to one mapping between XH,T and LH is shown in
figure 4a.

Similarly, define AB as the 2-dimensional sublattice of ll generated by f31 1 = a1 - a3 + a4 and
f32 = a2 (so that LB = p’(AB)) and let EB be the 2-dimensional plane containing liB.

Notice that {B1, f3 2, a3 . a4) is a basis of A.
Define 17"B as the projector with range E and kemel EB. The mean lattice LB of

XB, T is the oblique projection 17"B(A) to E and is generated by

The one to one mapping between XB, T and LB is shown in figure 4b.
Finally the octagonal tiling X, can be viewed as the union of two modulated structures

XH, T and XB,T’ each one being associated to a mean lattice. However these two lattices
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Fig. 4. - a) Black squares represent the H-part of the vertices of the octagonal tiling ; the white squares
correspond to their reference lattice. b) The B-part of the tiling is represented by black dots and the
corresponding reference lattice by white dots.

LH and La are different and incommensurate.
The claim that the whole structure admits a unique mean lattice follows from Lemma 4.3.

The final mean lattice shown in figure 5 is the centered rectangular lattice

Fig. 5. - The one-to-one mapping between the octagonal tiling (black) and the rectangular centered
lattice LH U [LH + (h, + h2)/2] (white).
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A deterministic algorithm can be used to construct the octagonal tiling by means of the
method explained in the previous section. We give below the main line of the construction for
the XH, T structure (the XB, T structure is obtained in a similar way).
The main loop of the algorithm consists in scanning a finite subset of the square lattice of E’

generated by {e’1, e’2} (which is isomorphic to the mean lattice LH) .
For each x’ = pl ei + P 2 e2 find the translation y’ - ql hi + q2 h2 of the lattice LH such that

-x’ = xi + y’ belongs to the hexagonal unit cell WH (possibly translated by a fixed translation
1) . This step is the generalization of the modulo operation used in one-dimensional algorithms
such as the mapping of the circle.
Then

The corresponding point of the structure is readily given by
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