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Résumé. 2014 Les fluctuations thermiques de vésicules lipidiques géantes ont été étudiées d’un point
de vue théorique et expérimental. Au niveau théorique, le modèle développé prend explicitement
en compte la conservation du volume de la vésicule et de la surface de la membrane. I1 en résulte

que l’ amplitude des fluctuations thermiques dépend non seulement de l’élasticité de courbure de
la bicouche, mais aussi de la tension de membrane et/ou de la différence de pression
hydrostatique entre l’intérieur et l’extérieur de la vésicule. Au niveau expérimental, la

détermination du module de courbure kc nécessite d’abord l’analyse d’un grand nombre (plusieurs
centaines) de contours afin d’obtenir une bonne statistique. En second lieu, la contribution de
l’erreur expérimentale sur les coordonnées du contour, qui se traduit par un bruit blanc sur les
amplitudes de Fourier, doit être éliminée, et ceci peut être réalisé grâce à l’utilisation de la
fonction d’autocorrélation angulaire des fluctuations. Enfin, les amplitudes des harmoniques
ayant des temps de corrélation courts doivent être corrigées de l’effet du temps d’intégration
(40 ms) de la caméra vidéo, qui, dans le cas contraire, conduit à une surestimation de

kc. Toutes ces exigences théoriques et expérimentales ont été prises en compte dans l’analyse des
fluctuations thermiques de 42 vésicules géantes de phosphatidylcholine du jaune d’0153uf. Il peut
être rendu compte du comportement de cette population de vésicules avec un module de courbure
kc égal à 0.4 - 0.5 x 10-19 J, et des tensions de membrane extrêmement faibles, de moins de
15 x 10-5 mN/m.

Abstract. 2014 Thermal fluctuations of giant lipid vesicles have been investigated both theoretically
and experimentally. At the theoretical level, the model developed here takes explicitly into
account the conservation of vesicle volume and membrane area. Under these conditions, the
amplitude of thermal fluctuations depends critically not only on the bending elasticity of the
bilayer, but also on the membrane tension and/or hydrostatic pressure difference between the
interior and exterior of the vesicle. At the experimental level, the determination of the bending
modulus kc first requires the analysis of a large number (several hundred) of vesicle contours to
obtain a significant statistics. Secondly, the contribution of the experimental error on the contour
coordinates, which results in a white noise on the Fourier amplitudes, must be eliminated, and
this can be done by using the angular autocorrelation function of the fluctuations. Finally, the
amplitudes of harmonics having short correlation times must be corrected from the effect of the
integration time (40 ms) of the video camera, which otherwise leads to an overestimation of
kc. All these theoretical and experimental requirements have been considered in the analysis of
the thermal fluctuations of 42 giant vesicles composed of egg phosphatidylcholine. The behaviour
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of this population of vesicles can be accounted for with a bending modulus kc equal to

0.4 - 0.5 x 10-19 J, and extremely low membrane tensions, ranging below 15  10-5 mN/m.

1. Introduction.

Biological membranes are an essential constituent of every living cell. Their mechanical

properties are closely related to the problem of cell stability and resistance to extemal
influences, and hence have become the subject of increased attention. Considering the
membrane as an infinitely thin layer of liquid crystal and applying the ideas of liquid crystal
physics, Helfrich [1] has demonstrated that the mechanical state of a membrane element can
be completely characterized specifying its area and principal curvatures. The stretching elastic
energy per unit area, F,, is given by the expression [1] :

where v- is the bilayer tension, So is the equilibrium area of the membrane element (e.g. the
area at zero membrane tension), S is the deformed area of the same element, and
ks is the stretching elastic constant. The mechanical experiments of Kwok and Evans [2, 3]
yield ks = (140 ± 16 ) mJ/m2 for egg lecithin bilayers.
When a small piece of membrane is bent, the bending elastic energy per unit area,

Fc, is given, according to Helfrich [1], by the expression :

where cl and c2 are the principal curvatures of the membrane, co is the spontaneous curvature
(co :0 0 if the two monolayers have different composition or they face different environments),
kc and kc are the elastic constants for cylindrical bending and saddle bending, respectively.
The first attempt to measure the curvature elastic modulus, kc, was made by Servuss et al.

[4]. Analysing the thermal shape fluctuations of long tubular vesicles they obtained

k, = (2.3 ± 0.3 ) x 10- 19 J, for egg lecithin membranes. Later on, Sakurai and Kawamura [5]
evaluated kc = 0.4 x 10-19 J by bending myelin figures in a magnetic field. Measuring the
time correlation function of the shape fluctuations of long cylindrical tubes [6], as well as giant
spherical vesicles [7], Schneider et al. found kc = (1 - 2) x 10-19 J. Using Fourier analysis of
thermally excited surface undulations of vesicles, Engelhardt et al. [8] obtained kc =
0.4 x 10- 19 J. Recently, Duwe et al. [9] reported kc = 1. 1 x 10- 19 J. Introducing the angular
correlation function of thermal shape fluctuations, Bivas et al. [15] measured kc =
(1.28 ± 0.25 ) x 10-19 J.
In contrast to the measurements of stretching elastic constant, ks, where a single value has

been reported, there is a great variety between the values measured by various authors
kc = (0.4 - 2.3 ) x 10-19 J. Different explanations for these variations have been put forward
by the authors, but rarely acceptable arguments have been given, except in [10]. Obviously,
there is an appealing necessity for more precise treatment of this important question. The aim
of this article is to analyze in detail potential sources of theoretical, as well as experimental
errors and to explore different possibilities for overcoming them.
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2. Theory.

To a very good approximation, the vesicle membrane can be considered as a two-

dimensional (geometrical) surface. Using spherical polar coordinates (r, 0, cp), with origin 0
in the center of the vesicle, we can describe a slightly deformed spherical vesicle by writing :

where R is the radius of a sphere enclosing the same volume as that of the vesicle, an
u (03B8 , cp, t) is a function describing the relative displacements (the fluctuations) of the vesicl
wall from the ideal spherical shape, 0 and ~ being the polar angles. It is assumed in whé
follows that the amplitudes of the fluctuations are very small compared to the vesicl

dimensions, u (03B8 , cp , t ) 1 « 1.
As far as we have chosen the origin of the coordinate system in the center of the vesicle w

where Ym1 ( 03B8 , cp ) are the spherical harmonics defined below.
The volume of the vesicle, V{u}, is given by the expression :

Here, cu- 0 denotes the volume of a sphere of radius R, and we have kept only the terms of first
and second order with respect to u.

Similarly, the deformed area of the vesicle, S {u} , is given by the expression :

where uo and ulp stand for the partial derivatives of u with respect to parameters
03B8 and ~, respectively, 80 is the total vesicle area at zero membrane tension and
s is the area in excess over that of a sphere of equivalent volume. Here again we have kept
only the terms of first and second order with respect to u and its derivatives.
The lipid bilayers behave like two-dimensional liquids, therefore every local variation of

the membrane tension is rapidly relaxed via local flows of the lipid material resulting in
a = const. all over the membrane. As a consequence, the stretching elastic energy of the
whole vesicle, Fs { u } , as well as the membrane tension, u, may be written in a global form :
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The bending elastic energy of the vesicle, { u } , is given by the expression :

where U88 and u~ ~ stand for the second partial derivatives of the function u with respect to
parameters 0 or cp , respectively. When integrated over the closed vesicle surface, the
Gaussian curvature term (the second term in the equation (3)) gives a constant value,
4 irkc, independent of the vesicle shape [11, 12], and it can therefore be omitted. We have
kept again only the terms of first and second order with respect to u and its derivatives.

Usually, vesicles are poorly permeable to water and salts, and to a very good approximation
water is an uncompressible fluid. So, we shall consider that the vesicle volume does not
change during the fluctuations, and therefore the following condition always holds :

The fluctuations of the vesicle membrane are time dependent thermal agitations around the
equilibrium vesicle form. Thus, we can consider the vesicle shape at a given moment,
U ( 8, cp , t ), as composed of two contributions : a static part, Uo ( 8, cp ), that is the average
(equilibrium) vesicle shape and a dynamic part or perturbation, &#x26;u(0, cp, t ), that gives the
deviation from this equilibrium and describes the fluctuations of the vesicle :

The angle brackets in the above equation denote an ensemble or time average. It is natural to
suppose that the ergodic hypothesis holds when there are no temporal drifts or changes in the
environmental conditions during the experiment.
To find the equilibrium vesicle shape, we have to minimize the total energy, keeping the

volume constant. This is a variational problem with a constraint. The usual method to solve it
is to replace the original functional and the associated constraint with a new functional,
:F {u}, that is a linear combination of them and to treat the last like a functional without

constraint, so we write :

Here, Ap is Lagrange multiplier associated with the constraint of constant vesicle volume
(physically, Ap is the hydrostatic pressure difference acting across the vesicle membrane). If
the function uo minimizes the functional (13) then its first variation, B[f {uo, ÔM} , is zero for all
small perturbations, 8u, around this equilibrium shape, uo :
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It is well known that if a function uo satisfies a condition like (14), this function is a solution of
the Euler-Lagrange equation associated with this variational problem. The explicit form of
the Euler-Lagrange equation in our case is :

Here, p and if are the effective dimensionless pressure and tension, respectively, and
co is the spontaneous membrane curvature. Equation (15) is linear because of the quadratic
approximation used throughout in this work. If the same problem is treated without

approximations a forth order nonlinear partial differential equation, similar to those of

Deuling and Helfrich [11, 12] and of Jenkins [17], would be obtained instead. It is

inhomogeneous because the vesicle radius is given by (1 + uo), and not by uo itself. In the
spherical case, uo = const., equation (15) transforms into the well known Laplace law,
p = 2 &#x26; / (1 + uo), thus it can be considered as a natural generalisation of Laplace law for the
case of an arbitrarily deformed closed membrane possessing curvature and stretching
elasticity.

All the functions that are extremals of the functional (13) are solutions of the Euler-
Lagrange equation (15). In the case that uo is a function that minimizes 37 {uo} we must have :

The last term in the above equation represents the contributions originating from the
fluctuations of the total vesicle area and conjugated to them fluctuations of the membrane
tension. Generally, the second variation of a functional like (16), the last term excluded, is a
quadratic form of the perturbations 8u and its derivatives (8ue, 8ulp’ 8uee, 8ulplp) with
coefficients depending on the function uo. But it can be always transformed, via integrations
by parts, into a more convenient form :

where C {uo} is a linear differential operator acting on the perturbations bu. It is convenient to
expand the perturbations, 8u, in a series of the eigenfunctions of the operator C {uo}. In the
case of our quadratic approximation the dependence of C{Mo} on uo disappears and the
eigenfunction equation obtains the very simple form :

The eigenfunctions are the well known spherical harmonics, Y::’( 8, cp ), defined as (see [14]) :

and the corresponding eigenvalues are :
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We represent bu in a series of Y:( 6, cp ). But, when writing such a series one has to take
into account that there is a « high frequency » cut-off due to the discrete structure of the
membrane, so we include only the terms up to nmax = Ùk (N is the number of lipid molecules
constituting the vesicle). Here nmaX is so selected that the number of independent amplitudes
is equal to the number of lipid molecules. The exact value of nmax is not of great importance
because we shall see further on that the physical quantities are only logarithmically dependent
on it. Using the eigenfunctions of equation (18) we can write :

where Un (t ) are the time dependent coefficients in the expansion. Using equations (21, 12, 5)
we obtain :

This equation clearly shows that the amplitudes Um1 (t ) are not time dependent. Therefore,
they do not describe fluctuations. Moreover, using the second equation in (12), (ÔM) = 0,
and the orthogonality of the spherical harmonics, one can conclude that ( U§J’(t ) ) = 0, and so
do Ui (t ) = 0. Now we can readily calculate the second variation. Substituting (21) into (17),
and thereafter into (16), we obtain :

Expression (23) gives the increase of the vesicle energy due to the thermal fluctuations as a
sum of the squared amplitudes of the different modes of agitation. The ks-term in it is the only
second order contribution coming from the last term in equation (16), all the others being of
higher orders, and thus neglected. If the coefficients À n (if, p) are positive, one can obtain the
mean-squared value of each amplitude, (1 U:’(t) 12), applying the equipartition theorem to
each mode of agitation :

If we take kT = 4 X 1O- 21 J, ks = 100 Mj/M2 , R =10- 5 m (10 03BCm ), we calculate

( 1 U8(t) 12) = 10- 10. This means that the fluctuations of the mean vesicle radius are very
small.
Now we proceed further and look for a solution of the Euler-Lagrange equation (15) in

series of spherical harmonics :
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where Amn are constants that have to be determined. Substituting the expansion (25) into the
differential equation (15), one obtains a system of ordinary equations equivalent to it :

It is easily seen that for each n # 0, there are two possibilities : either 03BBn ( 03C3 p ) = 0 or
An - 0. As far as À n depends on the index n, if for a given value n we have
’k n 0, then for all the others we would have k n (ô:, p) =A 0, and therefore

Amn = 0. Using equations (25, 22), we obtain Ai + Um1 (t ) = 0 and as far as Um1 (t ) = 0, we
have Ai = 0 as well. Thus, the series expansion (25) is reduced either to a single term
(Ag only), and the equilibrium shape of the vesicle is spherical, or to a sum of a few terms
(A 0 and the different amplitudes An of any given order n). However, starting from a spherical
vesicle and increasing the excess area (7), the n = 2 eigenvalue À 2 ( if , p) will first vanish for
given values of J and p. A sphere to ellipsoid transition should then occur leading to a non-
zero average value for the n = 2 mode (Ar #= 0).
The equation of Euler-Lagrange (15) as well as its equivalent form (26) contains two

parameters, a: and. Therefore, we need two supplementary conditions to determine them.
These are equations (9) and (11). Using the series expansions (21, 25), these supplementary
conditions satisfied by the functions uo ( 0, ç ) and 8u ( (J, cp, t ) are transformed into relations
between the amplitudes An and Un (t ) :

where s is the excess area defined in (7). The above two equations must hold for each moment
of time, and therefore, the membrane tension, J (t ), is a function of time determined by
equation (28). These fluctuations of the membrane tension give rise to the last term in the
second variation (16) as already pointed. We see that as far as equation (27) holds,
Uoo(t) is of second order instead of first (as expected a priori), and therefore, it may be always
dropped when squared. Because Um(t) = 0 as already mentioned, the summation on

n in equations (27, 28) can start from n = 2. Furthermore, since the equilibrium shape of the
vesicle is time independent we can take a time average of both equations :

We have to stress now that it is the mean value of the membrane tension, if =  if (t) , that
enters the above equation. One can readily see that the equilibrium shape of the vesicle (given
by the ampliudes, An is influenced by the presence of the fluctuations, ( U::’(t) 12) , whose
mean squared values are determined by the equipartition theorem. Substituting (24) into (29,
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30) one can finally obtain the relations that determine the equilibrium shape of the vesicle. In
the case of a single term we have :

Equation (28) contains the excess area, s, as a parameter and the average shape of the vesicle
depends critically on its value. The first two equations in (31) impose an implicit dependence
of the mean membrane tension, u (s), and the hydrostatic pressure, p(s), on the excess area,
s, and therefore k,, (u (s ), p (s ) ) is determined via (20) as well. The third of them gives the
value of Aô. Here, An - 0 (for n _ 1) and the average vesicle shape is spherical. At a given
critical value of the excess area, scr, (determined from the condition : k 2 (a; (Sc,), p (Sc,» = 0)
the amplitudes A2 are not zero anymore, and thereafter, for any value satisfying the relation
s &#x3E; scr we have :

Here again the first two equations of (32) impose an implicit dependence of the membrane
tension, 03C3 (s ), and the hydrostatic pressure, p (s ), on the excess area, s, and the last two of
them determine the vesicle shape via the amplitudes Aô and Ai. In the case s &#x3E; scr the vesicle

m=+2 

fluctuates around an elliptical equilibrium shape m = £ + 2 I Am2 # 0 . We point out that it isÎm = - 2 /
m=+2

03A3 1 Ail2 that is determined by the last of the above equations, the sign and the relative
m=-2

proportion of different m-modes being undetermined. This is a consequence of the quadratic
approximation used. Higher order terms must be included to discriminate between prolate
and oblate ellipsoids (see [10] for more detailed discussion) and to fix the relative proportion
of different m-modes (to be published).
As far as the vesicle tension, 03C3(s ), and hydrostatic pressure, p (s ), depend on the excess

area, s, it follows from (24) that the mean squared value of the fluctuations, (1 ( Umn (t ) 12) , will
depend on it as well :

For a spherical vesicle, as long as the fluctuations are not too big (e.g. when the quadratic
approximation is valid) the last term in the denominator is very small (p = 2 if), and
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therefore, it can be omitted. Then equation (33) is transformed into the expression (34)
previously obtained by Milner and Safran [10] :

The neglected term in (33) becomes of importance in the case of an ellipsoidal vesicle (e.g.
relatively bigger excess area). In this case J + 6 = 0, according to Milner and Safran [10], and
therefore the membrane tension does not vary when the excess area, s, is changed. The
amplitudes of the elliptical modes (n = 2, m 1 -- 2) adjust themselves to fit the available
excess area. In our model it is Àz(u,p) that vanishes, the membrane tension, u(s), and the
hydrostatic pressure, p (s ) are functions of the excess area, s. We have U = - 6 (p = - 12),
both becoming more and more negative when the excess area is increased. This result is in
agreement with the conclusions made by Deuling and Helfrich [11, 12] as well as those of
Jenkins [17], both obtained on the basis of numerical solution of the exact nonlinear

equivalent of our Euler-Lagrange equation (15). The static amplitudes of the second
m=+2

harmonies, 03A3 
+ 2 

Am 2, adjust themselves, according to (32), to fit the excess area as well.m=-2
We need to find a practical method for determining the mean membrane tension,

ô. According to equation (34) the product :

is independent of n as seen from the right-hand sides of the above equations. This result can
be effectively used to determine a: by comparing the products in the left-hand side of equation
(35) for different harmonics, n. The value thus obtained is the exact membrane tension we are
looking for. The bending elastic modulus, kc, can be calculated thereafter from equation (35).
The amplitudes of the fluctuations of giant vesicles are extremely sensitive to the presence of a
very small membrane tension, as already mentioned by Schneider et al. [7]. For a vesicle of
radius R =10- 5 m (10 03BCm) and kc = 10- 19 J a tension of u = 2 x 10 - 5 mN/m leads to a two-
fold decrease of the amplitudes of second harmonics, U2 (t ). For a small vesicle of radius
R =10- 8 m (100 Â) the tension producing the same effect is a = 20 mN/m, a value one order
of magnitude higher than the membrane rupture tension, 2 - 3 mN/m, as reported by Kwok
and Evans [2]. Due to the relation p -- 2 ôF, the same two-fold decrease of U2(t) can
alternatively be produced by osmotic effects of as low as 2 x 10- 9 M concentration difference
for a giant vesicle (10 03BCm), while 2 M are necessary for a small (100 Â) one. Therefore, the
small vesicles are always fluctuating even under osmotic stresses that lead to membrane
rupture !

3. Some expérimental quantities.

Now we have to find a relation between the amplitudes, (1  Un (t ) 2&#x3E; , and an experimentally
measurable quantity. It is believed that what is seen under a phase contrast microscope is the
cross-section of the vesicle membrane with the focal plane of the objective. Considering the
equatorial cross-section of a vesicle with a plane through its center and parallel to the
XY plane of our coordinate system, given by 03B8 =03C0 in equation (4), we can write :
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The mean radius of the equatorial cross-section, p (t ), at a given moment, t, is :

Using the series (25, 21), after some algebra we obtain :

where :

Equation (38) shows that the equatorial cross-section radius fluctuates. This effect is mainly
due to the vesicle deformations changing its shape from oblate to prolate and vice-versa. The
time averaged radius, p = ( p (t)&#x3E;, is easily calculated because the last term in (38) vanishes
when averaged over the time. Using equation (29) (for a spherical vesicle An = 0 when
n&#x3E; 1), we finally have :

We see that the mean cross-section radius is equal to the mean vesicle radius, both being
always smaller than the radius of a sphere of equivalent volume, an effect purely due to the
existence of thermal fluctuations.

Following Bivas et al. [15] we calculate the normalized angular autocorrelation function of
the vesicle radius, 03BE ( y, t ), at a given moment of time :

Using the series expansions (25, 21), after some algebra we obtain the time averaged
autocorrelation function :

According to equations (24, 34), the amplitudes, (1 Umn (t ) 12) , are not dependent on the index
m. Taking advantage of this fact and using the addition theorem for the spherical harmonics
[14], the sum on m can be explicitly performed and the above expression is transformed into
the form :

This equation shows that the time averaged autocorrelation function, 03BE ( y ), is a series of

Legendre polynomials, Pn (cos y ), with coefficients given by the equipartition theorem,
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equations (34). The term (2 n + 1 ) reflects the fact that for each n there are (2 n + 1 )
statistically independent m-modes. The last term in (42) compensates for the addition of all
missing m = 0 modes to equation (41) which are otherwise necessary for the addition
theorem.

Up to now we were supposing that we knew the position of the vesicle center 0, whose
coordinates are given by equation (5). But observing (and measuring) only the equatorial
cross-section it is not possible to calculate them because the complete u ( 03B8, ~ , t ) is necessary.
The best we can do is to calculate the coordinates, (xÓ(t), yÓ(t)), of the center

0’ of the observed equatorial contour.
Let (p, cp ) and (p’, ç ’ ) be the polar coordinates measured with respect to point 0 and

0’ respectively. By definition we have :

Let us denote the distance O’O by Rw, the angle it makes with the X axis by
t/J, and the angle it is seen from a point on the contour by ~, (Fig. 1). The primed quantities
can be expressed as functions of nonprimed ones and developed in series with respect to
w « 1 and 0 « 1, keeping only the terms up to the second order. The quantities
w = w (t) and 03C8 = 03C8 (t) are both unknowns that have to be determined from equations (43).
We calculate the radius, p’ (t ), of the equatorial cross-section defined by equation (37), but

now we use (p’ ( q; " t ), q;’) instead of (p ( cp, t ), cp ) :

Fig. 1. - Cross-section of a vesicle in the plane (X, Y). 0 is the center of the vesicle,
0’ the center of the observed cross-section.
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The first term in the above equation coincides with expression (39) and the last is a

consequence of the fact that the center of the cross-section is fluctuating around the vesicle
center. The displacement itself is a first order effect, given by U; l(t) amplitudes, but its
influence on the cross-section radius is of second order.

Using the same approach we calculate the experimental autocorrelation function,
03BE ( y , t), given by the relation (40), but now we use (p’ (Cf", t), ~) instead of (p (cp, t), cp).
Keeping only the terms up to the second order we calculate the experimental autocorrelation
function, 1 ’ ( y ) =  03BE ( y, t) :

We see that the experimentally calculated autocorrelation function has the same form as the
theoretical one except the extra P 1 (cos y )-term. Equation (45) shows that the angular
autocorrelation function, 03BE’ ( y ), is a series of Legendre polynomials, Pn(cos y ), with
theoretical coefficients Bn(03C3, kc) :

Comparing with equation (24) we conclude that En (if, kc) = 2 n + 1  Un (t ) I 2 , &#x3E; Thus we4 03C0
have obtained the needed direct correspondence between the amplitudes of the vesicle

fluctuations,  Un (t ) I 2&#x3E; , and the experimentally measured vesicle radius, p’(~,t),
via the autocorrelation function, 03BE’(y).
To find the value of the bending elastic modulus, kc, we calculate the experimental

autocorrelation function, 03BE’(y, t), for each contour and, decomposing it into series of

Legendre polynomials, we get the experimental coefficients, Bn (t ). We evaluate the mean
values, Bn = (Bn(t), and estimate the corresponding dispersions (standard deviations),
Dn . Using and kc as fitting parameters we minimize the function, M(03C3, kc) :

where N is the number of amplitudes (harmonics) used for the fitting. As far as

Bn values are an arithmetic mean of a very large number of experimental Bn (t ) data (usually
400 or more), their distribution is Gaussian, therefore, the quantity M ( 03C3 , kc) obeys a
X 2 distribution with (N - 2 ) degrees of freedom. This fact can be used to verify the quality of
the fit by comparing the calculated M(03C3, kc) value with the value of X 2-distribution with
(N - 2) degrees of freedom, taken from the statistical tables. It is practical to introduce the
ratio of the two values, X 2 and to compare it with unity. If X R  1 the fit is acceptable
othervise it is rejected.
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There is one more point that deserves a comment. The image formed by the microscope is
projected onto the target of a video camera and is accumulated on it for the time between two
successive scans, ts = 40 ms. This integration leads to smearing of the fastly moving parts of
the contour, and degradation of the resolution. If one suppose that the experimentally
measurable radius, p’ ( ~’, t ) is the mean value over the scan time :

the autocorrelation function, 03BE’ ( y ), averaged over the period of the observation,
to, would be given by the expression :

This is in fact a triple integral with respect to the time in which we change the order of
integration. Using the series expansions (25, 21) and making first the integration over the
period of observation, to, one obtains an expression similar to (41), but now we have :

The integral in the last equation is the correcting factor due to the camera integration. If there
was no such effect (ts = 0 ) this factor would be 1 and we would obtain the previous result
(41). The quantity Tn is the correlation time of the respective modes calculated by Milner and
Safran [10]. Comparing the expressions for the correlation time (see [10]) with that for the
mean squared amplitudes (34) one can see that they are related :

where q is the viscosity of the medium surrounding the vesicle membrane. We see that, as a
result of the camera integration, the value of the experimentally measured quantities,
Bn, is modified by a factor depending on the ratio between the camera scan time,
ts, and the correlation time of the respective modes :

Using an iterative procedure, the best values of the correction factor and Bn were calculated
from the experimental amplitudes Bn, and the corrected values, Bn were used in equation (47)
to calculate the elastic modulus, kc.

4. Sample preparation.

Egg-yolk phosphatidylcholine (EPC) was prepared according to the method of Singleton et al.
[18], and dissolved in CH30H/CHCl3 (1:9 v/v) at a concentration of 0.5 mglml. A small
amount of this solution was sprayed on a microslide, then the solvent was removed under
vacuum for about 1 hour. The microscope cell was prepared as already described in [15]
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except a watertight material, about 0.1 mm thick, made up of the silicon product CAF4
(Rhône-Poulenc, France) was used as a spacer. Both the microslide and the cover slip were
previously treated with trimethylchlorosilan (Sigma, U.S.A.) for making them hydrophobic.
The cell was filled with deionized water (Millipore MQ, U.S.A.), and then sealed to avoid
any evaporation. Giant vesicles were formed spontaneously in the cell, and generally they
were studied one day to one week after the sample preparation.

5. Vesicle observation and image processing.

Giant vesicles were observed using an inverted phase contrast microscope IM35 (Carl Zeiss,
F.R.G.) (objective PH 100 x, NA = 1.25). The thermal fluctuations were monitored
vi a a contrast-enhancing video camera C2400-07 (Hamamatsu Photonics, Japan) and
recorded on a U-matic video tape recorder (Sony, Japan) for at least eight minutes. Video
images, taken at regular time intervals of 1 s, were digitized with a Pericolor 2001 image
processing system (Numelec, France). Digitized images were constituted of 512 x 512 8-bit
pixels, and, with the magnification used, 1 pixel roughly corresponded to 0.1 03BCm. An out-of-
focus image was usually subtracted from that of the vesicle to eliminate mottle or background
heterogeneities. Digitized images were then transferred to a VAX-8600 computer (Digital,
U.S.A.) for the determination of the contour coordinates. This was performed as in [8] by
searching for the minimum intensity along the vesicle radius in given directions. In the
conditions used, the contours appeared like a dark line of about 5 pixels width at half-height.
In order to increase the accuracy on the contour determination, the vesicle radius in a given
direction was calcùlated as the intensity-weighted average of the radii of these five points. The
number of contour points so determined was roughly equal to the number of pixels
constituting the contour, i.e. between 500 and 1000 depending on the vesicle size. An example
of what can be obtained is shown in figure 2, where calculated contours have been

superimposed to the digitized images of vesicles.

Fig. 2. - Images of two different vesicles obtained after digitization and background subtraction. The
white line represents the calculated contour coordinates. Left figure : images taken at different time
intervals of a vesicle having a mean radius of 8.45 03BCm, kc = 0.42 x 10-19 J, u = 22.6. Right figure :
picture of a vesicle having a mean radius of 14.05 tim, kc = 0.64 x 10-19 J, u = 93.3.
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The second step of the treatment was to eliminate the contours corresponding to noisy
records, which can originate from a bad microscope focusing, for example. For this purpose,
the experimental contours were roughly represented by a Fourier series limited to the first
five terms. All the experimental points being farther than a chosen critical distance

(= 2 pixels) from that representation were deleted. If the number of deleted points for a given
contour exceeded some value (= 5 %), the whole contour itself was eliminated. Usually, less
than 5 % of the total number of digitized images was lost after such manipulation. The rest
were used for the determination of the bending elastic constant.

6. Numerical simulations.

The only way to check the validity of the theoretical model is to use the function (47) with as
many different harmonics, Bn, as possible. It is obvious however, that due to the experimental
limitations the number, N, of the harmonics that can actually be observed and investigated is
limited. At least three important factors have to be considered : (i) the limited number of
analysed images (contours), (ii) the precision on the contour coordinates, and (iii) the time
resolution of video (40 ms) compared to the correlation times of the fluctuations modes. An
easy way to estimate the effect of these different factors is to perform computer simulations.

In a first step, simulated contours were created without taking into account the third factor,
i.e. video time. The theoretical values of the mean-squared Fourier amplitudes corresponding
to a given set of values for kc, if, and the mean vesicle radius were calculated as in [8]. The
squared Fourier amplitudes for a given contour were obtained by multiplying these
theoretical values by random numbers obeying a X 2-distribution. These amplitudes were then
randomly decomposed into the sine and cosine components of the Fourier series, which
allowed the angular dependence of the radius of the simulated contour to be computed. A
Gaussian noise could then be added to the vesicle radius, with a chosen standard deviation, in
order to account for the experimental errors on the contour coordinates. These simulated
contours were further analysed in the same way as the experimental ones.
An example of such a simulation is shown in figure 3. In this case, 40 contours, which

roughly corresponds to the number used in the previous works [8, 15], have been generated

Fig. 3. - Simulated data : values of kc versus the order n of fluctuations. 40 contours were generated,
using k, = 10- 19 J, Ir = 0, and a mean vesicle radius equal to 100 pixels. No noise was added to the
calculated vesicle radii.
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without any added noise. It is clear that the obtained values of kc present large variations
versus n, the order of the harmonics. However, when the number of generated contours is
equal to 400, kc remains rather constant up to n = 20, as seen in figure 4, even in the presence
of a Gaussian noise of 1 % on the vesicle radius. Such a noise corresponds to an error of
1 pixel on the radius for a 20 &#x3E;m diameter vesicle, i. e. to the expected error in normal
experimental conditions.

Fig. 4. - Simulated data : autocorrelation functions (left Fig.) and dependence of kc versus the order
n (right Fig.). Four hundred contours were generated, in the presence (full line) or absence (dotted line)
of a Gaussian noise equal to 1 % on the vesicle radius. Entered values for simulations: kc = 10-19 J,
03C3= 0, and mean vesicle radius = 100 pixels.

Another interesting point is worth mentioning. It can be seen that the autocorrelation
functions obtained either with or without noise are almost identical, except in one point,
y = 0. So, the noise contributes to the autocorrelation function mainly in the form of a 8-
function at y - 0, as already pointed out in [15], and it has practically no effect on the values
of kc calculated from the Legendre amplitudes, Bn, of the autocorrelation function.
When the analysis of these simulated data is performed by direct Fourier decomposition of

the contours, as in [8], the presence of noise leads to an important decrease of

kc for wavevectors q 8 (Fig. 5). The noise contribution can be considerably reduced in this
case as well, but an appropriate white noise have to be subtracted from the Fourier

amplitudes, as shown in figure 5.
Finally, we should mention that the accurate value of kc can be recovered from simulated

contours generated with initial values of J ranging from 0 to 200, even in the presence of a
1 % Gaussian noise on the vesicle radius (data not shown).

All the preceding simulations have been performed assuming that the time resolution of
video is much higher than the frequency of the fluctuations, which is obviously not the case
when high order harmonics are considered. So, an attempt has been done to quantify this
effect by using the correction factor (52) derived above. As a first approximation, the
theoretical mean-squared Fourier amplitudes of the contours were multiplied by this factor,
taking the video time ts = 40 ms, and using the relation (51) to calculate the correlation times
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Fig. 5. - Analysis of simulated data by Fourier decomposition of the contours : (---------) without
added noise on the vesicle radius ; (-) in the presence of a Gaussian noise of 1 % ; (- - - - - - -) in
the presence of noise, after subtraction of an appropriate white noise from the Fourier amplitudes.
Entered values for the simulations were the same as in figure 3.

Tn of the respective modes. An example of what can be obtained is shown in figure 6, the
entered values being in this case : kc = 0.5 x 10-19 J, J = 50, vesicle radius = 100 pixels,
Gaussian noise = 1 pixel. When the fit is done as usual, using only the X 2 -- 1 criterion, 12
modes can be fitted (Fig. 6A, solid line), and this leads to kc = (0.71 ± 0.05 ) x 10-19 J and
J = 35 ± 4, i.e. to values clearly different from the entered ones. Moreover, a significant
increase of kc is observed when n 13. On the contrary, if the fit is limited to the first few
modes, whose correlation times are larger than the video time, the obtained values are nearly
equal to the entered ones : for example, when n = 2, ... , 7, (corrélation times - 0.1 s), one
obtains kc = (0.49 ± 0.09) x 10-19 J and if = 57 ± 15 (Fig. 6A, dotted line). Finally, when
the correction factor is introduced in the analysis of simulated data (Fig. 6A, dashed line),
kc remains constant up to n = 20, and the recovered value kc = (0.43 ± 0.03 ) x 10-19 J, is

again very close to the entered one.
The results obtained by direct Fourier analysis of these simulated data are reported in

figure 6B. The solid line represents the values of kc versus the wavevector q of fluctuations,
without taking into account the effect of if and the white noise contribution. As expected, the
entered positive value of if leads to large values of k, at low wavevectors. A plateau is

observed for q = 10 with kc = 0.8 x 10 -19 J, then k, decreases for q . 19. It is interesting to
note that the decrease of kc at high q is much less pronounced than in the case of figure 5,
when the effect of integration time is not included. These data clearly demonstrate that the
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Fig. 6. - Simulated data : effect of the integration time of the video camera. (A) Values of
kc derived from the autocorrelation function : full line : using the XR ,1 criterion ; dotted line :

considering only modes with n = 5; dashed line : after introducing the correction factor (Eq. (52)).
(B) Values of kc derived from the Fourier analysis of the contours : full line : rough analysis ; dotted
line : after white noise subtraction and using J = 35.

contributions of the Gaussian noise and the effect of video integration time act in opposite
way on the final result. However, in this case, the noise contribution prevails over the effect of
correlation times, so that a decrease of kc is still observed.
The dashed line in figure 6B represents the values of kc obtained after white noise

subtraction and after introducing J = 35. A constant value of kc  0.75 x 10 -19 J, once again
very different from the entered one, is then obtained for q 12.

7. Experimental results and discussion.

7.1 EXAMPLES OF GIANT EPC VESICLES. - An example of experimental data is shown in
figure 7, for a vesicle of 19.4 03BCm in diameter : 384 contours have been analysed, either using
the autocorrelation function and its decomposition into Legendre amplitudes Bn (Fig. 7A, B),
or by direct Fourier analysis of the contours (Fig. 7C).
As can be seen in figure 7B, different behaviours are observed depending on the criteria

used to fit the Legendre amplitudes, Bn, of the autocorrelation function. When the only
criterium used is X R ,1, up to 16 amplitudes can be fitted (Fig. 7B, solid line), and
kc = (0.69 ± 0.03 ) x 10-19 J with J = 26 ± 2 is obtained. It is noteworthy that kc increases
for orders n -- 14, as expected if the video time is larger than the correlation times of these
modes. When the analysis is limited to the first few amplitudes, having correlation times
larger than 0.16 s (i.e. at least fourfold larger than the video time), the dotted line in
figure 7B, with kc = (0.44 ± 0.1 ) x 10-19 J and u = 47 ± 15 is obtained. Finally, when the
correction factor is used as described in the preceding section, a good fip up to

n = 21 can be obtained, with kc = (0.40 ± 0.02) x 10-19 J and J = 55 ± 5.
The Fourier analysis of the contours of the same vesicle is presented in figure 7C. When

u is taken equal to zero (solid line), kc first decreases at low wavevectors, q, due to the small
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excess area of the vesicle. Then a plateau is reached around q = 10, and finally, an increase is
observed for q &#x3E; 15. In this case, therefore, the noise contribution to the measured Fourier
amplitudes is smaller than the effect due to the video integration time. The comparison of the
experimental data with the simulations for a vesicle of nearly the same characteristics, in the
presence of 1 pixel Gaussian noise (Fig. 6B), seems to indicate that the experimental noise on
the vesicle radius is significantly less than the indicated value.
Using = 26, the dotted line in figure 7C is obtained, and k, = 0.7 x 10-19 J remains

practically constant for q ‘ 13. The behaviour is quite similar to that obtained from the
Legendre amplitudes of the autocorrelation function (Fig. 7B, solid line).

Fig. 7. - Example of experimental data obtained with a vesicle of 19.4 ktm in diameter, and using
384 contours : (A) autocorrelation function e (y) of the fluctuations ; (B) dependence of kc versus the
order n, deduced from e ( y ) : full line : using the X2 R -- 1 criterion ; dotted line : considering only modes
with correlation times larger than 0.16 s ; dashed line : after introducing the correction factor (Eq.
(52)) ; (C) values of kc derived from the Fourier analysis of the contours : full line : rough analysis ;
dotted line : using 03C3 = 26.
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7.2 EFFECT OF VIDEO INTEGRATION TIME : SUM OF DIGITIZED IMAGES. - It is clear from the

above example that the video integration time constitutes a serious limitation in the study of
fluctuating vesicles. Another mean to illustrate this effect is to increase at wish the

characteristic time of video, which can be roughly done by adding successive digitized images
before performing the analysis. Of course, it would be much better to act in the opposite way,
i. e. to decrease the integration time. Unfortunately, this is not so easy.
The result from the analysis of contours obtained after such additions of digitized images is

presented in figure 8. A vesicle of radius 14 itm was used in this case. The analysis has been
performed either as usual, on single images (solid line), or after summing two (dotted line) or
four (dashed line) successive images.

Figure 8A shows the dependence of kc on n when the only criterion taken into account is
x 2 1. In this case, the kc value obtained increases from 1.0 x 10-19 J to 1.4 x 10-19 J and to
2.0 x 10- 19 J for a single, sum of two and sum of four images, respectively.

Fig. 8. - Values of kc versus the order n of fluctuations obtained from the usual analysis (full line), or
after summing 2 (dotted line) or 4 (dashed line) digitized images : (A) using the x2 = 1 criterion ;

(B) considering only modes with n = 5; (C) after introducing the correction factor (Eq. (52)).
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When the analysis is limited to the first few amplitudes only (having the longest correlation
times), figure 8B is obtained. The kc values are very close to each other at low orders,
therefore, the integration time has practically no effect on these modes. But, one can observe
an increase of kc with n, which is much larger when the number of added images is higher.

Finally, the correction factor has been introduced for the analysis of these data, using
40 ms, 80 ms, and 160 ms as integration times (depending on the number of summed images).
As can be seen in figure 8C, the dependence of kc on n is almost identical in the three cases
considered here. Moreover, kc remains practically constant up to n = 21. This example is a
strong support that the effect of the video integration time can be properly taken into account
via the correction factor.

7.3 MEAN BEHAVIOUR OF GIANT EPC VESICLES. - An important characteristic of the
analysis of thermal fluctuations, compared to the usual biophysical techniques, is that it does
not deal with large populations of vesicles, but on the contrary with individuals. So, it is quite
necessary to check both the reproductibility of the method and an eventual variability of the
system, by studying the behaviour of a number of vesicles. For this purpose, thermal
fluctuations of 62 giant EPC vesicles have been recorded and analysed. Among all these
vesicles, 14 led to negative values of if and could not be well fitted. The 48 remaining vesicles
have been analysed using different criteria, as described below. The obtained results are
presented in the form of normalized distributions of the obtained kc values. These histograms
have been constructed by summing the individual contributions of each vesicle, which have
been assumed to be Gaussian distributions centered on the respective kc values deduced from
Legendre amplitudes Bn, with standard deviations equal to errors estimated from the

goodness of the fit.

Disregarding any effect related to experimental limitations, the « best » vesicles should be
those leading to a good fit (XR , 1 ) on the maximum number of amplitudes (N &#x3E; 20 ).
Seventeen vesicles fulfil these conditions and lead to the histogram plotted in figure 9A. As
can be seen, the histogram is constituted of two ill-defined peaks, the first one centered at
(0.69 ::t 0.06 ) x 10-19 J, and the second one, much more important, at

(1.02 ± 0.13 ) x 10-19 J.
On the contrary, if one takes into account the problem of video integration time, the best

values of kc must be obtained by limiting the analysis to the modes having correlation times
much longer than 40 ms. This has been done by considering only those harmonics whose
correlation time was larger than 160 ms, and selecting only the vesicles satisfying this
condition up to at least n = 5. In this case, one obtains the histogram of figure 9B, with only
10 vesicles. The main peak of this histogram corresponds to kc = (0.53 ± 0.11 ) x 10-19 J.
Two other minor peaks can also be distinguished, at (0.91::t 0.17) x 10-19 J and

(1.45 ± 0.15 ) x 10-19 J. It is interesting to notice that these values are about twofold and
threefold larger than that of the first peak. It must be mentioned that increasing the threshold
time to 300 ms leads to a smaller value kc = 0.45 x 10-19 J. However, only five vesicles can
then be fitted.

Finally, the vesicles have been analysed using the correction factor as already discussed.
However, only the amplitudes corrected by less than a twofold factor have been considered.
In these conditions, as many as 42 vesicles can be correctly fitted on more than 5 amplitudes
with X R _ 1, and the obtained distribution of kc is plotted in figure 10A. The best fit of this
histogram using a sum of three Gaussian distributions (dotted line) leads to kc =
(0.4 ± 0.04 ) x 10-19 J, (0.51 ± 0.16 ) x 10-19 J, and (1.3 ± 0.2 ) x 10-19 J. Thus, the two first
populations are not clearly distinguished, and can be fitted by a single Gaussian with
kc = (0.43::t 0.11) x 10-19 J. It is worth mentioning that almost the same value for
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Fig. 9. - Histograms of kc values, obtained : (A) with 17 vesicles fitted up to n = 21 with

x£ = 1; (B) with 10 vesicles fitted up to at least n = 5, with the correlation times of thèse modes
± 0.16 s. The full lines represent the experimental histogram, and the dotted lines correspond to the best
fits obtained using a sum of 2 (A) or 3 (B) Gaussian distributions (see text).

Fig. 10. - Histograms of kc values, obtained : (A) with 42 vesicles fitted up to at least
n = 6, using the correction factor for the integration time of the camera (Eq. (52)), with

x 2 1; (B) with the same 42 vesicles fitted up to at least n = 5 with XR ,1, but without using the
correction factor. The full lines represent the experimental histogram, and the dotted lines correspond to
the best fits obtained using a sum of 3 (A) or 1 (B) Gaussian distributions (see text).

kc is obtained by considering only the long correlation time amplitudes. For comparison, the
histogram obtained with the same vesicles, but without correction factor and using as criterion
only X R ,1 on at least 4 amplitudes, is represented in figure 10B. As can be seen, the



2411

distribution is then very broad and, when fitted with a single Gaussian, the first peak leads to
kc = (0.80 ± 0.24 ) x 10-19 J.

It is interesting to consider the behaviour of some other physical properties of the studied
vesicles. The size distribution of the 42 vesicles well-fitted using the correction factor is

represented in figure 11A. Their diameters range from about 10 jjum to 40 03BCm, with a
maximum centered around 20 03BCm. However, when the criterion used is the correlation time
of harmonics, as in the histogram of figure 9B, only the large-size vesicles (with diameters
larger than 18 03BCm, dotted line in Fig.11A), are retained.
The membrane tension can be calculated from U, using equation (15). As shown in

figure 11B, the distribution is broad with values between (0 -15 )10 x - 5 mN/m for most of
the analysed vesicles. An interesting point is that the long correlation time vesicles exhibit a
sharper distribution, at low values of the membrane tension (0 - 3 ) x 10- 5 mN/m.

Fig. 11. - Size (A) and membrane tension (B) distributions of the studied vesicles. The full line
corresponds to the 42 vesicles represented in the figure 9A, and the dotted line to the 10 vesicles of
figure 8B.

8. Conclusion.

The main conclusion that can be drawn from the above results is that thermal fluctuations of

giant vesicles constitute a useful tool to quantify the bending elasticity of lipid bilayers,
provided that some requirements are fulfilled, both at experimental and theoretical levels.

First, fluctuation amplitudes being random variables, the precision is directly related to the
number of analysed contours. As illustrated by simulations, several hundred contours must be
digitized and analysed to obtain a good accuracy. With the experimental set-up used in our
laboratory, this can be routinely done in about 1-2 hours, which is not too much time-

consuming. Future development, based on real-time image processing, should still consider-
ably increase these technical capabilities.
Another important point is the precision on the contour coordinates, which depends on the

magnification used and on the resolution of the microscope, the camera, the video tape
recorder, and the image digitizer. However, simulations clearly show that, as far as the error
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on the vesicle radius is a random Gaussian noise, its contribution is almost completely
cancelled by the use of the autocorrelation function and of its decomposition into associated
Legendre amplitudes, which remain statistically significant on more than 20 modes. On the
contrary, the noise largely contributes to the mean-squared Fourier amplitudes of the
contours, resulting in an apparent decrease of the calculated kc values for wavevectors
q &#x3E; 8. This effect can be readily corrected, at least in simulated data, by subtracting an
appropriate level of white noise from the Fourier amplitudes. However, in the case of
experimental data, this becomes much more difficult, if not impossible, due to the occurence
of another experimental limitation, the camera integration time, which acts in the opposite
way.
Indeed, as already stressed in [9], the camera integration time, t, = 40 ms, is expected to

decrease the amplitudes of modes having correlation times of the same order of magnitude as,
or smaller than ts. Both simulated and experimental data clearly show that this effect cannot
be ignored in the analysis of thermal fluctuations. Two attempts can be made to overcome this
difficulty. The first one consists of limiting the analysis to the harmonics having
Tn &#x3E; ts. However, this method, which a priori looks quite satisfactory, suffers from some
serious disadvantages. Indeed, if one considers a vesicle of 10 03BCn in diameter, which
corresponds to the typical size in previous studies, one can calculate that 03C4mn decreases from
0.95 s for n = 2 down to about 40 ms for n = 6, in the favorable case = 0 and

k, = 0.5 x 10-19 J. Fortunately, Tn is proportional to the third power of the vesicle radius, so
this kind of analysis can be nevertheless performed, provided that large enough vesicles of low
membrane tension are available. This limitation is well-illustrated in figure 11, which shows
that only vesicles of about 20 f.Lm or more, with o, -- 3 x 10- 5 mN/m, satisfy such drastic
conditions. Moreover, even with these very large vesicles, only few amplitudes can be
analysed, typically between 4 and 7. This necessarily leads to a loss of precision in determining
kc and if, and to a broadening of the final histogram.
Another way of taking into account the effect of the integration time is to introduce a

correction factor in the analysis, as described in section 3. The validity of this factor is entirely
based on the assumption that the experimentally determined contours correspond to the
mean values of the actual contours over the integration time, a hypothesis not quite obvious.
However, at least two features argue for the usefulness of this correction : (i) it leads to values
of kc very close to those obtained from the long correlation time harmonics, and (ii) it allows
the « good » value of kc to be recovered after summation of two or four digitized images,
provided that the integration time ts is multiplied by a factor two or four, respectively.
At the theoretical level, it is now clear that the assumption for the independence of the

different fluctuation harmonics, made in previous studies [9, 15], is not tenable in view of the
experimental data. Indeed, large variations in the kc values are obtained at low orders, even
when the experimental limitations described above can be neglected. A complete and exact
theory has been developed here to account for both constraints that are exerted upon thermal
fluctuations, namely the constant area and constant volume of the vesicle. This has been done
via two Lagrange multipliers related to the membrane tension and hydrostatic pressure
difference. However, these two parameters are not independent, and only one of them, either
if or p, has to be considered. Hence, the final expression for kc is almost the same as that
proposed in [10]. This theoretical model holds for all the vesicles having positive values of
if, i.e. for a spherical average contour.

Finally, applying this method to a relatively large number of giant EPC vesicles, one
obtains for the bending modulus a value : kc = (0.40 - 0.53 ) x 10-19 J, with membrane
tensions ranging below 15 x 10- 5 mN/m. First, it is noteworthy that these membrane tensions
are extremely low, experimentally undetectable by classical techniques. Nevertheless, they
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modify considerably the amplitudes of thermal fluctuations, and must absolutely be taken into
account. This is illustrated in figure 2, where the contours of two vesicles having different
values of J are reported : deformations are clearly larger in the case of 03C3 = 22.6 (top figure)
compared to if = 93.3 (bottom figure). On the other hand, the value obtained for

kc is of the same order as those previously reported [9, 15]. However, it must be stressed that
all the above-mentioned problems, both at the experimental and theoretical levels, have been
for the first time taken into account in the analysis, which strongly supports the reliability of
the obtained results. Indeed, it is clear that, in the case of the direct Fourier transform of the
contours, as performed in [9], the noise contribution together with the effects of
if and of the video integration time can balance each other, and lead to an apparent constancy
of k,, in some range of wavevectors q. The obtained value of kc, therefore, reflects these three
contributions, in addition to the true bending elasticity. The autocorrelation function of the
fluctuations has already been used in [15]. However, a global fit of this function, instead of its
decomposition into Legendre amplitudes, was done without considering the effect of nonzero
membrane tension, ôF. Thus, the derived value of kc was mainly dependent on the behaviour
of the 2nd harmonic, which is extremely sensitive to the variations of the membrane tension.

In conclusion, it can be stressed that most of the conditions required to truly extract the
bending elasticity of lipid bilayers from thermal fluctuations can be fulfilled : analysis of a
large number of contours to obtain a meaningful statistics, suppression of the noise

contribution, use of an appropriate mathematical model to take the effect of membrane
tension into account. The only remaining limiting factor in the proposed method is the

integration time of standard video devices. As shown above, this difficulty can be overcome
either by considering only the first harmonics of very large vesicles having low membrane
tensions, or by using a proper correction factor. However, it would be much more satisfactory
to decrease the integration time of the experimental set-up, down to about 1 ms. This last
major improvement is currently under investigation in our laboratory.
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