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Résumé. — Ce travail étudie en détail les différentes explications présentement proposées qui
tentent d’expliquer les écarts observés entre les théories reliées aux corrections quantiques
présentent dans les phénomenes de conduction des matériaux désordonnés et les récents résultats
expérimentaux touchant la magnétorésistance des verres métalliques amorphes. Nous soulignons
Pimportance de divers effets compétitifs et en particulier de la forte influence des impuretés
magnétiques. Pour démontrer celle-ci, nous présentons de nouveaux résultats relatifs a la
présence de telles impuretés et les analysons en utilisant la théorie de Béal-Monod et Weiner qui
permet de tenir compte de la magnétorésistance directement reliée a la diffusion des spins et a la
dépendance en champ du taux de déphasage du renversement de ceux-ci. Tout au long de I’article
nous présentons certaines techniques numériques qui permettent I’évaluation rapide et efficace
des expressions théoriques nécessaire a I’analyse de tels résultats. Finalement, nous montrons que
certaines expressions théoriques doivent étre modifiées lorsque des systemes fortement parama-
gnétiques sont étudiés.

Abstract. — We discuss a number of suggested explanations for observed discrepancies between
theories of the quantum corrections to conduction, and recent magnetoresistance experiments on
bulk metallic glasses. We emphasize the importance of competing effects, particularly the
influence of magnetic impurities. Data showing these effects are presented and analyzed using a
theory of Béal-Monod and Weiner to account for the direct magnetoresistance from the spin
scattering and the magnetic field dependence of the spin-flip dephasing rate. Throughout, we
provide useful numerical procedures for the efficient evaluation of the theoretical expressions
used in analyzing such data, and point out that some theoretical expressions must be altered when
considering strongly enhanced paramagnetic systems.
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1. Introduction.

In the weakly localized regime a number of corrections to the transport coefficients of
disordered conductors have been identified [1, 2], broadly classified as Weak Localization
(WL) and Enhanced inter-Electron Interaction (EEI) [2, 3]. One of the most powerful
experimental probes of these effects (known collectively as Quantum Corrections to the
Conductivity (QCC)) is the low temperature magnetoresistance, which can distinguish
between the various contributions, and also can provide detailed information about the
electron scattering processes [1, 4]. A number of magnetoresistance studies of semiconductor
inversion layers [4] and thin metallic films [1, 5] have been undertaken over the last several
years. The results of these experiments have been in excellent quantitative agreement with
the 2-dimensional limit of the theories, and have led to the use of magnetoresistance
measurements as a unique probe of electronic processes in conductors [5, 6].

The same quantum correction theories may also be applied to experiments on bulk
disordered conductors, such as metallic glasses. However, to date, most experiments on
metallic glass samples have shown poorer agreement with theory than was seen for two
dimensional systems [7, 8]. The reason for this discrepancy is not yet clear, although a number
of different explanations, such as finite cutoff effects [8] and inadequate treatment of
interaction effects [9] have been offered. However many of the studies published have failed
to account adequately for such complications as the presence of magnetic impurities and
superconducting fluctuations [8, 10, 11] and unambiguous interpretation of the measurements
has often been further complicated by the contribution of d-electrons to the conduction in
transition element glasses. There also has been some confusion among experimentalists on
the form and limits of validity of the theoretical expressions [9, 11].

In this paper we address a number of the difficulties mentioned above as a first step toward
understanding the reported discrepancies between theory and experiment. In the following
section we first review the various theoretical expressions for the magnetoresistance. We
provide efficient numerical algorithms for the evaluation of these expressions and in those
cases where more than one expression has been suggested for a given effect we compare the
magnetoresistance predicted by the competing theories. The work complements a very useful
recent publication by Ousset ez al. [15] and corrects a few small errors. Some of the theoretical
expressions must be altered when considering samples with strong spin fluctuation and we
discuss suitable modifications.

We also emphasize that the size of the QCC magnetoresistance in 3-D samples is quite
small and therefore experiments on such samples are very susceptible to interference from
other effects. In particular magnetic impurities have a two-fold effect on the magnetoresist-
ance ; a direct contribution due to the field dependence of the spin-flip scattering, and an
indirect contribution from spin-flip dephasing of the electron wave function. We present data
taken on Mg-based glasses doped with a controlled amount of magnetic impurity and show
clearly that small levels of such impurities can significantly alter the observed magnetoresist-
ance. It is most important that the level of impurities be kept to a minimum if a reliable
assessment of the validity of the QCC theories is to be made.

2. Contributions to the magnetoresistance.

2.1 WEAK LOCALIZATION. — In most cases the magnetoresistance is dominated by this
term, which results from a dephasing of the coherent backscattering causing weak localization
[1]. The coherent backscattering is incorporated into the calculation through « maximally
crossed » or « Cooperon » corrections to the diagrams for the conductivity. A number of
authors have computed expressions for this contribution, the most general being that given by
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Fukuyama and Hoshino, which includes the effects of spin-orbit scattering and the Zeeman
splitting of the spin sub-bands [12]. Extending their result to include the effects of scattering
from magnetic impurities in the limit 1/7, < 1/7,, gives the expression :

(2= s2 B L (2 ()] -(8) -
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where :
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D is the electron diffusivity and :
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The characteristic fields are related to "characteristic electron scattering times through

relations of the type B, = where x = i, so, and s refer to the inelastic, spin-orbit, and

h
4eDr,
magnetic spin-flip scattering times respectively. A number of different conventions are used
in the definition of 7,,. We use a definition which assumes isotropic spin-orbit scattering with
T4, being the effective mean time between spin-orbit scattering events.

For systems with large electron diffusivities (D > 2 cm?s™! for systems without magnetic
enhancement) (2.1) reduces to the more compact expression given by Kawabata [13].

()2 B(E) o(B)] s

The role diffusivity plays in distinguishing between (2.1) and (2.2) can be understood easily,
since for a diffusivity of about 0.5 cm?s~! the field dephasing energy (#*/4 eDB) and the
Zeeman energy become comparable. In figure 1 we compare the predictions from equations
(2.2) and (2.1) for different diffusivities and various spin-orbit scattering rates. Clearly for
materials with small diffusivities (2.1) and (2.2) give significantly different results. Therefore,
(2.1) should be used in analyzing those transition element metallic glasses with small
diffusivities, in order to account properly for the combined effects of Zeeman splitting and
spin-orbit scattering. For systems with larger diffusivities (e.g. MgCu) it will be sufficient to
use (2.2). The differences between (2.1) and (2.2) have been discussed in some detail recently
by Lindqvist and Rapp [14].

The series which defines f; in (2.1) and (2.2) converges very slowly (the terms fall off only
as n~%2 for large n) and therefore a compact summation formula is needed to compute it
efficiently. Ousset et al. [15] have provided one such formula, based on an Euler-Maclaurin
expansion. Unfortunately the expression given in their paper contains an error (the exponent
in the last term of their Eq. (7) should be — 1/2) and, although a great improvement over
summing the series directly, it reamins somewhat cumbersome. This is true particularly for
analytical use, as needed in computing the correct extension of (2.1) to the case
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Fig. 1. — Comparison of the magnetoresistance predicted by (2.1) dashed line, with that predicted by
(2.2), solid line, for various 7 in a) high diffusivity (2.0 cm%s) and b) low diffusivity (0.5 cm?¥s)

materials. For all cases 7, was taken to be 0.1 ns.

v = 1 for example. A more compact expression may be derived by explicitly summing the first
two terms of the series. The remaining terms (collectively referred to as R(x)) may then be
treated quite accurately as an integral from 3/2 to infinity, with the integrand rewritten as a
rapidly convergent Taylor series. This results in the following expression :

Q+1/x)y?  (2+1/x)""?
e + 1094 + ... (2.3)

R(x) =

A final formula of sufficient accuracy (better than 0.1 % for all x) may be obtained using
only the first term of this expression. If the lower limit of the integral used to compute
R(x) is changed to 1.53 the correct asymptotic limit (f;(c0) = 0.6049) is retained, and
therefore our final expression for f;(x) may be written :

= el ][ (1241) " (241) ]+

Lihhwmel)y ™ 4
+4_§(. +;) (2.4)
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Using this formula in equation (2.1) one can easily show that the magnetoresistance remains
real and smooth even when y > 1 in equation (2.1).

Recently Isawa [16] has questioned the validity of one of the approximations used in
deriving equation (2.2), and Bierri ez al. [8] suggested that the use of this approximation could
explain reported discrepancies between some experiments on metallic glasses and the
Kawabata theory. Isawa starts from an earlier point in Kawabata’s derivation, where the
magnetoresistance is given by the expression :

8p) e* 2DBe 1
(_2 T 2a? )) (2.5)
P 2mw°h h qz:n=0;]_‘_+D(qz2+ﬂ.£_n_h_ﬂ/__2))

¢

The sum in (2.5) is formally divergent but in computing the change of the conductivity
induced by the magnetic field the divergent part cancels out. However, for non-zero fields,
the limits on n and ¢, in equation (2.5) must be finite in order to be consistent with earlier
approximations made regarding the propagators. Therefore, for non-zero magnetic fields, the
he and g, = —<_ for n and
4eDBT ¢ D~
q, respectively (where 7 is the elastic scattering time and ¢ is a number of order unity).
Isawa recast the expression for weak localization magnetoresistance by replacing the
function f3(B/B,) in (2.1) and (2.2) by a function I (B, 7,), in which the cutoff parameter ¢
appears explicitly :

1(B, Tx)——ff N+n+4——;+%)—

_qr(z 4ﬁq;+§) ~In (1+m)} (2.6)

with ¥ the digamma function, n = 3/2 and B, represents either B, or B,. All other symbols in
(2.6) take on the meaning given for (2.1).

Unfortunately, as given by Isawa, this formula is incorrect due to an inconsistent treatment
of the upper limit for the sum in equation (2.5). A correct expression, which reduces to
f3 in the limit ¢ — oo, is obtained by setting n = 1/2 rather than 3/2. Using the corrected form
for I (B, 7,) one finds the difference between the finite and infinite cutoff calculations is much
reduced from that indicated in reference [16]. Furthermore, when elastic scattering times, 7,
comparable to those seen in metallic glasses are considered the difference between
I(B, 7,) and f3(B/B,) becomes completely negligible. Consequently a finite value for the
cutoff cannot explain observed discrepancies between experiment and theory.

sum in equation (2.5) should have upper limits of N, =

2.2 ENHANCED ELECTRON INTERACTIONS. — The diffusive nature of electron motion in the
weakly localized regime alters the interactions between electrons, as well as producing the
coherent interference effects discussed above. These enhancements to the inter-electron
interactions are categorized into two classes, the Cooper and Diffusion channels, depending
on the relative orientation of the momenta of the interacting electrons. A magnetoresistance
can arise from these interaction effects either through a dephasing process similar to that
discussed above, or through a splitting of the spin states by the Zeeman effect.

Several authors have suggested expressions describing the magnetoresistance due to the
density of states corrections caused by the Cooper channel (momenta of the interacting

JOURNAL DE PHYSIQUE. — T. 50, N* 13, 1°F JUILLET 1989 105



1678 JOURNAL DE PHYSIQUE N° 13

electrons oriented anti-parallel) interaction effects. To date most experiments have been
compared with the expression given by Altshuler ez al. [17].

3p _ e [B 2 DeB
<P2)AA1_a27rzh hg(B’T)¢3(WkBT> @7

where

T 12 [ t1/2 xt
$3x) = ( 2x ) Jo sinh? ¢ <1 ~ sinh (xt) ) @
In (2.8) 1/9(B,T)=—-1n (T*/Tc)Twith T* = max (T, 4 deB/kg) for superconducting
1 Y1iF
metals, and 1/g(B, T) = " +In ( P
values 1 or 1/4 depending on the strength of spin-orbit scattering in the material studied [17].
In this last expression vy is Euler’s constant (0.577), A is the dimensionless electron-phonon
coupling constant. Ousset et al. [15] have given a simple spline approximation to the integral
expression for ¢;(x), but the reader should note that the last term in their equation (20)

should read 0.0028 /> not 0.00028 4°. Another expression given more recently by Altshuler
and Aronov [3] may be written as :

(ap) e? (kBT>1/Zg(B,T)F (ZeDB gug B h/7
— -1
AA2

p2 =277'2h nD 2 7TkB T’TrkBT’WkBT> (2.8)

for normal metals, and a was said to take on the

where the function F_, is defined by :

0 1 Xt
sinh (x; t)

F_1(x1, x5, x3) = J e ) cos (xyt)e ™' de
o sinh?¢

If the contributions of the Zeeman effect and spin flip scattering to this expression are ignored
(mg, 1/7,—0), this reduces to their previous result (2.7), except for a factor 1/a 7. Note
that expression (2.7) no longer contains any dependence on the spin-orbit scattering,
reflecting a cancellation between the triplet Hartree, and the exchange diagrams contributing
to the effect [18], which was overlooked in reference [17]. Figure 2 compares the results of
numerical integration of (2.8) with those obtained with the spline approximation for (2.7). It
is clear that for very low fields the predictions of (2.7) and (2.8) agree, provided that « is set to
1/7 in the former. The range of magnetic fields for which (2.7) and (2.8) agree increases
when materials with greater diffusivities are considered, much as was seen when comparing
(2.1) and (2.2).

An alternative formula for the Cooper channel contribution has been given by Isawa and
Fukyuma [18] :

ép e [eB, ,f kT )2 ®
(?)IF_z—frri—f; 73w<4eDB 9(B,T) ®x(B, T) (2.9)
where :
® 51 k+'y) 2( vh )3/2]
/i = — Z .z _z
fB.7)=- ¥ k15 5+ 0 ) -5 (5
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Fig. 2. — Comparison of the various expressions for the Cooper channel magnetoresistance at 1.5 K, for
a material with D = 2 cm?%s and superconducting 7, = 0.1 K. The solid line represents expression (2.8),
the dashed line (2.9), and the dot-dashed line (2.7) with @« =1/m. For 7, = 0.1 ns (2.9) essentially
duplicates the results of (2.7), whereas for substantially larger D (say 100 cm?%s) all three expressions
agree to within 5 % over the field range shown.
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same meaning as the equation (2.7). Again this expression involves a very slowly convergent

series. It may be evaluated reasonably efficiently with the Euler-maclaurin expansion leading
to the following approximation for f(k).

h = B/B;, {is the generalized Riemann ¢-function and other symbols have the

N-1 -5
f(k)=k["§0 <n+%+%+-&kz)
(v-redegess) - Grsa)
—%(N—1+%+%+%>_5/2 (2.10)
+%<N—1+%+%+?’%)_7/2
B (voredogod) ]

Where N is the number of terms in the sum defining the ¢ function which are explicitly
included before the asymptotic expansion. The sum over k£ may also be evaluated with the
Euler-maclaurin formula, with M terms explicitly evaluated, and considering terms up to the
third derivative of f(k). Taking N = 10 and M = 5 allows sufficient accuracy (0.1 %) to be
obtained while retaining reasonable efficiency.

It is clear that equations (2.8) and (2.9) reflect different physics, since the former includes
the Zeeman effect while the other includes dephasing from inelastic scattering. Both (2.8) and
(2.9) reproduce (2.7) (when the latter is used with @ = 1/r) in the appropriate limit (large
diffusivity for (2.8), and long 7, for (2.9)). With the parameters set to values which are typical
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for a metallic glass the three calculations predict different magnetoresistance values,
particularly at larger fields (Fig. 2). However, since the generalization of the coupling
constant g(B, T) to include the effects of the magnetic field has not yet been given
satisfactorily, it is not clear that either (2.8) or (2.9) should be expected to be accurate for
larger fields [19]. This would seem to restrict quantitative analysis to fields low enough to
allow the use of the simple expression (2.8), provided the appropriate prefactor is used. A
quantitative test of the Cooper channel magnetoresistance presents problems as its
contribution is difficult to isolate from others, such as Weak Localization. Recent experiments
on Mg based glasses are consistent with these expressions for low fields [20], but the data are
unable to distinguish between the competing theoretical expressions.

For the diffusion channel (momenta of the interacting electrons oriented parallel), orbital
dephasing leads to no change in sample resistance. However it has been shown by Lee and
Ramakrishnan [21] that the splitting of the spin states by a magnetic field can lead to a positive
magnetoresistance. Their calculation leads to the expression :

(5_P> __&  [eB Fo <_'”kBT)”29 L 3 @.11)
p?/oc 2wn\ # 2z \2DeB N\ kg T '

where :
__32 3F _ 3/2)
F, = 3F<1+4 (1+F/2)
Jdﬂ V (@ =2 kgsin (6/2))
F=

JdQV(q=0)

) = [ d0 | L 0w (o)) (Vo w + Vo T -2 V)

V (q) is the Fourier transform of the screened Coulomb potential, N(w) =1/(e® — 1), and F
is the angular average of the interaction over the Fermi surface. A useful analytical form for
g, has been given by Ousset et al. [15].

2.3 SPIN FLUCTUATIONS. — In amorphous alloys such as Zr-Fe, Zr-Ni and Zr-Co, where
strongly enhanced paramagnetism may be seen for some compositions [22], the observed
magnetoresistivity corresponds qualitatively to the high spin-orbit limit. However, the
relative size of the resistivity change is much greater than that predicted by the normal QCC
theories. This discrepancy can be understood by noting that the presence of spin fluctuations

and thus a large

in these systems gives rise to a large Stoner enhancement factor A

enhancement of the spin splitting.
The exchange enhancement modifies both the WL and the EEI contributions. For the WL
term it is possible to account for the enhancement through the spin splitting parameter vy in

equation (2.1) by substituting vy = -(—17——1)2 . In figure 3 are presented WL magnetoresist-
ances for Stoner factors of 1 and 4, indicating the possible changes in magnitude and form.
For the EEI term Millis and Lee [23] have discussed such enhancement for the case of the

diffusion channel and have shown that this leads t% an enhancement of the normalized
Coulomb interaction constant, F, by a factor T (i.e. twice the Stoner factor).
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Fig. 3. — Magnetoresistance due to Weak Localization for a) 4.2K b) 8.0K c) 10K d) 15K,
computed using (2.1) with a Stoner enhancement factor of 1 (dashed lines) and 4 (solid lines). Results
are calculated assuming D = 0.35 cm%s, 7, = 0,13 ps, 7, = 1.76 x 10~ T-2sK>.

Furthermore, they also pointed out that the spin mixing effect of spin-orbit scattering will also
be reduced in such enhanced paramagnetic samples. However, their work was limited to low
temperatures (7 — 0K), and it is not yet clear how this should be extended to higher
temperatures.

It is particularly important to find an appropriate extension to higher temperatures in light
of recent magnetoresistance measurements in the systems Zr-(Fe, Co, Ni) which show
evidence for QCC effects at temperatures as high as 77 K [24]. These measurements display
features characteristic of QCC, except for a considerably slower temperature dependence of
the magnetoresistance (72 rather than the more usual T-3). Due to this weaker
temperature dependence, the magnetoresistance is dominated by the diffusion channel
interaction contribution and persists to temperatures well above those for which it disappears
in non-enhanced systems. An empirical approach which has been found to account essentially
for the observed data is to adopt the temperature dependent expression proposed by Lee and
Ramakrishnan [21] using the interaction constant suggested by Millis and Lee [23] (i.e.

F, ). This method enhances the expression proposed by Lee and Ramakrishnan,

1-1
without changing its field or temperature dependence. Obviously, as the temperature
approaches T = 0, a crossover from the Lee and Ramakrishnan form to that proposed by
Millis and Lee should be observed, however a general theory which interpolates between
these two limits has not yet been given.

The combined effect of the enhanced WL and EEI terms has been demonstrated for the
ZrFe alloys in reference [24]. Using Stoner factors in good agreement with those determined
separately from the susceptibility, the magnetoresistance data can be fitted with composition
independent values of the spin-orbit and inelastic scattering times. These results, and those of
reference [20] show that the currently available theoretical expressions for the magnetoresist-
ance due to interaction effects are good first order approximations to the measured data for
non-superconducting systems without local magnetic moments.

Thus it is unlikely that the reported differences between the measured magnetoresistance in
metallic glasses, and the predictions of the QCC theories could be due to a grossly inadequate
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treatment of interaction effects. This conclusion is reinforced by recent results [8, 20] where
the sign of the current theories for the interaction effects would have to be changed in order to
explain the observed discrepancies between measured results and theoretical predictions.
More recent work by Sahnoune and Strom-Olsen [25] has shown, however, that QCC
theories are in agreement with experiment in the extreme weak spin orbit scattering limit
(To' < 75 < 77, suggesting that a more accurate treatment of spin-orbit scattering may be
needed.

2.4 SUPERCONDUCTING FLUCTUATIONS. — Another important contribution to the mag-
netoresistance of disordered conductors arises from the suppression of superconducting
fluctuations by the magnetic field [3]. Such fluctuations have been divided into two classes.
The first is the direct contribution, reflecting a current carried by the fluctuating pairs
themselves (also called the Aslamazov-Larkin [26] term); the second is an indirect
contribution, first discussed by Maki [27] and later extended by Thompson [28], which may be
best described as an increase in current transported by the quasiparticles left over from a
decaying Cooper pair. Considerable effort, both theoretical and experimental, has been
devoted to the study of these effects in two dimensional systems [29-31] but little work has
been presented for the three dimensional case.

The effect of a magnetic field on the Aslamazov-Larkin type of fluctuations was first
discussed 20 years ago by Usadel [31], who calculated the effect of a magnetic field in the
Landau-Ginzburg limit, and found, for the case of a field perpendicular to the current :

8p (B, T) + 8paL(T) _

o2

_e (2T 1 1 - 2 2.12
_471(7ThD) ngo[(n+1)<\/s+pn+\/e+pn+p \/€+pn+p/2)] @12)

where: p = fle_DT’ e =¢y+p/2, and gy = In (T/T,).
B
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Fig. 4. — Magnetoresistance from field induced pair breaking in the Aslamazov-Larkin process,

calculated using (2.13) for various temperatures, and two different transition temperatures.
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In (2.13) 8p o (T) is the temperature dependent paraconductivity, given near T, by :

8paL(T) e? T, 12
p?  32hE \T-T,

with the zero temperature coherence length, &, given by :

hD 12
kB Tc )

£ = 0.625 (

Fritsch et al. [32] have pointed out that the sum in (2.12) converges very slowly, and they
showed that for small fields the sum may be replaced by an integral to obtain an appropriate
closed form expression. Unfortunately this leads to a result which is valid only for very small
fields. However, there is an obvious similarity between the sum in (2.12) and that defining
f3 in (2.1), and we find that an expression valid for larger fields may be obtained by again
splitting the sum into a partial sum, and approximating the remaining terms with an integral.
This procedure leads to the following expression :

8P e2 2kBT 12
<?)AL—4_h(7ThD> x

1|1 "y 2n+1 n 3 N +2
) BE Z_ngo \/1+(2n+1)x_2<\/1+nx) \/1+(2N+3)x
2 2
4 e N+1 2N 13)x
+3p2[(1—( ] +1)x> \/1+—2
+(1‘(LV‘+71M)\/1+(2—N2+5J+((N+2)x—2)\/1+(N+2)x]} (2.13)

In this formula a value of N as small as 5 gives a result which is in error by less than 1 % at a
field of 5 Tesla and temperature of 1.1 K for a sample with a T, of 1 K, whereas the expression
suggested by Fritsch et al. would give a the same error at 1.4 T and 4.2 K. Figure 4 shows the
results given by (2.13) for two different values of T.. It is clear that the effect diminishes
rapidly as higher temperatures are considered, but that it should be included when performing
measurements below 2 T.

In contrast to the rapid decrease of the Aslamazov-Larkin contribution with increasing
temperature, the Maki-Thompson contribution falls off much more slowly with temperature.
The magnetic field dependence of the Maki-Thompson fluctuation conductivity was first
discussed by Larkin [33] who derived an expression valid in the low field limit, for
temperatures not too close to T,. More recently Lopes dos Santos and Abrahams [19] have
extended Larkin’s result to larger fields for temperatures closer to T, in the two dimensional
case. For small fields their result may be easily extended to three dimensions giving :

B =T F (—1rI(m)- ¥ I"@n+1) 2.15)

m= - n=0

where :
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ramp=[-ote v (e lgh) v () - (38 ) st |

Here, g has the same meaning as in (2.8), f; is the same function introduced for weak

localization and ¥ is the digamma function. The temperature dependence of this contribution

comes from both B, and B(T). The latter falls off only as _T’L— far from
In® (T/T)

T., while the former often saturates at low temperatures. For samples with low enough

T, it is possible to observe this contribution even far above T, although inelastic scattering

will wash it out at sufficiently high temperatures.

It should be noted that the expression (2.14) does not reduce to Larkin’s expression
because of a number of typographical errors in the earlier work. The first sum in (2.15) again
may be evaluated by explicit partial summation, followed by an integral approximation to the
remaining terms. Approximately 100 terms should be retained in the partial sum in order to
attain 0.1 % accuracy. The second sum converges after the same number of terms, with no
need for a summation formula. The integral expression for the remainder of the first sum may
be evaluated in closed form, in the appropriate limit, as:

w 1
4ImN-g'-wQ1R)

RN=

where N is the number of terms retained in the partial sum. Using this approach the tabulated
values for B given by Larkin [33] may be reproduced, and the effects of inelastic scattering
may be taken into account to first oder. Recently evidence for the presence of Maki-
Thompson fluctuation effects in the magnetoresistance of Mg-Zn alloys even at T = 20 T has
been reported [20]. It is interesting to note that this magnetic field dependence is seen even
though earlier work has indicated that the Maki-Thompson fluctuations contribute nothing to
the temperature dependence of the paraconductivity near 7, [34] in metallic glasses, an
apparent paradox worthy of further investigation. The theory as reviewed here is still limited
since, for instance, it does not account for the field dependence of g(B, T). An attempt to
correct for this has been given by McLean and Tsuzuki [35], but their treatment has the wrong
asymptotic form, and the treatment of Lopes dos Santos and Abrahams [19] is preferred. A
more general theory has been given recently by Brenig ez al. [30] for two dimensional systems,
but it is not immediately clear how to extend these results to bulk systems.

2.5 MAGNETIC IMPURITIES. — Magnetic impurities contribute to the magnetoresistance in
disordered conductors in two ways. Spin-flip scattering of conduction electrons by such
impurities destroys the phase coherent back-scattering responsible for weak localization, and
so reduces the quantum correction magnetoresistance. A simple calculation for the
characteristic field B, based on Fermi’s golden rule gives the result :

f T

- = J? 2.
TeD7 ¢ goms N (Ep) Q17 S(S +1) (2.16)

B,

where (2 is the average atomic volume, ¢ the atomic concentration of magnetic impurities and
J is the exchange integral, N (Eg) the density of states at the Fermi level, and S is the spin of
the magnetic impurity.
The second contribution comes from the field and temperature dependence of the single-
site magnetic scattering. The states available to the gnpurity spins are progressively frozen out
P

with increasing field giving a magnetoresistance ( — ) as calculated by Béal-Monod and
mag
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Weiner [36]. To second order in the exchange integral, J, it is given by :

(ﬁp—) — k2 A(a) (2.17)
P mag
where : k=£3“"m'(2
PZﬁest
A 2 a/2
a_gl"'BB
- kg T
M

(S;) = gagn SBy(Sa)

With B(Sa) the Brillouin function, {2 the atomic volume of the host alloy, c the
concentration of impurities, and # the number density of the impurities. (2.17) describes a
magnetoresistance which is proportional to — B2 at low fields and saturates at high fields. It is
important to realize that both ( 2p ) and B, are proportional to c¢J% The size of the

mag

parameters in (2.16) and (2.17) are such that the (8—‘0-) cannot be neglected if
mag

p
B; is large enough to suppress the quantum interference effects. For example, 20 ppm of Mn

diluted in Mg,Zn,, produce a direct magnetoresistance approximately equal to the size of the
Cooper channel contribution at 6 T. The importance of the direct contribution of spin
scattering to the magnetoresistance has not always been fully appreciated.

It is important to note that the freezing out of the spin degree of freedom also changes
B, [5]. Equation (2.6) describes the dephasing strength of isotropic, randomly oriented
magnetic impurities in a vanishing magnetic field. With increasing fields and decreasing
temperatures, the energy cost of flipping one of these spins (as is needed for a dephasing
collision) increases ; consequently B, will decrease [37]. Using a Drude type expression for the
resistivity contribution of (2.17), one can account for the decreased effectiveness of the spin-
flip dephasing through the expression :

# 5 2
BS(B’ T) B BS?_ 4eD < _Pg >magp nT:l- (218)

To demonstrate the strong influence of magnetic impurities on the quantum corrections to the
conductivity, we have carried out magnetoresistance measurements on amorphous Mg;,Znj
doped with 160 ppm Mn or 7 600 ppm Gd. The reader is referred to an earlier publication [20]
for a detailed discussion about experimental methods and sample preparation. Figure 5
compares the results of these measurements with results obtained earlier on high purity
(<3ppmMn) Mg,Cus [20]. Clearly, the positive magnetoresistance at low fields
(< 0.5 T) arising from spin-orbit scattering is destroyed by the magnetic impurity scattering.
Also shown in the same figure is data measured by Bieri et al. [8] on MggCuy. It would
appear that this sample contained significant amounts of magnetic impurities, since the
positive low field feature is almost absent in the measurement and, in fact, the data are
consistent with an impurity level of about 20 ppm Mn, as is shown by the solid line. Such a
concentration of Mn is certainly consistent with stated purity of their starting materials and
underscores the need to use high purity materials. As a point of comparison the dashed line in
this figure shows the result expected for Mgg,Cu,, with no magnetic impurities.
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Fig. 5. — Comparison of the magnetoresistance observed in simple metal glasses with various amounts

of magnetic impurities at 4.2 K. a) Mg, Cus, with <3 ppm Mn ; b) Mg;,Cu,, with 160 ppm Mn ; c)
Mg;Zn;, with 0.76 % Gd ; d) 99.99 % pure Mgg,Cu,, according to Bieri et al. [8]. The dashed line shows
the magnetoresistance for MggCu,, calculated from (2.1) assuming parameters found for very pure
Mg;,Cus, [20], but with an appropriately scaled B,,. The solid line is a calculation which assumes
contamination with 20 ppm of Mn (J = — 0.25 eV, § = 2.15). The zero field point has been offset for
each curve for clarity.
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Fig. 6. Fig. 7.
Fig. 6. — Observed magnetoresistance for Mg;Zn;, doped with 0.76 % Gd at various temperatures

(indicated in K to the right of each curve), along with a fit to (2.17) and (2.2). The fit was performed
simultaneously for all temperatures with only 2 free parameters : the exchange constant (/ = 0.1eV)
and the spin-orbit scattering strength (B, = 0.11 T). All other parameters were taken from reference
[20]. The zero filled point for each curve has been offset for clarity.

Fig. 7. — Observed magnetoresistance for Mg;,Zn,, doped with 0.76 % Gd at 1.5 K (points), along with
a) the fit to (2.17) and (2.2) ; b) the contribution to the fit from (2.2), including a field dependent
B, using (2.18) ; c) the contribution from (2.2) ignoring spin scattering (i.e. B, = 0) ; d) the direct
magnetic scattering contribution, according to (2.17).
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We have also measured the magnetoresistance of the Gd-doped Mg-Zn sample at 9
different temperatures between 1.5 K and 20 K. Figure 6 compares the results of these
measurements with the results expected using (2.2) with B, computed from (2.18), and
including the effects described by (2.17). The measured resistivity was used in (2.2) and the
values for B, were taken from earlier measurements on high purity Mg-Cu and Mg-Zn alloys
[20]. Thus only two free parameters (temperature independent values of By, and J) are
adjusted to produce the fit shown. The fit yields values of 0.11 T for B, and 0.01 eV for
|7|. The former value is slightly larger than that seen in pure Mg;,Zn,,, reflecting the spin-
orbit contribution from the heavy Gd atoms, and the latter is consistent with results from
NMR and ESR measurements on Gd(Al; _,Cu,), alloys [38, 39]. Considering the quality of
the fit, and the reasonable values found for the parameters this represents satisfactory
agreement between experiment and theory, although some discrepancies certainly persist. In
figure 7 we decompose the fit from figure 6 for 1.5 K into its individual components from
Weak Localization and magnetic spin scattering in order to demonstrate the qualitative effect
each contribution has on the measurement. Clearly an attempt to describe these data without
the contribution of the direct magnetoresistance, (2.17), would give erroneous values for the
spin-orbit and inelastic scattering rates.

3. Conclusion.

We have discussed the various effects contributing to the low temperature magnetoresistance
of metallic glasses, and provided efficient formulae for the evaluation of the various
theoretical predictions. Using these formulae it has been shown that two proposed
explanations for the disagreement seen between theory and experiment in such systems, finite
cutoff effects or an inadequate treatment of the EEI contribution, cannot in fact explain the
observations. However, the presence of comparatively small amounts of a magnetic impurity
significantly alters the observed magnetoresistance, and for this reason any rigorous test of
the validity of the QCC theories in metallic glasses must use samples of the highest purity. In
particular the effects of the direct magnetoresistance from the spin-flip magnetic scattering
from impurities has not been included in the analysis of magnetoresistance data, but should
be ! The theory used to analyze this effect may also be used to derive an expression for
B; (the spin scattering dephasing rate) which depends on the temperature and magnetic field.
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