The magnetic phase transition in layered cesium rare earth metal dimolybdates

To cite this version:

HAL Id: jpa-00210995
https://hal.archives-ouvertes.fr/jpa-00210995
Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The magnetic phase transition in layered cesium rare earth metal dimolybdates

P. Stefányi (1), A. Feher (1), A. Orendáčová (1), E.E. Anders (2) and A.I. Zvyagin (2)

(1) Šafárik University, nám. Febr. Vít. 9, 041 54 Košice, Czechoslovakia
(2) Physical-Technical Institute of Low Temperatures, Kharkov, U.S.S.R.

(Reçu le 16 janvier 1989, accepté le 14 avril 1989)

Résumé. — Des mesures de chaleur spécifique de CsGd (MoO₄)₂, CsDy (MoO₄)₂ et CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂ montrent des anomalies aiguës à Tc = 0.448 K, Tc = 1.288 K et Tc = 1.227 K, respectivement. Les résultats sont comparés aux prédictions du modèle d'Ising à 2D et 3D.

Abstract. — Heat capacity measurements on CsGd (MoO₄)₂, CsDy (MoO₄)₂ and CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂ show that sharp anomalies occur at Tc = 0.448 K, Tc = 1.288 K and Tc = 1.227 K, respectively. The heat capacity behaviour is compared with 2D and 3D Ising model.

The chain-layered rare earth dimolybdates have the general formula AR (MoO₄)₂ (A = Cs, K, Rb...; R = Eu, Gd, Dy...) . Most of these compounds crystallise with the orthorhombic structure. According to their low temperature properties they belong to one of three categories: a) there are only a crystallographic phase transitions, e.g. CsLu (MoO₄)₂ [1]; b) there are a crystallographic phase transition and magnetic ordering, e.g. CsGd (MoO₄)₂ [2]; c) there are two phase transitions, the symmetry is lowered by a cooperative Jahn-Teller effect and at some lower temperature there is an additional magnetic ordering, e.g. CsDy (MoO₄)₂ [3]. This work contains the results of the heat capacity measurements of single crystals CsGd (MoO₄)₂, CsDy (MoO₄)₂ and CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂ and their comparison with suitable magnetic models.

All single crystal samples were prepared by the flux method and show an orthorhombic crystallographic structure (space group D₃₂) at room temperatures. Chains of the rare earth ions alternate with chains of Cs ions along b axis. Each of rare earth ions resp. Cs ions is located in the center of an octaeder formed by oxygen atoms. Unit cell parameters are a = 0.952 nm, b = 0.805 nm, c = 0.507 nm for CsGd (MoO₄)₂ and a = 0.951 nm, b = 0.797 nm, c = 0.505 nm for CsDy (MoO₄)₂ and CsDy (MoO₄)₂ with 5% of Eu. The energy levels of the ⁴S₇/₂ ground state of Gd³⁺ in CsGd (MoO₄)₂ are separated by ΔE₁ = 0.8 K, ΔE₂ = 1.33 K and ΔE₃ = 1.59 K.
respectively, the lowest energy level corresponding to $S = \pm 7/2$. For CsDy (MoO$_4$)$_2$ the energy levels of the $^6H_{15/2}$ ground state are separated by $\Delta E_1 = 32$ K but the lowering of the symmetry due to a cooperative Jahn-Teller effect occurs at 42 K and the energy levels are separated by $\Delta E_1 = 158$ K [4]. The CsDy$_{0.95}$Eu$_{0.05}$ (MoO$_4$)$_2$ differs from pure CsDy (MoO$_4$)$_2$ in the temperature of the phase transition into the low symmetry phase ($T_{RT} = 11$ K). Crystals were typically 18 x 16 x 1 mm with average weight 1.8 g. The specific heat was measured by means of the usual heat pulse method with the accuracy of 1%.

Fig.1 — Magnetic heat capacity of CsGd (MoO$_4$)$_2$ near T_c.

The specific heat C_M of magnetic origin is plotted in figure 1 were the sharp maximum correspond to the onset of the long range ordering with $T_c = (0.448 \pm 0.005)$ K. This magnetic contribution was obtained by subtracting the lattice part ($\theta_D = 174$ K) and the part caused by the crystal field splitting (Schottky anomaly) from the total measured capacity. It was compared with the theoretical prediction for a 2D Ising model using a new type of the correlated effective field approximation (full curve in Fig. 1.) [5]. In the temperature range well above the phase transition the constant of the exchange interaction $J_1/k_B = 0.56$ K was obtained. Using the expression from reference [5]

$$e^{-J_1/k_BT_c} + e^{-(J_1/k_BT_c)\alpha} = 1$$

where $\alpha = J_2/J_1$ is the ratio of interchain to intrachain exchange interactions the numerical value $\alpha = 0.03$ was determined. We suppose that the heat capacity of CsGd (MoO$_4$)$_2$ may be described by the above mentioned model.

In addition the heat capacity of CsDy (MoO$_4$)$_2$ and CsDy$_{0.95}$Eu$_{0.05}$ (MoO$_4$)$_2$ were measured from 0.7 K to 6 K. The temperatures of the phase transitions were found as $T_c = (1.288 \pm 0.005)$ K for pure CsDy (MoO$_4$)$_2$ and $T_c = (1.227 \pm 0.005)$ K for CsDy$_{0.95}$Eu$_{0.05}$ (MoO$_4$)$_2$. The temperature range where the heat capacity can be described by $AT^{-2} + BT^3$ law was found (Fig. 2). The values of the Debye temperature were determined as $\theta_D = 171$ K for CsDy (MoO$_4$)$_2$, $\theta_D = 173$ K for CsDy$_{0.95}$Eu$_{0.05}$ (MoO$_4$)$_2$ and the corresponding lattice parts were subtracted. On the basis of the resulting magnetic heat capacity the thermodynamic quantitites (entropy S and enthalpy E) were calculated below and above the critical point T_c and were compared to the theoretical predictions of the Ising models (see Tab. I).
Table I

<table>
<thead>
<tr>
<th></th>
<th>CsDy (MoO₄)₂</th>
<th>CsDy (MoO₄)₂</th>
<th>Ising</th>
<th>Ising</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sₐ - S₀) / R</td>
<td>0.412</td>
<td>0.395</td>
<td>0.306</td>
<td>0.560</td>
</tr>
<tr>
<td>(S₀ - Sₐ) / R</td>
<td>0.365</td>
<td>0.333</td>
<td>0.387</td>
<td>0.133</td>
</tr>
<tr>
<td>(Eₐ - E₀) / RTₐ</td>
<td>0.351</td>
<td>0.330</td>
<td>0.258</td>
<td>0.447</td>
</tr>
<tr>
<td>-Eₐ / RTₐ</td>
<td>0.573</td>
<td>0.530</td>
<td>0.623</td>
<td>0.218</td>
</tr>
<tr>
<td>Eₐ / RTₐ</td>
<td>0.924</td>
<td>0.860</td>
<td>0.881</td>
<td>0.665</td>
</tr>
<tr>
<td>-Eₐ / Eₐ</td>
<td>0.620</td>
<td>0.615</td>
<td>0.706</td>
<td>0.328</td>
</tr>
</tbody>
</table>

Fig. 2. The Debye temperature evaluation.

Fig. 3. Magnetic heat capacity compared with theoretical predictions for 2D and 3D Ising model.

The magnetic heat capacity results are shown in figure 3 together with the theoretical curves for 2D and 3D Ising model. The corresponding values J/k_B were calculated for CsDy (MoO₄)₂ : 0.568 K (2D Ising), 0.286 K (3D Ising) and for CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂ : 0.54 K (2D Ising), 0.272 K (3D Ising), respectively. We can conclude: a) CsDy (MoO₄)₂ and CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂ have predominantly 2D Ising character in spite of the fact that the total entropy are higher than the theoretical value for effective spin 1/2 for both samples; b) CsGd (MoO₄)₂ can be described by the 2D Ising model with nonequivalent interaction in plane unlike CsDy (MoO₄)₂ and CsDy₀.₉₅Eu₀.₀₅ (MoO₄)₂; it should be connected with the absence of the low symmetry structural phase in CsGd (MoO₄)₂.

References