
HAL Id: jpa-00210949
https://hal.science/jpa-00210949

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The arrangement of cells in 3- and 4-regular planar
networks formed by random straight lines

M. A. Fortes, P.N. Andrade

To cite this version:
M. A. Fortes, P.N. Andrade. The arrangement of cells in 3- and 4-regular planar net-
works formed by random straight lines. Journal de Physique, 1989, 50 (7), pp.717-724.
�10.1051/jphys:01989005007071700�. �jpa-00210949�

https://hal.science/jpa-00210949
https://hal.archives-ouvertes.fr


717

The arrangement of cells in 3- and 4-regular planar networks
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Lisboa, Portugal

(Reçu le 9 septembre 1988, accepté le 8 décembre 1988)

Résumé. 2014 La relation entre le nombre moyen, mi, de côtés dans des cellules adjacentes aux
cellules avec i-côtés, et i, a été étudiée dans deux types de réseaux planaires engendrés par une
distribution aléatoire (Poisson) de lignes droites. Si les lignes sont continues, le réseau est 4-
régulier. Si les lignes sont interrompues, de façon à avoir des jonctions en T, on obtient un réseau
3-régulier. Dans le premier cas, on peut définir deux types d’adjacence entre cellules, et, pour
chaque type, on trouve une variation linéaire de mi avec 1/i. Le même résultat s’applique dans le
réseau 3-régulier. Les relations linéaires (loi de Aboav) peuvent être mises sous une forme
générale, en faisant intervenir le second moment de la distribution de polygonalités des cellules et
un seul paramètre, a, comme Weaire l’a suggéré.

Abstract. 2014 The relation between mi, the average number of sides in cells adjacent to i-sided
cells, and i, was investigated in planar networks of two types, generated by random, Poisson
distributed, straight lines. When the lines are continuous, a 4-regular network results. If the lines
are interrupted to form T-junctions, a 3-regular network is obtained. In the first case, two types of
cell adjacency can be defined and for both mi varies approximately linearly with 1/i. The same
applies to the 3-regular network. The linear relations (Aboav’s law) can be put in a general form,
involving the second moment of the distribution of cell polygonalities and a single parameter, a,
as suggested by Weaire.
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Introduction.

In planar networks, formed by various cells, each with a number i of edges (sides), it is

possible to define an adjacency relation between cells, in terms of common topological
elements (edges or vertices) in the cells. In 3-regular (or trivalent) networks (Fig. la) there is
only one type of adjacency since two cells that have a common edge also have a common
vertex. In 4-regular (or tetravalent) networks we distinguish between edge-adjacency
(common edge) and vertex-adjacency (common vertex, with no common edge). In figure 1b
the cells A, B, C and D are edge-adjacent to cell 0, while cells A’, B’, C’, D’ are vertex-
adjacent. When refering to edge- and vertex-adjacent cells collectively we shall use the term
adjacent cells.
The average number, mi, of sides in cells adjacent to i-sided cells is a quantity that has

deserved considerable attention in the literature, since Aboav’s [1] observation of a nearly
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Fig. 1. - Cells adjacent to a cell 0 in a 3-regular (a) and 4-regular (b) network. In the 4-regular network
two types of adjacency can be defined.

linear variation of mi with 1 /i in the 3-regular network of grain boundaries in a plane section
of a MgO polycrystal. The linear relation found by Aboav in this case was

The linear dependence of mi on 1 /i , although not always with the same constants, was
subsequently found to hold approximately for other random 3-regular planar networks,
including sections of soap froths [2], Voronoi networks [3-5], planar sections of cork [6] and of
plasticine polycrystals [7], thin films of chalcogenide alloy glasses [8] and other natural
networks [9]. All such networks are similar in their geometrical aspect, in that the cells are
fairly regular (equi-angle) polygons ; the second moment, 92, of the distribution of cell

polygonalities is also relatively small, usually below 2, indicating a small dispersion of
polygonalities around the average value of 6. We shall refer to these networks as Voronoi-like
networks.
An argument due to Weaire [10], based on the partition of the 2 7r angle at a vertex among

the three cells at the vertex, leads to a linear relation between mi and 1 /i . His result is

The same result was obtained by Blanc and Mocellin [11], based on the analysis of the effects
on mi of random unit topological operations in a 3-regular network (triangle elimination and
cell neighbour switching). Both derivations use somewhat loose averaging procedures to
obtain mi. In fact, the linear relation is known to be not more than a good approximation for
the 3-regular planar networks so far studied, meaning that an exact analysis will certainly not
lead to a linear relation.
The purpose of this paper is two-fold. Firstly we will show that Aboav’s law still holds for 3-

regular networks of a completely different geometry from that of the Voronoi - like
networks so far analysed. Secondly, it will be shown that the linear law is also applicable to 4-
regular networks, when either type of cell adjacency is considered to obtain mi. The networks
to be analysed with this purpose are both based on a Poisson distribution of straight lines in
the plane. Before describing how these networks are generated and indicating the results
obtained for mi, we shall derive, following Weaire [10], a more correct and general form of
the linear relation between mi and 1 /i valid for both 3- and 4-regular networks.
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The général form of linear relation between mi and 1/i.

An edge that belongs to (adjacent) cells with i and k sides is termed and ik-edge. The fraction
of ik-edges in an arbitrary network is denoted fik- In 4-regular networks we shall consider also
vertex-adjacent cells. In such networks, a vertex is identified by two pairs ik and jl which are
the polygonalities of the cells on opposite sides of the vertex, i. e. , of the cells that are vertex-
adjacent at that vertex, such as cells 0 and A’ in figure Ib. The fraction of ik-pairs at the
vertices of a 4-regular network is also denoted by fik- In both cases, no distinction is made
between ik and ki pairs (fik = fki)-

In general, the average polygonality, mi, of the cells edge- or vertex-adjacent to i-sided cells
is given by

If miE and miV, respectively, are the values for edge- and vertex-adjacent cells in 4-regular
networks, and mai is the value for (all) adjacent cells we have

since the total number of cells adjacent to an i-cell is 2 i and there are i of each type (edge- and
vertex-adjacent). In all cases under consideration, the sum E f ik is proportional to

k

i fi, where fi is the fraction of i-sided cells in the network. We then have, from (3)

This equation can also be derived from the following argument. The quantity i mi is the

average total polygonality of the cells adjacent to i cells. A particular k-cell enters k times
(with a contribution k) when the total polygonalities of all cells are evaluated. Therefore the
average (im;) equals (k2).

Introducing the second moment, J.L2 = (i - [")2) of the distribution fi, equation (5)
becomes

i being the average value of i. In 4-regular networks, equation (5) holds for miE’

min and mi. The form of a linear relation between mi and 1/i that satisfies the identity (5) is

where a is a constant for a given network. In Voronoi-like networks (which have

J.Lz  2) it is found that a is close to unity.
The form (7) of the linear relation between mi and 1 li was first advanced by Weaire [10] for

3-regular networks (i = 6 ). An argument due to Lambert and Weaire [12] shows that this
relation, with a = 1, is exact in the limit 92 = 0.

If the arrangement of the cells in a network were random and not restricted by space-filling
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requirements, one would expect that the fraction f ik would be proportional to the total
number of topological elements in cells i and k,

Under these conditions, equation (3) gives mi independent of i :

The fact that mi depends on i in actual networks is of course due to space-filling requirements,
with the sum of the internal angles of the cells meeting at a vertex equal to 2 7T. Since the
average internal angle in a cell with i sides is ir (1 - 2/i ), there must be a correlation between
mi and i.

Convexity imposes additional limitations on cell adjacency. For example in convex trivalent
networks two triangular cells cannot be adjacent at an edge because such a « cluster » cannot
be surrounded by convex cells. Other clusters of cells are also forbidden on the same grounds.
The exact determination of mi from equation (3) would require equations for the

fik as a function of i and k. Such equations are not known for any random network, implying
that the mi have to be determined by inspection. This is indeed how the mi have been

determined so far.

3- and 4-regular networks of random straight lines.

The networks to be analysed are based on a Poisson distribution of straight lines in the plane.
The lines are drawn within a unit square with edges defining x and y axes. The coordinates x
and y of a point P in the square are chosen by taking two numbers in the interval 0, 1 (all
values are equiprobable). A straight line is drawn through P with a random orientation a ; « is
the angle with the x axis, and can take any value in the interval (0, 7T). A number, n, of lines
is drawn in this way.
When the lines are continuous (Fig. 2), a 4-regular network is obtained, with

1 = 4. Properties of this network were derived by Crain and Miles [13], both exactly and from
computer simulations. The number of cells produced by n lines (n large) is n2/4. The
distribution fi was determined in simulations [13] and is given in table I, second column. The
value of f 3 is known exactly, as well as the second moment 112 [13] :

Crain and Miles did not determine the fractions fik- In order to obtain the mi, two networks
with n = 30 were constructed. The edges at the sides of the square were counted as edges of
the peripheric cells. The fractions fi for one of these networks are given in table 1 and do not
differ appreciably from those of Crain and Miles, based on a much better statistics.
The 3-regular network of random straight lines is generated similarly, by drawing successive

straight lines in a unit square, but a new line is alternately interrupted between the points of
intersection with previously drawn lines, forming T-junctions (Fig. 3). The segment containing
the point P, used to generate the line, is kept in the line. Figure 3 shows a network generated
in this way, with n = 30 lines ; the order in which the lines were drawn is indicated for the first
few lines. The network has 1 = 6. Its geometry is quite different from that of the Voronoi-like
networks, in that a large number of tut internal angles appear in the cells. Since the number of
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Fig. 2. - 4-regular network generated by randomly distributed and oriented straight lines in a square.

Table 1. - Fractions, fi, of i-sided polygons in networks formed by random straight lines.
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Fig. 3. - 3-regular network generated by randomly distributed and oriented straight lines each of which
is alternatively interrupted when it meets pre-existing lines. The figures give the order in which the first 5
lines were drawn. The dots at the periphery are additional vertices introduced to obtain periodic
boundary conditions.

vertices in the network is three times the number of cells, and each vertex contributes a 7r

internal angle, it follows that the fraction of these angles is 1/2. The number of cells formed by
n straight lines (n large) is now n2/16. In fact, for the same n, the number of vertices in this
network is 1/2 of the number in a 4-regular network constructed with the same lines ; and the
number of vertices in each network is respectively F and F/2, where F is the number of cells
in each.
The fractions f i of i-sided cells in the 3-regular network of figure 3 are given in table I,

fourth column. The calculated second moment is

which is considerably larger than that for the 3-regular networks so far analysed for the
mi . Additional vertices were placed at each side of the square in correspondence to the
vertices, on the opposite side, that result from intersection with the straight lines of the
distribution. In this way the peripheric cells can be used in the determination of

fi and mi.

mi results.

Figure 4a shows a plot of imi as a function of i for the 3-regular network of figure 3. Probably
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because of the poor statistics there is some deviation from a linear relation at large i. The best
fit straight line of the form (7) is

and corresponds to

It is the straight line drawn in figure 4a.

Fig. 4. - Plot of ami as a function of i : a) for the 3-regular network of figure 3 ; b) for the 4-regular
network of figure 2, respectively for edge-adjacency (0), vertex-adjacency (D) and edge or vertex
adjacency (o). The straight lines are the best fit lines of the form of equation (7) and their equations are
given in the text (Eqs. (12) and (14) respectively).

In figure 4b are plotted the values of i mi as a function of i for one of the 4-regular networks
constructed, and considering the different types of adjacency. The best fit straight lines of the
form (7) are drawn in figure 4b and are as follows

which satisfy approximately equation (4). The corresponding values of a are

Discussion.

The applicability of equation (7) (Aboav’s law) to networks based on Poisson distributions of
straight lines, confirms that this equation is probably of general applicability to random
networks.
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The argument of Weaire leading to equation (2) can be repeated to obtain an equation for
mi in 4-regular networks. The argument goes as follows. The average internal angle in an i-
sided cell is ’TT (1 - 2/i). The average internal angle in the adjacent cells is then

(1/3 )[2 7r - ir (1 - 2/i )], since at each vertex there are 3 adjacent cells. The sum of the
internal angles in a polygon with mi sides is ar (mi - 2 ). Since the average number of sides in
the cells is 4 we may write

which leads to

not much different from the equation previously written for mi (first of Eq. (14)). Note that a
similar argument cannot be given to obtain miE or miv separately. The derivation of the linear
relation given by Blanc and Mocellin [11] for 3-regular networks cannot be applied to 4-
regular networks since unit operations in such networks cannot easily be defined.
The evidence so far accumulated suggests that Aboav’s law is indeed quite general.

However an argument that shows its general applicability to random networks is still lacking.
Such an argument is necessarily very general and approximate and could possibly allow the
generalization of Aboav’s law to aggregates of polyhedra, with an approximate linear relation
between 1/F and the average number of faces, mF, in polyhedra adjacent to F-faced
polyhedra. Such a general argument will be given elsewhere.
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