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Résumé. - Nous considérons une application entrée-sortie pour un perceptron dans laquelle les
formes sont divisées en classes. L’analyse par la mécanique statistique dans le cas d’un nombre
fini de classes donne les mêmes résultats que pour une seule classe ; nous calculons la limite de
capacité et les paramètres d’ordre pertinents en champ moyen. Nous généralisons ensuite
l’analyse à l’ensemble canonique de Derrida-Gardner dans lequel le perceptron peut être étudié
au-delà de sa limite de capacité. Nous complétons l’analyse en étudiant numériquement la règle
d’apprentissage du perceptron. Nous discutons finalement la relevance de ces résultats à

l’émergence possible d’une catégorisation spontanée.

Abstract. - An input-output map in which the patterns are divided into classes is considered for
the perceptron. The statistical mechanical analysis with a finite number of classes turns out to give
the same results as the case of only one class of patterns ; the limit of capacity and the relevant
order parameters are calculated in a mean field approach. The analysis is then extended to the
Derrida Gardner canonical ensemble in which the perceptron can be studied beyond the limit of
capacity. We complete the analysis with numerical simulations with the perceptron learning rule.
The relevance of those results to the possible emergence of spontaneous categorization is finally
discussed.
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Introduction.

Neural networks can be trained to leam certain rules : i.e. mappings that associate an output
word to any input belonging to a certain space. In some cases they generalize : starting from a
subset of instances of the mapping the machine reaches a configuration in which the rule is
correctly realized for all possible inputs. The network is then said to implement the rule.

In the analysis of this capability the concept of the « entropy » of a rule has proved useful
[1]. By this one means the measure of the mutiplicity of network configurations that
implement the given rule : the larger the entropy, the smaller the number of instances needed

(*) Signatures in alphabetic order.
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during the training. In [1] a thermodynamical analysis of a boolean network through an
exhaustive enumeration of all possible configurations of the network has led to a direct
calculation of the entropy of all rules.
The same problem, but for a different architecture can be approached analytically using the

techniques introduced by E. Gardner [2]. This author has shown how to use the replica
method to calculate the volume of network configurations capable of storing a certain number
of patterns. The method was originally applied to fully connected networks of the Hopfield
type ; a straightforward extension of this technique allows the calculation of the entropy for a
two layer feedforward architecture, the perceptron [3] (attempts to apply the same method to
multilayer machines have so far been unsuccessful).
As shown in the classical work by Minsky and Pappert [4], there are rules that the

perceptron cannot leam ; when a calculation à la Gardner is possible, this limitation reflects
itself in a network configurations volume which goes to zero when one trains the machine with
a too large number of examples ; for instance, for the random mapping, the perceptron will be
able to leam up to 2 N examples (N is the number of input neurons). What happens if one
tries to train the system with a larger number of examples ?

In this paper we address this question ; in particular we analyze the following type of rules :
a) the input and the output patterns are assumed to be grouped in a finite (when
N --&#x3E; oo) number of classes ; b) if two inputs belong to the same class, the corresponding
outputs also belong to the same class. If inside the corresponding classes the patterns to be
mapped are chosen at random, then again the perceptron will be able to learn only a finite
number of examples, and the rule cannot be implemented. In these conditions one may ask if
the machine, although incapable to realize the correct correspondence between individuals,
succeeds in associating correctly the classes.

In the first section we define the rule to be analyzed and give analytical results about the
limit of capacity of the perceptron for this rule and the minimum error produced by the
machine beyond this limit ; in the second section we study through numerical simulations,
using the perceptron learning algorithm (the so-called 8-rule) [3, 4, 5], the properties of the
perceptron beyond its limit of capacity, which are different from the corresponding
« thermodynamical » properties. In this context we discuss the relevance of the initial
conditions for the asymptotic behaviour of the machine.
We end the paper with some concluding remarks on the relevance of these calculations to

understand categorization in neural network.

1. Replica analysis of the perceptron.

The architecture we consider is the perceptron [3] ; a neural network consisting of just one
input and one output layer of binary units, directly communicating through a matrix of real
valued connections.
Our notation will be the following : U j = :t: 1 j = 1, ..., N, are the values taken by the N

input units, si 1, i =1, ..., N’, are the values taken by the N’ output units,
lij denotes the strength of the connection between unit j in input and unit i in output.
The relation between the values on the output units and those on the input units is the usual

step function

in which zero threshold is assumed for all output units.
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Our rule is defined as follows : we consider R input and output patterns respectively
denoted by {u r } and { gr} (« prototypes ») which we use for the definition of R

corresponding classes. Each of the ur and 9!’ are randomly chosen as ± 1 with probability 1/2
independently from each other. The rule is the mapping :

where {ur V} and ( );’ ") are the set of values which détermine respectively the input and the
output pattern v, v = 1, ..., Q which belongs to the class ¡.L. P = QR is the total number of

patterns ; we denote with a the ratio P.N
The values ur V and §iuv are independently chosen with the following probability law :

In this way min and mout, « magnetizations », represent the average overlap between the
individuals of a class and the corresponding prototypes.
We say that our rule is implementable provided a set of (Jq) exists such that

1.1 THE MICROCANONICAL APPROACH. - As we stressed in the introduction we are

interested in the possibility of giving a quantitative estimate of a suitably defined
« complexity » with respect to a given architecture without explicit référence to a particular
learning algorithm. This can be achieved in the way recently pioneered by E. Gardner [2] ;
the quantity of interest is identified as the entropy density S [1] defined by

where V ( {rl’}, {urI’} ) is the normalized volume in the space of all possible {Jij} occupied
by the set of those satisfying (1.4). Explicitly :

where the measure dg {Iij} is :

The calculation of V has several analogies with the microcanonical ensemble approach to the
statistical mechanics of systems with quenched disorder. With reference to the usual example
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of such systems, the spin glasses, we note that the role of quenched variables is played here by
the « spin » variables (ur v and r) while the {Iij } are annealed.

As usual one assumes that extensive thermodynamical quantities are independent of the
particular sample of quenched variables. So S is a function of min, mout, a and coincides with
its mean value over the u and the e

Provided the number of classes R remains finite as N goes to infinity, the result for S can be
extracted from a mean field theory in the replica approach :

Following the methods used in [2] the result is obtained by a saddle point with respect to the
variables qab and Mua (which play the role of order parameter), for which a replica symmetric
ansatz is chosen (qab = q ; Mau = M #£) [7] :

The values M IL and q are determined by the saddle point equations :

in which

The equations show that M, - M is independent from u. The « physical » meaning of the
order parameters q and M is clear from the following formulas :
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So q measures the average overlap between pairs of solutions while M is a kind of
« magnetization » for the {Jij}. From this interpretation it is clear that the minimum value for
V ( {rV} { ur V} ) is obtained when q - 1 and this determines the critical value a c for a ; so

In this limit the saddle point equations take the form :

We notice that in thèse équations, as well as in the expression for the entropy, there is not
explicit dependence on min, as long as min * 0 ; the dependence on min is only implicit through
the factor (aM), so the saddle point équations can be numerically solved with respect to the
variables (aM) and ac as functions of mout. When mout = Min équations (1.12) become
identical to those obtained by E. Gardner in [2]. The result is shown in the figures 1 and 2.
A simple modification of the calculation for S takes into account the case in which the

magnetizations for the input and the output patterns (m n, me ), as well as the number of
patterns (P ’ = a IL N) are différent for each class. In this case :

The corresponding équations for the limit of capacity are

Equation (1.14) can be written as 1 = Y at Ait with allAit &#x3E; 0. From figure 1, which can be
*

viewed as the plot of 1/ A IL versus mtut, it can be seen that A IL is a decreasing function of



126

mô t. It follows that if one wanted to maximize the total number of learned patterns one would
have to put them in those classes which share the same highest me regardless of the way they
are distributed among them.
We now come back to the simple case in which the magnetizations are the same for all

classes.
When min = 0, then ocp = 2 for all values of mout. From figures 1 and 2 we see that for

min  0 a c is a monotonically increasing function of mout ranging from a c = 2 to

a c = + oo, and similarly for M which ranges from 0 to oo.
So when mout :0 1 the limit of capacity is finite and we have to say that the rule is not

implementable in the sense defined by equation (1.4). It is only for mout = 1 (and
min :0 0) that direct inspection shows that q - 0 for any a while at the same time

M -+ 00.

The fact that q does not grow to 1 proves that there are always a great number of different
{Jij} that contribute.

Fig. 1. - Maximum capacity versus the output patterns magnetization.

Fig. 2. - (aM) versus the output patterns magnetization.
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The fact that M - oo shows that generalization is occurring. Given a pattern a ’ " which the
machine has not been exposed to, we consider the quantity

having set ufv = uf efv. Equations (1.3a, b), when used to derive the probability
distribution of efv imply that the variables (Jj uf) and efv are statistically independent, and
P (efV = :t 1) = (1 ± min)/2. Therefore xi is a sum of a large number of uncorrelated terms
and the central limit theorem can be used to evaluate the probability that xi  0, that is the
probability of an incorrect classification of the pattern o-m’ at point i :

As M --&#x3E; ooH(aM) --&#x3E; 0 and generalization appears.

1.2 THE CANONICAL APPROACH. - In the calculation for S we have only included
configurations {Jij} for which zero error is produced ; it is interesting to investigate the
optimal property of the machine beyond the limit of capacity. This means finding the
minimum error given by the perceptron for a a &#x3E; a c and the relevant properties of the
configurations producing this error.

This can be achieved if we move from the microcanonical calculations for S to a canonical
ensemble approach in which we consider the error as the energy function of our system [13].
So we can introduce a partition function Z

and a density of free energy

for which it is reasonable to assume the self-averaging property. We can calculate the
minimum error Eo (normalized to one) as the zero temperature limit of the intemal energy
density U divided by a : ,

Using the relation

we see that the same tools suitable for the calculation of S can be employed here. The result
for f is :
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where x = lim 2 /3 (1 - q ) and M are given by the saddle point equations :

From the equations for f valid for all f3 it can be seen that in order to have

Eo &#x3E; 0 the following relation must be satisfied :

this means that for all a &#x3E; a C we have q = 1 and zero volume for the relevant configurations
{ Ji j } .

It is possible to calculate expHcitly the minimum error Eo in the limit a - ôo , in which
equations (1.19) show that x -. 0, au - ao in such a way that

This corresponds to configurations {Jij} for which

for all {ur JI} belonging to the class 1£ ; i.e. the minimum error is achieved when the machine
associate to each pattern the prototype of the corresponding class.

2. Numerical simulations.

We performed numerical simulations to investigate the behaviour of the perceptron beyond
its limit of capacity. We used the 8-rule leaming algorithm [4], [5] for which a convergence
theorem exists so that one knows that the machine will find the solution if at least one exists.

In this section we will analyze the following questions :
1) what are the generalization properties of the perceptron for a rule (1.2) when

mout = 1 ?

2) what are the performance of the machine for the same rule with mout  1 ?

In particular : will the machine succesfully extract the regularities of the rule i. e . associate

correctly the classes, even when it cannot leam the exact input-output correspondence ?
The following version of the 8-rule was used : after the presentation of each pair of input

and output patterns, the J’s were updated according to

where q is a parameter that measures the relative size of the updating term with respect to the
actual J value.
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The initial configuration (Jà) was chosen at random. The formula (2.1) shows that the
output sites are independent from each other, a perceptron with N’ output units is equivalent
to N’ perceptrons with one output unit each, in which the same patterns are presented in
input. We restricted ourselves to the case N’ = 1, so that lij becomes Jj, Si becomes s and so
on. It is easy from this case to recover the general one. 

z

We call a time step a complete scanning of the P examples in the training set. After each
time step, the following quantities were calculated :

and

E represents the average error made over the whole set of training patterns ; rnsr, is the

average overlap between the output obtained for a given input pattern and the prototype of
the corresponding output class.
We also looked at quantities which caracterize the configurations of the J’s produced by the

algorithm : N

where Jj and Jj are two configurations produced for the same set of training patterns but
different initial conditions, 

/ B

It must be noted that q and M produced by the algorithm (2.1) are in general not the same as
those introduced in section 1, since the 8-rule does not mimic the thermodynamical
behaviour, as we will see in the following.
We also measured the correlation coefficient between the configuration {Ji} obtained and

the input patterns {O’ r JI} .
The learning procedure (2.1) was iterated until either E = 0 was obtained (in the case

mout = 1) or a stationary regime was reached in which for all relevant quantities we could
detect only fluctuations around a constant average.

After the training a test was performed on a new set of P’ pattems ( aj’ " ) for the same
rule.
We measured the magnetization msest

The results for mout = 1 are the following : although small variations of q are irrelevant, we

can distinguish two different regimes according to the order of magnitude of 1] = lqmùl .
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When 7} - 1 the updating terms in the J’s, when different from zero, are much bigger than
the initial term J9 - the rule is leamed after few patterns are presented to the machine, with a
very small probability of error. The resulting configuration for the J’s is

where {ur l} denotes the first pattern belonging to the class IL for which the machine gives the
wrong answer SJLl = - JL.

It is interesting to notice that the dominant term in (2.6) has a form similar to the one used
by Hopfield [13].
From (2.6) we see that

this shows that M- JN and so Tam) - e - const. N .

When q - 17N we can distinguish two different situations according to the relative sizes ofÙk
P and N. When P  N we observe what was called « memorization » behaviour in [1], that is
a quick learning of the training patterns, but a high probability of errors for the test set. On
the other hand, for P - N the generalization regime sets in. The probability of error for a test
set of P new patterns is small. In fact we observe that for a sufficiently small q, M increases

slowly with P in such a way that H(aM), equation (1.17), is of order j7. Therefore forP
P --&#x3E; oo the behaviour of the perceptron with respect to the test set and the training set is
qualitatively similar.
We now turn to the case mout  1. The main results are : 1) During training the

magnetization msr stabilizes itself at the value mout, apart from small fluctuations, for all values
of a. The error shows a dependence upon a ; it can be written as :

where

is the corrélation between the fs and the s’s ; this means that in the case msr = mout, the error
is

(the angular brackets in (2.7) and (2.8) stand for a average over the indices &#x3E; and v). r
becomes negligible for values of a sufficiently greater than ac (see Fig. 4). For the test
patterns, the magnetization m:est obtained is less then mout, the difference being higher, the
higher is r. r decreases with a (see Fig. 3), and becomes eventually zero for a &#x3E; 1 within
statistical errors. This means that the correlation between the Ss and the s’s and, accordingly,

I-m2
the one between the Vs and the us, , vanish. For r = 0 the error is E = 2 out. . It is

interesting to notice that the minimum error predicted by the thermodynamical analysis in
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Fig. 3. - Error produced by the perceptron during training versus learning time for various dimensions
of the training patterns set. N = 100, N’ = 1, min = 0.02, mout = 0.6.

Fig. 4. - Average overlap between the pattem produced by the perceptron and the corresponding
prototype versus leaming time for various dimensions of the training patterns set. N = 100,
N’ = 1, min=0.02, mout = 0.6.

1 - m.ut
Sect.1 in the limit a 00 is I-m out, which is definitely smaller than the one obtained. For a2 

sufficiently small q, and assuming that the correlation between the J’s and the ds are
negligible an argument can be given that accounts for the fact that the rule drives the system
to a stationary regime for which m:est = mout.
At each leaming step the variation of Jj is
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where

we can average the quantity 8Jj over j

using the fact that the variable ee’ and s""v are independent, due to the independence of

Jj and u rv we can write the probability distribution of ô7 as follows

so the first two moments of 9 are

and

The (2.13a) can be viewed as the equation of motion for M ; since H is a monotonically
decreasing function of its argument, the system will evolve to a stationary state for which

this implies m:est = mout.
Obviously the mean error during training is given by the probability P (sll-V = - II-V) which

is

that in the stationary regime gives :

consistently with numerical results.

Conclusions.

The problem of storing categories in Hopfield-like neural networks deserved the attention of
several authors [8, 9, 10, 11, 12] ; they searched for modifications of the Hebb rule in such a
way as to allow the memorization of hierarchically organized patterns. In thèse works (with
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the possible exception of [11]) categorization does not emerge spontaneously, but comes out
as something put by hand into the model.
Here we have analysed a perceptron « under stress » when it is trying to leam too many

patterns.
Analytical calculations show that in such a situation there is an optimal strategy : to group

the patterns in a finite number of classes each of which is characterized by a mout that increases
with the number of individuals inside. One could say then that the perceptron « forgets the
détails » and replaces the pattern by an émergent prototype.
Numerical calculations show that the &#x26;-rule follows a slightly different strategy : the

prototype does not emerge, the category is correctly recognised but details distinguishing the
individuals are confused rather than neglected. As a consequence the error as defined in
equation (2.2) is larger than the optimal one. We have checked that « back propagation »
(minimizing the error), as it should improves on this aspect, but we refrain from drawing
conclusions about this fact before an analysis of the local minima in the error surface.
A description of a network closely similar to the one analysed in this paper is discussed in

[6]. In this example the ratio between the number of patterns and the number of neurons is
such that this perceptron is also working above the limit of capacity and therefore our analysis
in section 1 applies to it. The learning rule however is different from the 8-rule because the
trace of a pattern in the Iij matrix is assumed to decay with time. The authors then show that
the prototype is learnt from the exemplars. This is to be compared with the different
behaviour we found in section 2.

Finally we would like to point out two aspects that deserve further consideration. The
possibility of replica symmetry breaking in subsections 1b and its relation with the existence of
local minima in the error surface.
The second point which seems much more difficult is to generalize the results of this paper

to an infinité number of classes or to an ultrametric tree of patterns with more layers of
branchings.

It is a pleasure to thank M. Mezard for several helpful conservations. One of us (MAV)
acknowledges a fellowship by the John Simon Guggenheim Memorial Fundation.
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