
HAL Id: jpa-00210900
https://hal.science/jpa-00210900

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical chains for molecular tops. II. Applications in
molecular spectroscopy

F. Michelot

To cite this version:
F. Michelot. Dynamical chains for molecular tops. II. Applications in molecular spectroscopy. Journal
de Physique, 1989, 50 (1), pp.63-75. �10.1051/jphys:0198900500106300�. �jpa-00210900�

https://hal.science/jpa-00210900
https://hal.archives-ouvertes.fr


63

Dynamical chains for molecular tops.
II. Applications in molecular spectroscopy

F. Michelot

Laboratoire de Spectronomie Moléculaire et Instrumentation Laser, Unité de Recherche associée
au C.N.R.S., 6 bd Gabriel, 21100 Dijon, France

(Reçu le 22 février 1988, révisé le 9 juin, accepté le 12 septembre 1988)

Résumé. 2014 On montre comment la formulation algébrique de la dynamique rotationnelle, établie
en I, peut être utilisée en spectroscopie moléculaire. On considère plus particulièrement les
opérateurs scalaires dans G, où G est isomorphe au groupe ponctuel moléculaire, et qui sont
associés aux Hamiltoniens effectifs purement rotationnels. Une représentation, en fonction de
coordonnées, de l’algèbre dynamique est donnée, ce qui permet de comparer notre approche avec
des études antérieures.

Abstract. 2014 It is shown how the algebraic formulation of rotational dynamics, given in part I, may
be used in molecular spectroscopy. Special emphasis is placed on scalar operators in

G, where G is isomorphic to the molecular point group, and which are associated with pure
rotational effective Hamiltonians. A coordinate representation of the dynamical algebra is given
which allows us to compare our approach with previous studies.
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1. Introduction.

In a previous paper [1] (hereafter referred to as I) we proposed an algebraic treatment of
molecular rotational dynamics from the SU(4) compact dynamic algebra. This algebra and the
appropriate irreducible representation (IR) FD were found from the known SO(4) degeneracy
algebra and standard branching rules. Next we built all the operators having non-zero matrix
elements within rD, which may thus describe any rotational operator involved in a molecular
Hamiltonian. These operators, which are all realized in terms of boson operators are

denoted :

where (non) and (j1’ j2) are the SU(4) and SO(4) labels respectively ; r is a multiplicity
index. Q is also the degree with regard to the SU(4) generators.
We will show here how these results obtained through purely algebraic methods can be

used in molecular spectroscopy. At first, if the model is adequate, the usual zero-order
spectrum must be reproduced when only the first invariants of each element in the dynamical
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chain are retained [2, 3]. This is shown to be the case for each type of molecular tops. Also the
special case of scalar operators in G, where G is isomorphic to the molecular point group, and
which are associated with pure rotational effective Hamiltonians is considered. But as we use

a compact dynamical algebra, and thus represent systems will a finite number of bound states,
we cannot entirely reproduce the ideal rigid tops : these are known to have a representation
space of infinite dimension and their energy increases indefinitely with increasing excitation.
A coordinate representation of the SU(4) algebra will serve to illustrate the difference
between the ideal system and the molecular model we built and to correlate our approach
with previous studies.
More generally, it is obvious that the ideal systems (harmonic oscillators, rigid tops)

introduced as zero order approximation, which give an infinite number of states whose energy
tends to infinity are no longer valid beyond the dissociation limit. The problem is to find a
model which allows us to go in a reasonable way, as close as possible to the dissociation limit.
For instance, for the vibrational problem, the local mode theory [4] replaces the harmonic
oscillators by Morse oscillators, for which a rigorous treatment through a compact dynamical
algebra [3, 5, 6] is possible. In this respect we believe our approach to be more « physical »
and that the introduction of a model whose highest energy is finite is more appropriate for
studies of molecules near the dissociation limit.

Throughout equations of (I) will be denoted (I, x).

2. Spherical tops.

2.1 ZERO ORDER ROTATIONAL HAMILTONIAN. - In this class, we find molecules with two
or more symmetry axes of order greater than two. In a given vibrational state, the zero order
rotational Hamiltonian is that of a rigid spherical top and may be written in our formalism
with the concept of dynamical symmetry [2]. Within this approximation the dynamical algebra
is that used so far :

The SU(4) invariants being constant within a given IR, the Hamiltonian may be written as :

where e2 (SO (4» is the second order Casimir operator (Eq. (I.31)), or in terms of elementary
factors (Eq. (1.32)) :

In equations (2, 3) 1 is the identity operator and A, B, A’, B’ are constants. The

corresponding eigenvalues within the symmetry adapted bases of (I) are respectively given
by :

Identification with the usual formulas give :
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where B, = h2 /2 hcI,, is the rotational constant [7] ; likewise

Although the two forms are equivalent, the second has the advantage to put into evidence
the correlation which exists between the magnitude of the rotational Be value and the number
of top levels which are observed in actual systems.

In order to make the comparison between our algebraic approach and the conventional
treatment of rotational dynamics easier, we give in section 4 the realization of the SU(4)
algebra in the usual coordinate representation involving the Euler angles. But, without this,
we may already find a physical significance to the ladder generators M(lol)(’, 1) (Eq. (I.23g-k)) .

. The dynamical algebra we use and the IR chosen, span the N /2 first levels of a spherical top,
where N may be given any even value ; the ladder generators allow to go through the entire
spectrum but also verify :

since the spectrum is finite. In fact, an ideal top has an infinite set of levels and one may look
for a non-compact algebra [8], which contains SO(4) as a subalgebra, to account for this
infinite set of levels. Another way is to let N go to very large values ; we then find that within
this limit :

where the double tensors D [9, 10] are proportional to the direction cosines which relate MFF
to SFF, and may also be seen as « ladder » operators for the top. It is also verified that the
operators (1/N) M(101)(1, 1) (N large) and »(1,1) satisfy the same commutation relations with
angular momentum operators (Eq. (1.25d-e)) ; within this same limit, we find that (Eq.
(I.25f)) :

as is usual for direction cosines. Moreover, it appears that a consistent scheme is obtained if
one chooses all phase factors ei8N,J, introduced in I, equal to unity.

2.2 INTRODUCTION OF PARITY. - As is usual the dynamical algebra considered so far does
not include the discrete operation of parity P associated with space inversion [2]. Within our
interpretation the space fixed frame and molecular frame are not independent ; the Euler
angles are defined for two frames with identical orientation. So we have in fact only one such
operation to consider and when this is done the algebra usually splits into two parts
corresponding to the positive and negative eigenvalues of this order two operation ; we have
the so-called extension by parity of the dynamical algebra [2, 11, 12].
For our problem, the angular momentum operators L and f verify :
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i.e., they are even with regard to P. But with the ladder generators M(101)(1,1) are now
associated two inequivalent tensors, which we denote temporarily by M+ and M_ , which are
respectively even and odd with regard to P. Likewise two inequivalent sets are associated with
the kets 1 tP &#x3E; previously defined :

From the point of view of groups, the introduction of parity lead us, using the local
isomorphism of SU(2) x SU(2) with SO(3) x SO(3), to the Hamiltonian (geometrical)
invariance group 0(3) x 0(3). Likewise using the isomorphism SU(4) = SO(6), we get the
group 0(6) ; the IR of 0(6) appropriate to the description of the top levels is then the self-
associate [13, 14] representation [N/2 N/2 N/2] which reduces in 0(3) x 0(3) :

Altematively, we have

which shows that we have the appropriate symmetries and degeneracy for the levels and
allows us to readily extend all the previous results to the chain :

where 0(6) is a dynamical group for the spherical top. Usually, parity labels for spherical tops
are denoted by u and g [15, 16, 17] ; also to simplify the notation, we shall keep the SU(4)
labels for the kets, that is we set :

Likewise for tensors acting within these states one may use the notation :

With these conventions, all the necessary matrix elements are obtained from those given in
(I) by adding parity indices following standard rules :

Even operators may appear in the expansion of effective rovibrational, hyperfine and
Zeeman Hamiltonians as well as in those of effective transition operators (polarizability
tensor, ...) ; odd operators arise only if Stark Hamiltonians are considered and in effective
transition operators (dipole moment, hyperpolarizability, tensor, etc.) (see § 2.3).

2.3 INTEGRITY BASIS FOR SUBGROUP SCALARS. SYMMETRY ADAPTED KETS. - Obviously, in
most practical applications one must go beyond the zero order approximation of section 2.1
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and account must be taken of centrifugal distortion, vibration-rotation, spin-rotation...
interactions. The generalization of the present approach will be described elsewhere ; for the
time being, it is sufficient to note that it implies that the 0(3) x 0(3) symmetry is broken and
that non-Casimir rotational operators are to be dealt with.
The invariance group G for a semi-rigid polyatomic molecule in a non degenerate electronic

state is usually isomorphic to the molecular point group. For the chain :

there is one missing label, so we may find at most two functionally independent subgroup
scalars in the MO (3) enveloping algebra to solve the missing label problem. These have been
computed for any group G in [18]. For most common spherical tops where G is a cubic group,
the integrity basis is given in our notation by :

and

The normal cubic basis [17] is nothing but that particular basis which diagonalizes the
rotational operator R(404) (0, ;11.

Covariant cubic states are obtained, in our formalism, from those determined in (I) by the
same transformation :

where p is a cubic index p = (n, C, cr ).
Likewise any symmetry adapted tensor is given by :

and its matrix elements computed with the equations gathered in the appendix of (I).
Rotational operators used so far in rovibrational Hamiltonian [19, 20] are built with the

coupling scheme introduced by Moret-Bailly [19] :

The connection with our formalism can be seen with the following relations (§ 3.5, Eq.
(1.46)) :

That is R2(0, 0) is proportional to the MO (3 ) Casimir operator and RK(O, K) is the « streched »
tensor product of the MO (3 ) fundamental tensor f (0, 1) :

The operators (19) are thus all functionally independent rotational tensors in the

enveloping algebra of MO (3) [2], which are LO (3) scalars.
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Our method, besides that it clearly establishes the connection between the physical
approach used so far [19, 20] and the theory of elementary multiplets and integrity basis,
extend these results to all rotational tensors (i. e. which are not LO (3 ) scalars) which are
involved in more general molecular Hamiltonians [16, 21, 22] and in transition operators [23,
24].

3. Symmetric and asymmetric tops.

We shall only briefly outline how these tops can be treated within our formalism, since the
same procedure as that used for spherical tops can be applied, although this has not been
greatly used so far.

3.1 SYMMETRIC TOPS. - These tops are encountered in molecules which possess one

symmetry axis of order greater or equal to three. Hence from the point of view of dynamical
algebra, we have the chain :

where the SO(2) generator is given by equation (1.23d). All the results are readily obtained
from previous computations since all the tensors and kets are already symmetrized in

SO(2) C SO(2).
The zero order rotational Hamiltonian may then be written :

or

where C2(SO(2)) is the SO(2) Casimir operator related to Rzo2 ( 8’ ô by :

The eigenvalues within the symmetry adapted bases of (I) are :

which can readily be identified with the usual rotational energies [7] :

In actual molecules from the point of view of groups, we have the chain :

where G is isomorphic to the molecular point group. The missing label problem for the
reduction MO (3) t G could be solved, as for spherical tops, by the diagonalization of an
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appropriate subgroup scalar. The integrity basis for subgroups scalars for any subgroup
G is given in [18] ; for instance for G = C3, we have with our notation :

from which a generating function for subgroup scalars may be written down [2]. When the
transformation to a basis symmetry adapted to G is known, i.e. when the appropriate
subgroup scalar has been diagonalized, symmetry adapted coupling symbols can be computed
and the matrix elements of any tensor (Eq. (14)) in the enveloping algebra are obtained with
the equations given in the appendix of (1).

3.2 ASYMMETRIC TOPS. - In this case, symmetry axes are of order two at most and the

SU(2) symmetry is broken to the discrete subgroup D2, hence the chain :

Within the same order of approximation, the Hamiltonian for the rigid asymmetric top is
written :

or

with

For a given asymmetric top, the correlation between the constants appearing in equation
(30a-b) with the usual rotational Ae, Be, Ce constants [7] is easily obtained with equations
(1.31) and (24, 31) ; depending on the choice of the inertia axis which is identified with the z
axis of MFF one goes from a Ir (prolate top) to a 11F (oblate top) convention.
For a molecular top, we find the group chain : 

where G is usually one of the groups D2 h, D2, C 2 v , C 2 h, S2 or C2.
To solve the missing label problem for the reduction MO (3) :D G one may proceed, as

previously, with the determination of the integrity basis for subgroup scalars and the

diagonalization of the scalar operator appropriate to the top under study.
For instance, for G = D2, the integrity basis is given by :
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All subgroup scalars may be extracted from a term (Eq. (1.17)) :

Time reversal invariance imposes n = 2 b + f even ; taking into account hermicity
conditions we obtain a general totally symmetric D2 operator :

Using previous results (Eqs. (1.23), (I.31)), the preceding generating function may be
converted to the standard notation [25] :

where we set {Rl R2} = RI R2 + R2 Pi
Usually Wang basis functions [7] which are symmetry adapted to D2 are introduced ; in our

notation, these are given by :

and the subgroup scalar which is diagonalized is the Hamiltonian operator Holo (Eqs. (36, 33))
although another operator has been proposed [18].
Also the present approach could be generalized to introduce non polynomial expansion of

Hamiltonian operators.

4. Corrélation with previous treatments of rotational dynamics.

One of the advantages of the algebraic formulation is that it allows a group theoretical
treatment and we are free of any explicit coordinate representation. Once the appropriate
dynamical algebra is found and realized in terms of boson operators, all the results are

obtained with standard techniques. More precisely, a model is built from what is actually
observed ; the physical significance of this algebraic model may be specified or not.

Incidentally one may note that several « physical interpretations » may be inferred from a
given set of observations.

In order to correlate our approach with conventional treatments of rotational dynamics, we
give a coordinate representation of the SU(4) algebra. This will also serve to illustrate the
difference between the ideal rigid top usually considered and the molecular model we build.

4.1 COORDINATE REPRESENTATION OF THE SU(4) ALGEBRA. - The appropriate realization
of the SU(4) algebra is easily obtained if one starts from the parametrization of the four
dimensional sphere in terms of Euler’s angles given by Judd [9] :
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The boson operators ai’ , ai are thus realized as differential operators in a four dimensional
harmonic oscillator space [26, 27]. That is, the set of operator equations :

in the Hilbert space spanned by the eigenkets {I [NO] lM, IK)} is replaced by the set of
partial differential equations :

Straightforward computations lead to :

The corresponding expressions for the annihilation operators can be obtained with the
substitutions :

From these, the expressions for the SU(4) generators (Eq. (I.23)), and of any operator (Eq.
(1.13), Tab. 1.2), can be determined. In particular, we have for the operators in equation
(40) :

These equations show first that, as expected, the well-known expressions [9, 28] for the
SO(4) generators are recovered ; secondly equations (40) are separable and have solutions of
the form :
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where AN,] is a normalization factor and where the angular functions are the usual symmetric
top eigenfunctions [9, 10, 28] :

The radial functions FN,J(r) are then the solutions of (Eqs. (40), (43)) :

which are given by :

where L is a Laguerre polynomial [27, 29].

4.2 CORRELATION WITH PREVIOUS TREATMENTS OF TOPS. - The preceding results imply
that any operator involving only powers of the SO(4) generators (Eqs. (I.23a-f)) can be
expressed in terms of the usual rotational operators referred to SFF or MFF. To find the
physical meaning of the other operators we built, one must remember that the algebraic
model introduced is that of a system with a finite (but arbitrary) number of bound states ; for
a given N, the maximum J value is N/2. The equivalence of these operators with known
quantities will thus be obtained in the limit N large corresponding to the ideal top. To check
this, the easiest way is through the computation of matrix elements. We shall only consider
two examples, the first being the important case of the ladder generators (Eqs. (I.23g-k)).
Equation (I.A.10) with f2 = 1, a = c = 1 (or Eq. (I.44)) gives :

So that in the limit N large we find [9, 22] :

where the double tensors D(l, 1) are, with our phase conventions, defined by [10] :

The correlation with other double-tensors DU,j) could be extended as well. The other example
we shall consider is that of the J raising and lowering operators introduced by Shaffer et al.
[30] :
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From the rotational operators we defined in (I) we may build two operators R± (N, J ) such
that :

These are given by :

where

The tensor operators appearing in (52) are defined by equations (1.10), (1.13), (1.16) and in
table 1.2 ; R± have been written so as put into evidence the correlation with the corresponding
operators in the expressions for fl, of Shaeffer et al. (Eqs. (5a-b) of [30]) ; in the limit N
large :

so that :

In fact we may note that equation (54c) holds strictly for any N value since it involves only
SO(4) generators (Eq. (43)) ; also the exact values for the matrix elements of R- (Eq.. (52)),
computed with the expressions given in the appendix of (I), may be written :

with E+ = 1, e- = 0 and where the coefficients X, (Eq. (50)) are the matrix elements of
n+ in the standard symmetric top basis (Eqs. (13a-b) of Ref. [30]).
The correlation with previous group theoretical treatments [8, 12, 31, 32] of tops can also be

made at least partially, since in these papers only the generators and Casimir operators are
considered. It is also clear (Eq. (43)) that if one restricts the analysis to the degeneracy
algebra, there is, up to normalization factors, a one to one correspondence between the
various realizations of generators. For instance, with [8, 31, 32], we have :
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Also in [31, 32], the Wigner functions are realized as boson polynomials. Differences
appear when one considers the ladder generators which are included to find a dynamical
algebra. In [8], where SU(2, 2) is proposed, these are time dependent and of half-integer rank
in SU(2) Q SU(2) ; hence the representation space is spanned by all Wigner functions
mm’ with integer and half-integer j values. Problems arise if one wants to keep only physical
states associated with integer j values.

In [12], the representation space chosen is really appropriate to the symmetric top only,
since the K degeneracy is lifted in zero order. Between the generators of the contracted
algebra of [12] and our generators, in the limit N large, the following correspondence can be
established (Eq. (49)) :

where a and b are constants. Thus the algebra includes only nine out of the fifteen rigid top
operators. The six remaining operators, denoted A. J, B. J, C J and C = A A B in [12],
appear then as members of the E 2(3) enveloping algebra.

5. Conclusion and perspectives.

The procedure we developed to treat the rotational dynamics of molecules will be, together
with our previous results [6], a starting point for the global treatment of rovibrational
interactions in semi-rigid polyatomic molecules in their non-degenerate electronic ground
state. For instance, within the Born-Oppenheimer approximation and assuming that in zero
order the vibrational and rotational movements are separated, a basis for the Hilbert space of
physical states is given by the direct product of the IR vTD and RTD of the corresponding
vibrational vD and rotational RD dynamical algebras. These being oriented with regard to
their respective degeneracy algebra the zero order vibrational and rotational Hamiltonians
are simply given by the first invariants (mostly Casimir operators). The terms in the effective
Hamiltonian adapted to the study of a given set of vibrational levels, as well as in the effective
transition moments, are easily written down since all operators are members of the

enveloping algebras of vD and RD: It should be noted that several choices for vD are possible
depending on the molecule under study (even for identical molecular symmetry group) and on
the type of internal motions considered. Different choices imply of course different zero order
spectrum but also reveal a modification of the orders of magnitude of the various
contributions. For instance in the harmonic oscillator approximation, the usual Coriolis term
appears naturally, for degenerate modes, as the dominant rovibrational interaction operator,
but it is no longer the case [33, 34] if one assumes a Morse like potential, as for instance for
streching modes.
One may also expect that a similar approach will be possible, to include other degrees of

freedom, for instance spin ones, and thus a unified treatment, in terms of generalized
Schwinger boson operators, could be performed. Some important features of the method can
be underlined, among which the fact that, with such an approach all computations can be
made with group theoretical technics, without explicit coordinate representation. With the
introduction of a compact dynamical algebra, appropriate to the study of systems with a finite
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number of bound states, all physically significant operators appear as members of its

enveloping algebra. Also the use of the generating function method is a necessary and

convenient tool to work within an enveloping algebra and allows us to solve consistently the
missing label problem within a subduction chain.
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