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Statistics of a polymer in a random potential, with implications for a
nonlinear interfacial growth model

M. E. Cates and R. C. Ball

Cavendish Laboratory Madingley Road, Cambridge CB3 OHE, G.B.

(Reçu le 8 juillet 1988, accepté le 26 aoat 1988)

Résumé. 2014 Nous examinons et généralisons des résultats récents concernant la statistique de chaînes
gaussiennes de longueur t dans un potentiel aléatoire figé 03BC (r). Ce problème peut être mis en correspondance
avec l’équation non linéaire d’évolution h (r, t ) = ~2h + (~h )2 -03BC (r) d’une surface croissant en présence
d’un flux aléatoire - 03BC (r) indépendant du temps mais variant dans l’espace [Le problème correspondant pour
un polymère dirigé, qui équivaut à un flux variant dans le temps et l’espace, a été étudié par M. Kardar, G.
Parisi et Y.-C. Zhang, Phys. Rev. Lett. 56 (1986) 889]. Nous prédisons l’effondrement d’une chaîne libre avec
vrai potentiel de bruit blanc en dimensions d = 2, 3 avec une dimension linéaire R ~ v1/(d-4)[ln V]1/(d-4), où
v est la variance du potentiel (supposée petite) et V, le volume du système. Ce résultat est en accord avec un
calcul récent de S. F. Edwards et M. Muthukumar (J. Chem. Phys., 89 (1988) 2435) par la méthode des
répliques, mais avec une dépendance logarithmique en V supplémentaire. Nous commentons la différence
entre le cas du potentiel figé et non figé , faisant référence au phénomène de localisation tel qu’il s’applique aux
polymères en environnement figé; nous discutons l’effet d’un potentiel saturant. Au contraire, une chaîne
avec une extrémité fixée à une place particulière (soit r) est organisée typiquement en tadpole consistant en une
tête effondrée (occupant un minimum profond de 03BC) reliée à r par une queue étendue. La surface d’énergie
libre d’une telle chaîne F (r, t ) est composée asymptotiquement d’une série de vallées coniques séparées par
des arêtes aiguës. Nous obtenons plusieurs résultats pour la statistique de cette surface. L’évolution du profil
dans le modèle de croissance interfaciale équivalent est obtenue par h (r, t ) = - F (r, t ) et correspond donc à
une série de montagnes coniques.

Abstract. 2014 We examine and extend recent results for the statistics of a gaussian polymer chain of length
t in a quenched random potential 03BC (r). This problem can be mapped onto one involving the nonlinear
evolution equation h (r, t) = ~2h + (~h)2 - 03BC(r) for a growing interface in the presence of a time-

independent, but spatially varying, random flux - 03BC (r). [The corresponding problem for a directed polymer,
equivalent to a flux random in both time and space, was studied by M. Kardar, G. Parisi and Y.-C. Zhang,
Phys. Rev. Lett. 56 (1986) 889.] A free chain in a true white-noise potential, in space dimensions

d = 2, 3, is predicted to collapse to a linear size R ~ v1/(d - 4)[ln V]1/(d - 4) where v is the mean-square
potential fluctuation (presumed small) and V the volume of the system. This agrees with a recent replica
calculation of S. F. Edwards and M. Muthukumar (J. Chem. Phys., 89 (1988) 2435), but with an extra
logarithmic dependence on V. The difference between this result and that for an annealed potential is
commented upon, with reference to the phenomenon of localization as it applies to polymers in a quenched
environment ; the effect of a saturating potential is discussed. In contrast, a chain with one end fixed at a
particular place (say at r) is typically arranged as a tadpole consisting of a collapsed head region (occupying a
deep minimum of 03BC) connected to r by an extended tail. The free energy surface of such a chain

F (r, t ) consists asymptotically of a series of conical valleys, separated by sharp ridges. Several results for the
statistics of this surface are obtained. The evolved profile in the equivalent interfacial growth model is obtained
from h (r, t ) = - F (r, t ), and hence corresponds to a series of conical mountains.
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1. Introduction.

There has been renewed interest recently in the
statistical properties of polymer chains in a quenched
random environment [1-14]. In this paper we discuss,

using heuristic arguments, the free energy and

gyration radius of a chain (without excluded volume)
in a quenched white-noise (gaussian, spatially uncor-
related) potential. We pay close attention to the role
of system size in determining - through the statistics
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of the deepest minima of the potential - the
equilibrium gyration radius of a chain, and thereby
elucidate the difference between the quenched and
annealed average, as exemplified by a recent replica
calculation of the gyration radius [5]. The effects of a
saturating potential [7] (whose deepest minima do
not increase indefinitely with system size) are also
discussed.

Then we make some further predictions. These
mainly concern the configurations of a chain with
one end fixed at a particular spatial location. The
statistics of such a chain are, not surprisingly, rather
different from those of a chain that is free to move
anywhere in the system. While it was shown [5, 7]
that in the latter case the chain shrivels up in a deep
minimum of the potential (so that its gyration radius
becomes independent of chain length in the limit of
long chains [7]), this does not generally occur for the
fixed-end case. It is argued that instead the chain
makes a compromise tadpole configuration : part of
it is strongly stretched so as to reach a deep
minimum of the potential, in which the remainder
shrivels up. The gyration radius is controlled by the
extended « tail » of the tadpole.

Apart from its relevance to, e.g., the adsorption
of polymers on rough surfaces, a major motivation
for this study concerns its relation to a problem in
interfacial growth. The connection between these
two apparently unrelated areas was made by Kardar,
Parisi and Zhang (hereafter KPZ) [8], who studied
the nonlinear growth equation (in dimensionless

form)

where h (r, t ) is the height of an interface at time
t and spatial co-ordinate r in the basal plane. [For
growth in d + 1 spatial dimensions, r is a d-dimen-
sional vector.]

In equation (1.1) the term in V2h represents the
effects of surface tension [15] (presuming some local
rearrangement of the growing surface is possible)
whereas the nonlinear term [ (V h)2] is the first
correction due, for example, to the departure of the
local growth direction (normal to the surface) from
the normal to the underlying basal plane. Finally
,q (r, t) is a source term representing a fluctuating
flux onto the surface (by taking a moving frame,
,q can be made to have zero mean) whose statistical
properties are prescribed. Thus the KPZ equation
(1.1) provides a canonical model for the study of
nonlinear effects in interfacial growth, describing,
for example, the time evolution of a solid surface
bombarded by a random « rain » of sticky particles
[16]. The same mathematics may also describe

simple nonlinear erosion processes so long as the
replacement h - - h is made, thus reversing the
sign of the nonlinear term [8]. The growth equation

is also closely related to Burgers’ equation

for the velocity u of a curl-free fluid in the presence
of a stirring therm - V7q [17] ; this may be derived by
setting u = - Vh in (1.1).

Fortunately (1.1) can be easily linearized by a
Cole-Hopf transformation, W = exp (h ) to give

If one were to impose the boundary condition

this would reduce to the standard equation [18] for
the partition function W(r, t ) of a polymer chain of
length t, whose zeroth monomer is at spatial position
r’ and whose last (t-th) is at position r ; the chain
experiences a potential tt (r, t ) which depends on
both the spatial coordinates, and, in general, the
position (t ) of a monomer in the chemical sequence.
[Note : Eq. (1.2) is not the diffusion equation for a
particle in the potential g.]

For the interfacial growth problem, the relevant
initial condition is usually not (1.3) but rather

corresponding to a flat interface at time zero. Since
(1.2) is linear, an appropriate solution may be

constructed as

with Wr, (r, t ) obeying (1.2) and (1.3). Equation (1.5)
is the partition function of a chain of length
t whose last (or, equivalently, first) monomer is held
at r, but whose other end occupies an unrestricted
position. Writing as usual the free energy
F = - ln Z, we see that the solution h (r, t) to

equation (1.1) for initial condition (1.5) obeys

That is, the height profile h(r, t) of the growing
interface at time t is simply the upside-down free
energy landscape for a chain of length t, with one
end fixed at r, in the potential g (r, t).

Having established this, KPZ [8], and also Kardar
and Zhang [9] focussed attention on the case when
q p - tk (x, t ) is fully random in both space and
time. In that case it is convenient to think of
t as an extra spatial co-ordinate, in which the chain is
fully directed. These authors found various scaling
results describing the asymptotic roughness of the
interface and/or the free energy landscape of the
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directed polymer in this case, including the exact
values of the relevant scaling exponents for d = 1.
[See also Ref. 10.] Specifically the width of the
interface w (R, t ) measured over a lateral length
L after time t was predicted to obey w (L, t ) ~
LX wo(tlL’) with z = 3/2 and X = 1/2. However,
the overall picture remains far from complete,
insofar as the detailed structure of the evolved
surface is only partially characterized by the two
critical indices X and z.

In the present work we consider the case when

(r, t) =- - g (r) is a time-independent flux that

varies randomly in space :

This is equivalent to the problem of an undirected
polymer in a d-dimensional random environment, as
was introduced at the start of this section. Equation
(1.7) has not been studied in detail, although it

clearly relates to a realizable, and perhaps common,
type of interfacial growth.

In one sense the model is less interesting than the
case studied by KPZ - for example, we shall see
that the scaling indices characterizing the evolution
of the surface are comparatively trivial. On the other
hand, by simple arguments applied to the equivalent
polymer problem, we can predict in some detail the
statistics of the surface, rather than just its ex-

ponents. This is rather remarkable, considering the
simultaneous presence of nonlinearity (albeit remov-
able by Cole-Hopf) and noise (JL (r)) in (Eq. (1.7)).
The insight thus gained could be valuable in a
number of related nonlinear noisy problems, for
which there is no hope of any comparable simplifi-
cation.

The remainder of this paper is organized as

follows. In section 2 we consider the case of a free
chain in a true white-noise potential. In section 3 we
discuss how the results must be modified in the

presence of a saturating (bounded) potential. In
section 4 we return to the true white noise limit, and
predict the statistics of a chain with one end fixed at
a prescribed position. (There is a close relation with
the work of Zhang [13] and Engel and Ebeling [14]
who studied the strong-disorder limit for this case.)
In section 5 we study the implications for the non-
linear growth problem. Section 6 contains a dis-
cussion of our approximations, and a comparison of
our results for the growth model, which pertain to
the case of a time-independent random flux, with
what is known about other cases. (These are a

sudden burst of random flux at time zero, and a flux
that is random in both space and time, both of which
were studied by KPZ [8].)

2. A free polymer in a white-noise potential.
Consider a gaussian polymer chain. As a function of
its size (either end-to-end distance, or radius of

gyration) R, the free energy of such a chain may be
written as [18]

Here t is the number of monomers in the chain and
I a monomeric length, so that the gyration radius in
equilibrium - t 112 1. The limit of large t is always the
one of interest.
Now let us define our random potential. We

imagine space to be divided into monomersized

regions, and choose a potential g independently in
each place. We take this to be governed by gaussian
statistics of zero mean so that

The continuum limit for the polymer and the poten-
tial [the latter yielding white noise for which

,u (r) /i (r’) &#x3E; = vSd(r - r’)] may be taken simul-
taneously by letting 1 --&#x3E; 0 at fixed tl2. In this work
we will retain a cutoff at short distance scales, and
measure all lengths in multiples of this cutoff : this
involves setting 1 = 1. Note also that v must be small
for the description of the polymer by use of equation
(1.2) to be valid.

Next, consider the coarse-grained (average) poten-
tial q in some region of volume a. This is the

average of a independent gaussian terms and there-
fore is also gaussian distributed with 03BC2 &#x3E; = v /a :

Note that for a large, the same applies even if

tL itself is not gaussian, so long as one is not

interested in the extreme tails of the g distribution.
For example if J.L = ± V 1/2 with equal probability,
Pao’) obeys (2.3) for )12  v whereas for jI2 &#x3E; v,

P a (jI) is zero.
Combining results (2.1a) and (2.3) we can start to

discuss the statistics of a polymer in a random

potential. We presume the chain to shrink into a
volume a corresponding to a place where the mean
potential A takes on a lower value than usual. In this
case the total free energy of the chain may crudely
(neglecting all numerical factors) be estimated as

where R = aI/d. The last term allows for the number
of suitable places available to the polymer, i.e., it is
the entropy In P a (¡r ) associated with a fluctuation in
the potential of mean g over a region of volume
a. [Below we will argue that this term must be

modified, at least for finite system sizes, but first we
follow through to see the consequences of equation
(2.4).] Minimizing this free energy, over both

,q and a, shows that for any d , 2, F -&#x3E; - oo as
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R -+ 0. Thus the mean size of the chain is zero, or in
the presence of the cut-off as described above, one
monomer length :

For d  2, equation (2.4) has a minimum at

which, since it is a decreasing function of t, is also cut
off at R - 1 in the long-chain limit (t &#x3E; 1/v).
These results are the same as in the self-attracting

polymer problem. The equivalence arises because
the above treatment of the entropy takes no account
of the fact that the random potential is quenched ;
equation (2.4) is no different from what one would
write down for an annealed potential that is able to
adjust itself locally to lower the total free energy of
the system. [Such a potential can easily be integrated
out to give a self-attracting polymer.] The result
(2.5a) apparently contradicts a recent prediction of
Edwards and Muthukumar [5] that for v small,

This prediction was found with the replica formalism
which deals directly in quenched averages and
should therefore be more reliable than the simple
argument behind equation (2.4). On the other hand,
in an infinite system containing a finite (albeit long)
chain, one might expect the quenched and annealed
averages to coincide. The infinite system can be
divided into subregions (much larger than the chain)
each containing a different realization of the poten-
tial ; the chain can sample all of these, including
configurations arbitrarily similar to those which it
would induce around itself in the annealed case.

To study this issue in more detail, and reconcile
the predictions (2.5a) and (2.6), consider placing the
chain in a finite box of volume V. Since the box is

finite, arbitrarily deep potential minima (which
dominate the annealed average) are not present.
Instead, if we consider a subdivision into regions of
volume a (for which the probability distribution of
,q still obeys (2.3)) we can estimate that the most
negative q (call this - u) of any of these regions
obeys

or

Retaining only the leading behaviour at large vol-
umes (which amounts to keeping only the first term
on the right), as will systematically be done below
without comment, we now write instead of (2.4)

Thus we presume the polymer to have a certain size
R - a 1/d, and place it in the deepest well in the
system of that size. Minimization of F over a now

yields, for d  4, a finite radius R obeying

where we have again retained the leading behaviour
for large V. Note that the corresponding potential
¡x = - u obeys

the chain is bound to its well by a net attractive
energy of order tu.
The above calculation should be correct for large

V if (and only if) the configurations of the polymer
are dominated by those in which it is confined to a
single small region, namely, the deepest well in the
system of linear size R. [In principle a finite number
of such regions could be involved ; however, it is

easily shown that the few deepest wells in the system
have differences in u which remain of order

5u= v2/(4-d) as V -+ oo. This means that a long
enough chain will almost always be found in the
single, deepest well.] Roughly speaking, this holds
when the binding energy of the chain in the well,
tu, exceeds the translational entropy it would have if
free to move throughout the entire system (~ In V).
Using (2.10a) this gives

as the criterion under which the result (2.10b) can be
applied. In space dimensions 2  d  4, this is

always satisfied for large enough V ; in d = 2 it also
holds so long as t is large enough. Correspondingly
for d &#x3E; 2 the polymer is localized in the sense that,
even as V - oo, its configurations are dominated by
those in which it is trapped in a single small

neighbourhood. For the same reason, if two long
chains are placed in the system and the volume
V is allowed to increase indefinitely, the chains will
nonetheless be found in the same place with finite
probability. [Indeed, with probability 1 as t - oo.]
In the replica calculation, the corresponding
phenomenon is the formation of bound-states

among different replicas. The word localization [5,
6] seems quite appropriate in this context ; note that
a chain can be collapsed (R - to) without being
localized in this sense. The localization phenomenon
appears to be closely related to the « freezing » of a
spin glass at low temperatures, as has been discussed
by Derrida and Spohn [12] in their study of the
statistics of directed polymers on a disordered tree.
Indeed, the above calculation has several features in
common with Derrida’s analysis of the random

energy model (REM) for spin glasses [19] ; but since
in the polymer problem the relevant energy scale
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(tu) increases linearly with chain length, one is

always in the frozen (i.e., localized) phase for large
t.

In contrast, for d  2, equation (2.10) holds only
for system volumes V smaller than a critical value
V’ at which equality occurs in (2.11). A simple
manipulation shows that the corresponding radius
R = R’ from (2.10) coincides with that predicted by
the annealed average (2.5b). For systems larger than
V’, the chain samples a large number of similar
minima, so that the reasoning behind equation (2.9)
breaks down ; the annealed result (2.5b) is valid
instead.
These arguments allow us to reconcile, to a large

extent, the replica and annealed approaches. In
d = 3, for any noninfinite large volume V, the

dependence in (2.10) on the strength of the potential
(v ) is that given by Edwards and Muthukumar, (Eq.
(2.6)). The same holds in d = 2 so long as t is large.
Nonetheless, in the infinite volume limit the chain
does collapse to zero size (as a negative power
of In V). For d = 1, however, the chain is not

localized in the infinite volume limit so that the
annealed result, (2.5b) is valid. But in practice,
equation (2.10b) still applies for systems that are not
large compared to V’ (d =1 ) ~ exp[t3 v2], a quantity
which can be enormous for large t.

Throughout the above, we assumed that the

collapsed chain can be modelled as roughly spherical
in shape. This assumption is justified in slightly more
detail in section 6.

3. Effects of saturation.

The conclusions just reached must be modified for a
potential which is bounded (unlike true white noise).
In the saturating case, the binding energy of a chain
to its coarse-grained potential well does not increase
logarithmically with system size V, but remains
finite as V -+ oo. Since the translational entropy of
an unbound chain does increase with volume, a

chain cannot be localized, in the sense defined

above, for a large enough system. In terms of

replicas, the binding energy between different re-
plicas reaches a saturating value as V -+ oo, so the
replica bound state must always dissociate when

placed in a large enough volume. On the other hand,
the volume required for dissociation is exponentially
large in the binding energy, which is a power of

t, so that a quenched average may still be appropriate
for reasonable-sized systems.

It is interesting to study the saturation effect

directly in a simple case : we take the local potential
to be discretized as g = ± V 1/2. (As usual, we take
v small so that the potential is weak on a monomeric
scale.) As pointed out in connection with

equation (2.3), the statistics of j1 , the coarse-grained
potential in a region of volume a, remain gaussian
for q 2.-,: v. Thus the calculations of the previous

section remain valid so long as the depth g of the
well in which the chain is typically found obeys this
criterion. Inspection of the quenched results (2.9)
and (2.10) reveal that the gaussian approximation
fails when R falls below a critical value Rsat ~
v- 1/4

This occurs for V &#x3E; Vat where In Vsat ~ v- d/4, as
found by substituting R = Rsat in (2.10a). In this

regime, the depth of the deepest well cannot increase
further beyond the saturated value u - v1/2. Instead,
as the system volume increases, the size of the largest
such well increases : this we estimate from

The exponential factor is the probability that

J.L takes the value - v 1/2 in (a finite fraction of) the
sites in a region whose volume is of order a. The
corresponding chain radius (assuming R - a 1/d
obeys

On the other hand, an annealed average similar to
(2.4) may be estimated in this saturating case by
writing

where the first term is the energy to compress a
chain into a region of linear size R ; the second
corresponds to the (saturated) potential ; and the
third is the entropy associated with a saturated well
of linear size R (as in Eq. (3.1)). The annealed
prediction is therefore

which is, in contrast to equations (2.5) for the

nonsaturating case, an increasing function of chain
length. As stated at the beginning of this section, the
annealed behaviour must take over for large enough
V ; we argue that this happens when the quenched
prediction for the radius (which is for a saturating
potential a slowly increasing function of V) exceeds
the annealed prediction. This criterion identifies the
disappearance of localization, in the saturating case,
at system sizes of order V - exp [td/(d + 2)].
To summarize, for the saturating potential

03BC = ± v1/2, the quenched-average white noise calcu-
lation given in the previous section remains valid so
long as it predicts a chain radius R &#x3E;. Rsat ’" v- 1/4
This holds for systems of volume V  Vsat obeying
In V sat ’" V- d/4. for V sat  V  exp [td/(d + 2)] the

chain remains localized in a region of volume
a - In V, whereas for very large volumes the chain is
no longer localized. In practice, some details of
these results, especially in the intermediate regime,
may be altered by fluctuations in the shape of the
saturated « well » in which the chain resides. (For a
discussion, see Sect. 6.)
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4. A chain with one end fixed in space.

The above discussion is for a chain which is free to
move throughout the system. We now extend it to
the case of a polymer with one end fixed ; to avoid
excessive elaboration, we restrict ourselves to the
true white-noise potential. The results will be useful
in discussing the long-time properties of the non-
linear interfacial growth equation (1.7). The argu-
ments given in this section are quite closely related
to those given by Zhang [13] and discussed by Engel
and Ebeling [14], in the context of diffusion and
localization for Schrodinger’s equation in a random
potential (that is Eq. (1.2a) with imaginary time).
Note, however, that in Zhang’s variational approach,
all polymer configurations other than the one of
lowest energy (not free energy) are neglected en-
tirely : the chain entropy term (Eqs. (2.1)) is not
taken into account. Such and approach is valid for
strong disorder (v &#x3E; 1), whereas in this paper we are
concerned with the opposite limit of small v. Corres-
pondingly, our variational calculation (which in-
cludes entropic contributions to the free energy) is
rather more complicated, and our results are some-
what different.

First we observe that with a fixed end, the chain
can only be influenced, even in principle, by the
potential in a neighbourhood of volume V ~ td
(since t is the length of the chain when fully
extended). It is clear physically that a quenched
average is always needed in this case, even for
d  2. [This may be confirmed by noting that this
explorable volume is, for large t, much less than
V’ as defined in section 2.] A free chain, enclosed in
the explorable volume, but not constrained by its

end, would always be confined to a single well.
Rather than do a replica calculation, which is quite
complicated in the case of a fixed end, we predict the
configuration of the chain by a simple argument, as
follows.

Suppose we confine a free chain to a region of
linear dimension X. Within this region there will be
an optimal well of radius R  X in which the chain
will sit with binding energy per monomer (cf. Eqs.
(2.10))

In these expressions we have retained only the

leading nontrivial behaviour at large X. Now imagine
pulling one end of the chain out of the well to a
distance Y &#x3E; R. Since one is pulling against a fixed
binding energy per monomer, the free energy should
increase linearly with distance. The corresponding
chain configuration is a tadpole with a collapsed
head (in the deep well) and an extended tail of

length Y. Indeed, we may write

where the first term is the elastic energy to pull a
section of chain containing m monomers out to

distance Y, and the second reflects the lost binding
energy that this entails. There is also a term of order

m1/2 from the random potential felt by the extended
section, but this is small (as may be checked

afterwards). Note that u(X) is itself a random

variable ; its fluctuations are of order
6 u - u (2 X) - U (X) _ V2/(4 - d).
Minimizing (4.2) on m one finds

The second equation demonstrates a linear depen-
dence on Y, corresponding to a V-shaped potential
(conical or hyperconical in d = 2, 3), of slope
aFl3Y - u(X)1/2. The first gives the number of

monomers m in the extended tail of the tadpole. If
we continue to pull on the tail of the tadpole, the
conical free energy surface will eventually cross that
centered on a different well nearby. When this

happens, the chain will suddenly jump to a new
configuration in which the head of the tadpole is in
this other well. To estimate the typical length
y* (t) of the tadpole at which this occurs (which is
comparable to the mean length of a tadpole whose
end point r is chosen at random) we minimize

with respect to Y. This expression estimates the free
energy of a typical tadpole of length Y ; for self-
consistency, the confinement length X, introduced
above, is also set equal to Y. The minimization gives
(for Y large) a value

The corresponding number of monomers in the tail
is

The mean binding energy per monomer, u * (t), and
well size R * (t) obey

To check that our use of a gaussian elasticity term
in equation (4.2) is selfconsistent, we can estimate
the number of monomers mb in a « blob » of the
extended tail section, defined as a unit for which the
gaussian stretching energy (which is in turn roughly
equal to the lost binding energy of the same unit) is
of order unity : Mb - 1/u *. One can ask what size of
blob (m6, say) is required before the random poten-
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tial induces significant departures from gaussian
statistics. The r.m.s. fluctuation in the coarse-

grained potential on the scale of such a blob,
(v/mg/2)1/2, multiplied by the number of monomers
in it, should be of order unity. This gives inb -
V-2/(4-d). Since, for large t, Mb  lhb, our treatment
of the extended tail using a gaussian elasticity
expression should be valid.
More seriously, the estimate (4.4) neglects the fact

that the depth u (Y) of the deepest well within a
linear range Y is itself a fluctuating quantity with
r. m. s. deviation of order

The neglect of this fluctuation is consistent so long as
the predicted mean tadpole length Y* corresponds
to an energy of the tail åF -- y* u (y* )1/2 that

exceeds the mean fluctuation t 8u in the binding
energy of the head :

If this holds (which it does asymptotically for

d&#x3E;2), AF obeying (4.9) is, to within a numerical
factor, the r.m.s. fluctuation in the height of the free
energy surface. The minima of the surface are at the

tips of conical valleys (depth - tu * (t )) whereas the
maxima lie at the tops of hyperbolic ridges along
which the conical surfaces associated with neighbour-
ing wells cross one another ; these are elevated from
the minima by - AF (t ). Note that the ridges are
asymptotically sharp in the limit of long chains : only
in a region of negligible width compared to Y* (the
spacing between minima) do tadpole configurations
involving two different wells simultaneously contrib-
ute to F (r, t ).
These considerations almost completely determine

the asymptotic (large t) statistics of the free energy
surface for 2  d  4. This surface consists of conical

sections of mean depth - tu * and fluctuation
t 8 u. The slope of each cone is proportional to its
depth ; the mean slope is - u *1/2. (The distributions
of both depth and slope become narrow compared to
the mean at large t.) The minima are placed
randomly with average spacing - Y*(t) ; the hyper-
bolic ridges that divide neighbouring conical valleys
lie at height -AF (Eq. (4.9)) above the minima,
with fluctuations in height also of order AF. Since
AF (t ) &#x3E; t 6 u, the ridge loci in r-space are deter-
mined by a Voronoi construction about the randomly
placed minima. On top of all this structure is noise of
order (vt/ln t )1/2 arising from the random environ-
ment seen by the extended tails. The noise is largest
at the ridges and smallest at the valleys, but for long
chains is small everywhere compared to the main
features of the landscape just described. There are

various other small corrections, such as rounding of
the conical tips. on a length E* (t ) (see Eq. (4.7b)),
and small wiggles in the Voronoi construction, all of
which become less and less noticeable as t becomes

large.
The above arguments specify the free energy

landscape for d &#x3E; 2. For d  2, the consistency
criterion (4.9) is not obeyed for long chains, and
another approach is therefore required. In this case
the average fluctuation in the height of the free

energy surface is controlled by the intrinsic fluctu-
ation t 8 u in the depths of the conical minima
themselves. The heights of the ridges between

neighbouring valleys must also be of this order,
which means that the typical tail energy must obey

This fixes the mean spacing between minima as

and the corresponding mean depth of the conical
valleys as

The fluctuation in the depths of the conical tips is
t ðu. The slope of each cone is again proportional to
its depth (so that the fluctuation in the slope
becomes small compared to the mean at large
t). The loci of the minima of the cones are completely
random ; however, the ridges no longer correspond
to a Voronoi (equidistant) construction, since the
difference in depth of two adjacent minima is

comparable to the ridge height between them. [Note
that the ridges are nonetheless sharp : only in a
narrow region of spatial width - Y*/ (t 6M) Y*,
near the top of a ridge, do configurations involving
two distinct wells differ by energies comparable to
kB T and thus simultaneously contribute to the free
energy.] Instead the ridges form a random polygonal
network of a slightly different specification, for
which we have been unable to find a simple closed
form. However, it is fully specified, implicitly, by the
construction of the free energy surface as the lower

envelope of all conical pieces centered on local

minima. As in the case of d &#x3E; 2, there is additional
(0 ([ vt ]1/2 [In t ]- 1/(4 - d)) ) noise whose effects are
minor in the limit of long chains. The resulting
structure in one dimension is sketched in figure 1.

5. Implications for the nonlinear growth model.

Consider now the surface structure after a long time
t, resulting from equation (1.7), for an interface

growing in the presence of a time-independent
white-noise flux - ii (r) (starting from a flat surface
at time t = 0). This is found from the free energy
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Fig. 1. - Sketch of the free energy surface F (r, t ) for
d = 1 at large t. Here y* (t) -- tv1/3 [In t ]- 1/3, and OF (t ) -
tv213 ; these characterize respectively the horizontal and the
vertical scale of roughness. There is in addition noise of
order 5 F (t ) - (tv )1/2 [In t ]-113 (inset).

landscape F (r, t ) for a chain with one end fixed at
r, simply by identifying chain length t with the time,
and free energy F with - h. Thus the free energy
landscape, described above for the polymer, must
merely be turned upside-down. Note that for the
erosion version of the model, in which the sign of the
nonlinear term in (1.7) is reversed, even this inver-
sion is unnecessary : one has a pattern of conical pits
separated by ridges.

It should be observed that, although JL was

assumed to have mean zero, the average height of
the interface increases with time as tu * (t) (obeying
(4.7) in d &#x3E; 2 and (4.10) in d  2). This is expected
because the nonlinear term (Vh)2 in (1.7) leads to
nonconservation of flux. For modelling, it may be
more realistic to restore global conservation by a
trivial shift of the mean height (so that this is zero in
a moving frame for which the incident flux vanishes).
The remaining structure consists of conical moun-
tains of mean spacing y* (t) and peak-to-valley
separation dF(t). We recall from equations (4.5)
and (4.11) that Y*(t) ’" tv1/(4-d)[ln t]1/(4-d)-1 in
d &#x3E; 2, and y* (t) ’" tv1/(4 - d) [In t ]-1/(4 - d) in d  2 ;
hence y* (t) is linear in time in d = 3 and weakly
sublinear in d = 1, 2. In contrast, AF is of order

tv2/ (4 - d) [In t ]2/ (4 - d) - 1 in d &#x3E; 2, and of order
tv2/(4-d) in d , 2. In d = 1, 2, 3, the average slope
of the mountains is of order dF /y* ’" u * (t )1/2 ’"
[v In t ]1/(4 - d), which is a (very) slowly increasing
function of time.

It is quite simple to qualitatively describe the
manner in which the evolved structure « coarsens »
as time goes by. The velocities of the peaks are
simply proportional to their heights ; this is obvious
in the polymer language since the free energy of a
chain of minimal free energy (which lies entirely at
the tip of a deep well) scales as t. As time evolves,
then, the taller peaks move further ahead, and the
lower peaks are occluded. Very gradually, the angle
of the surviving peaks sharpens up.

6. Discussion.

The work described above uses simple ideas to

predict the configuration and free energy landscape
of a polymer chain in a random potential, which, for
the case of a chain with one end fixed, may simply be
turned upside down to give the evolved profile for
the nonlinear growth model of equation (1.7).

Throughout, the mathematics was at the level of
Flory-type [18] energy balance arguments ; however,
these were more sophisticated than usual, since they
accounted for the fact that the potential was

quenched. This was done by estimating directly the
depth of the best potential well in an accessible

region, whereas a conventional (annealed) approach
would simply add on an entropy penalty for creating
a well of a certain type. Since, as was seen, the
statistics of the polymer are controlled entirely by
extremely unlikely potential configurations, this dis-
tinction is crucial. Our results for a chain in a true

white noise potential helped us to clarify the concept
of localization of the polymer, which is not to be
confused with mere collapse (R - t°). We predicted
localization in d = 2, 3 (in agreement with the

replica calculation of Ref. [5]) but not in d  2.

Localization was also not predicted for a saturating
potential of the form /i = +V 1/2. In practice, the
distinction may frequently be an academic one since
the system volumes required to see delocalized

behaviour can be enormously large - as are the
kinetic barriers involved in exploring different re-
gions of a finite system. For these reasons, Monte
Carlo simulation data [3, 7] must probably be

treated with some caution.

It is likely that our new results for the statistics of a
chain with one end fixed could be reproduced with a
more sophisticated replica calculation. Probably a
variational treatment would still be required, in

which case the occurrence of « tadpole » configura-
tions might have to be explicitly allowed for in the
choice of trial states. This remark raises an interes-

ting issue as to whether our own, simplified, variatio-
nal treatment captures all the physical in-

gredients that determine the chain configuration -
and hence the structure of the free energy landscape
- for long chains. In particular one might worry
about the assumption that the collapsed part of the
chain is a roughly spherical droplet. After all, given
a volume a - R d in which the average potential
/I has some anomalously low value (jl, say), it is
more likely that this volume is arranged as a random
« animal »-like structure (or indeed as a polymer)
than as a sphere. This argument is misleading,
however ; for if we ascribe a structural length
r (a « blob size ») to this random shape, the free
energy penalty of confining a chain to it becomes of
order tlr2 (compare (Eq. (2.1))) rather than tIR .
Because the energy recovered by exploiting the low
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potential is still only /I, the chain may as well

collapse into a single « blob » of size r (especially as,
if r  R, it will typically be able to find one for which
jz  fl). It is less clear to what extent this remains
true in the case of a saturating potential. For the
annealed (very large V) regime, a similar argument
can be made, whereas in the intermediate regime
(Eqs. (3.1) and (3.2)) the shape fluctuations may
perhaps become important.
The above reasoning suggests that shape fluctu-

ations are not too large, and that the spherical
droplet approximation does not lead to substantial
error, at least in our results for the nonsaturating
potential at large t (Sect. 2, 4, 5). It is possible, in
principle, that other kinds of fluctuations lead to

significant corrections to these results ; however, it is
not obvious what these fluctuations would be like.
For this reason it seems reasonable to conjecture
that our various results for the asymptotic statistics
of the free energy surface and/or interfacial growth
profile are correct in their essential features, for
dimensions d = 1, 2, 3.

It is interesting to try to understand these features
more directly in terms of the growth model. While
certain aspects (such as cuspiness) are familiar

consequences of nonlinearity, and others (such as
the Voronoi cells, and the t1/2 noise) those of

randomness, these do seem to have interfered in a
nontrivial way. For example, the positions in the
maxima in the profile at time t correspond to those
places where the incident flux is greatest, not at a
point, but averaged over a region of linear size

R* (t) - [v ln t ]-1/(4 - d). This length scale, which
also determines the rounding at the conical tips, is
not obvious simply from inspection of (1.7). Nor is it
trivial that any such scale should be a decreasing
function of time.

Note that the predicted structure is much coarser
than would arise in the absence of the nonlinear
term (oh )2 in the equation of motion. Without that
term, the equation reads

which is readily analysed by Fourier transforms

(following Edwards and Wilkinson [15]). One finds a

characteristic transverse length scale L - t1/2 and
roughness with r.m.s. height

The much enhanced coarsening in the present case
may be crudely explained by noting that the non-
linear term encourages configurations with large
local gradients.
We should mention that the evolved surface has

several features in common with one calculated by
KPZ [8] for the case of a random burst of flux at time
zero [i.e., J.L (r, t) = J.L (r) ð (t )]. In that case the
surface is made up of paraboloid maxima, divided by
sharp valleys. The results of this calculation are

readily understood in the polymer context as they
concern the free energy surface of a chain whose first
monomer (only) feels the random potential 4, while
the other end is held at position r. The resulting free
energy minima are parabolic, since the chain obeys
the gaussian elasticity law (Eq. (2.1a)) ; in contrast,
for our case of a time-independent flux they are
conical, because the chain is being pulled out of a
reservoir of stored length at fixed potential. Other
features, such as the sudden jump from one well to
another when the chain end is pulled too far, are
similar in the two cases.

Finally, we compare our predictions for the surface
structure, which apply in the case of a time indepen-
dent random flux, with those for a flux random in
both space and time (as also studied by KPZ [8]). In
our case both the scale of vertical roughness, and
that of horizontal coarsening, increase (to within
logarithms) linearly with time. The former scaling,
at least, is not surprising, as there is a finite
difference in flux between different places. (But
note that quite different behaviour arises in the
linearized model, Eq. (7.2)). In contrast, the surface
resulting from a flux random in both space and time
exhibits fractional power law exponents (as men-
tioned in Sect. 1) [8]. Regrettably, very little else is
known about the structure in that case [8-10], and so
a more detailed comparison must await future devel-
opments.
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