
HAL Id: jpa-00210864
https://hal.science/jpa-00210864

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localized structures generated by subcritical instabilities
O. Thual, S. Fauve

To cite this version:
O. Thual, S. Fauve. Localized structures generated by subcritical instabilities. Journal de Physique,
1988, 49 (11), pp.1829-1833. �10.1051/jphys:0198800490110182900�. �jpa-00210864�

https://hal.science/jpa-00210864
https://hal.archives-ouvertes.fr


1829

Short communication

Localized structures generated by subcritical instabilities

O. Thual(1) and S. Fauve(2)

(1)CERFACS, 42 avenue Coriolis, 31057 Toulouse, France
(2)Laboratoire de Physique de l’Ecole Normale Supirieure de Lyon, 46 allée d’Italie, 69364 Lyon,
France

(Reçu le 14 juin 1988, révisé le f6 juillet 1988, accepti le 15 septembre 1988)

Résumé.2014 Nous observons l’existence de solutions structurellement stables en forme de pulse, dans
un voisinage d’une bifurcation de Hopf inverse. Ces structures localisées correspondent à des gouttes,
que l’on sait être instables, pour les transitions de phase du premier ordre. Nous montrons que le
mécanisme de stabilisation est un effet non-variationnel, c’est à dire dû à l’absence d’une "energie
libre" à minimiser dans le problème d’instabilité que l’on considère. Nous proposons ce mécanisme
comme explication à l’existence de paquets d’ondes localises dans certains écoulements parallèles ou
dans les expériences de convection dans les fluides binaires.

Abstract.2014 We report the existence of structurally stable pulse-like solutions in the vicinity of
an inverted Hopf bifurcation. These localized structures correspond to droplets in first order phase
transitions, where they are known to be unstable. We show that the stabilisation mechanism is a non
variational effect, i.e. is due to the non existence of a "free-energy" to minimize in the instability
problem we consider. We propose this mechanism as an explanation for the existence of localized
waves in shear flows or in convection experiments in binary fluid mixtures.
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Localized structures are widely observed
in systems far from equilibrium. Well known
examples are the local regions of turbulent mo-
tion surrounded by laminar flow, which deve-
lop in many open-flow experiments (e.g. pipe
flow, channel flow, boundary layers) [lj. More re-
cently, spatially localized travelling waves have
been observed at convection onset in binary fluid
mixtures [2-4]. In both cases the possible ori-
gin of localized structures lies in the existence of
a subcritical instability, which implies that two
different homogeneous stable states coexist in an
interval range of the control parameter (see Fig.

1). The simplest spatial non-uniformity consists
of an interface between the two stable states. A
similar situation occurs in first order phase tran-
sitions, for instance when droplets of liquid nu-
cleate in a supersaturated vapor. In phase tran-
sitions the droplets are always unstable; they
either shrink or expand. In the instability pro-
blem, a "droplet" consists of a region where the
system is in the bifurcated state, surrounded by
the basic state. The aim of this letter is to show
that non-variational effects, i.e. due to the non-
existence of a "free energy" to minimize (a Lya-
pounov functional), can stabilize the droplet-like
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structure in the vicinity of a subcritical instabi-
lity. This provides a possible elementary mecha-
nism to explain the recent observation of stable
stationary interfaces between regions of convec-
tion and conduction in binary fluid mixtures wi-
thin a finite interval range of the control para-
meter [2-4].

Fig. 1.- Bifurcation diagram of a subcritical
Hopf bifurcation. Stationary amplitude IWI as
a function of the control parameter p.

We consider a subcritical Hopf bifurca-
tion, with a one-dimensional complex amplitude
W(x,t) governed by the equation,

where Jl is the distance from criticality and a,
(3, I are complex coefficients. Small perturba-
tions are amplified when u &#x3E; 0; when the real

part of Q, Qr is positive, they are not stabilized
by the leading order non linearity but only by
the quintic term if -Yr 0, and the Hopf bifurca-
tion is subcritical (see Fig. 1). Equation (1) can
be derived for the two-dimensional disturbances

of the plane Poiseuille flow [5]. the travelling
waves observed in binary fluid mixtures convec-
tion also take place via a subcritical Hopf bifur-
cation, but the right and left travelling waves,
W-exp I(wt- kz) and W+exp I(wt+kz) must be
both considered, and the amplitude equations
for W _ and W+ are coupled [6]. We have obser-
ved numerically localized stationary solutions in
both cases, but for simplicity we will describe
here only the results obtained with the simplest
model (1), and understand the physical mecha-
nism responsible for the stability of these pulse-
like solutions.

We have numerically intergrated equa-
tion (1) with a pseudo-spectral method invol-
ving 512 complex modes and periodic boun-
dary conditions on the interval [0, L]. A ty-
pical pulse-like solution is shown in figure 2.

For the convection problem, it corresponds to
a small convective region surrounded by the
conduction state. Notice that the amplitude
of the pulse is strongly localized while its

phase varies almost linearly in space. Solutions
with a similar shape have been observed on
large interval ranges of the constants a, Q,
(ar=1, aiE [0,10] , pr=1,,Q;E [0,4]). Their ty-
pical size does not depend on the box length
L which has been varied from 4x to 30r. The

pulses exist for values of u within a finite band
(see below). They are obtained with a great
variety of initial conditions. For instance, a

phase-unstable homogeneous state IWI =1= 0, of-
ten evolves to a pulse-like solution [7]. Statio-
nary localized pulses are thus structurally stable
solutions of equation (1).

Let us first consider the case ai= Qi= 7i= 0
for which equation (1) has a Lyapounov functio-
nal f f W}:

where

with

L decreases in time and is minimum for uniform
solutions which maximize V (IW I). There exists
a particular value up= 3{3;/16ir of the control
parameter u, for which the W$ = 0 and W
0 uniform solutions have the same "energy"
- V. For p = up, an isolated interface between
the two uniform states remains at rest; this

corresponds to the Maxwell plateau in first order
phase transitions [8]. Pulse-like solutions are

always unstable; they either shrink or expand
in such a way that the lowest "energy" state

increases in size (see Fig. 3). The "variational
pulse" is even unstable for u = yp because of
the interaction between its limiting interfaces.
Therefore, the stability of pulse-like solutions
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can be explained only with a non-variational
effect.

Fig. 2.-1D pulse-like solution in the case ai= 0.
Other parameters are p = - 0.1, ar= 1, (3 = 3
+ i, -i = -2.75 + i, interval length : L = 30;
a) amplitude profile (W (x) 1; b) phase profile
Ø(x) = arg W(x).

Let us consider for simplicity equation (1)
with ai= 0, and try to understand the shape
of the pulse-like solution shown in figure 2. In
the outer region the pulse amplitude is very
small and we can neglect non linear terms. We
look for a solution under the form W (x, t) =
Ro (x) exp i [nt+9o (x)] and find the asymptotic
behavior for large Ixl (J.l  0) :

Fig. 3.- Time evolution of a pulse in the varia-
tionel case : a = 1 + 4i, (3 = 13.33 + 4i, -y =
-10+4i, interval length : L = 5?r. For these pa-
rameter lip = -3.33 ; a) case IA = JJp -0.05 :
the "droplet" shrinks; b) case A = up+0.10
the "droplet" grows.

We thus easily explain the shape of the
solution in the outer region.

n traces back to the dependence of the fre-
quency of the oscillatory field (the travelling
waves) with respect to its amplitude, i.e. Ro (x) ;
indeed, multiplying (1) by the complex conju-
gates of Wand integrating over the interval [0,
L] gives after equating real and imaginary parts :
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If a;= 13¡= 7;= 0, we find fl = 0 and thus
9a= 0 as expected. When 13# 0 or -yi:o 0, the fre-
quency of the travelling waves depends on their
amplitude, and this implies from equation (5.b)
that the phase Oo (x) varies linearly outside the
pulse, with a slope which depends on the pulse
shape Ro (x). Therefore the dependence of the
wave frequency on its amplitude generates the
following feedback mechanism : the frequency
correction n depends on the pulse shape (Eq.
(6)), and in turn affects it (Eq. (5)).

To illustrate this feedback mechanism on
the pulse stability, let us write the equations for
R(x,t) and t/&#x3E;(x,t), where W(x,t) = R(x)exp i4&#x3E;(z),
(a = 1)

and notice that a linear variation in space of the

phase 0 simply renormalizes JJ in the equation
for R. As said above, we have for pulse-like solu-
tions 0 = flt+Oo (x), where (,60.)2 is constant,
say p2, almost on all the interval [0, L]. We thus
define JJeff= JJ_p2. We plot below JJeff as a func-
tion of JJ, for the values of it within the interval
range where the pulses are stable (the numerical
values of the parameters are a = 1, Q = 3+i, I
= -2.75+i, L = 30).

We can notice that u,ff is kept approxi-
matively constant by the phase gradient, which
shows its effect on the stabilizating mecha-
nism. Note that the value of Jleff is close

to tip= -0.641, the value corresponding to

the Maxwell plateau in the potential case

(Cii = 8i = 7i" 0) ·
This mechanism also works for spatially

two-dimensional fields W(x, y, t), solutions of
equation (1) where the diffusion term is the

two-dimensional Laplacian. Figure 4 displays a
stable 2D pulse.

Fig. 4.- 2D pulse-like solution in the a;= 0
case. Same parameters as for figure 3. Amplitude
profile I W (z) [ .

In conclusion, let us discuss the implica-
tions of our model with respect to the experi-
mental results on binary fluid mixture convec-
tion. Confined states have been first observed in

parallelepipedic containers [2, 3], and related to
the reflection of the waves from the lateral boun-
daries [9]. This mechanism cannot explain the
similar localized structures observed in an annu-
lus [4]. Another mechanism have been proposed,
that consider exponentially small effects due to
the locking of the wave envelope to the under-
lying structure [10, 11]. In our model, stable lo-
calized structures result from a non-variational

effect; we predict that the wave amplitudes in
the confined states are comparable to the one
of the homogeneous bifurcated state, in agree-
ment with the experimental results [4]. We also
explain the different frequencies of these two re-
gimes ; indeed, it follows from equation (6) that
the non-linear frequency correction n depends
on the amplitude profile R(z) of the wave enve-
lope. Obviously, the model that couples left and
right travelling waves with non zero group velo-
cities should be used for a more realistic study.
The main result of our paper is that localized
structures in dissipative systems far from equi-
librium, can result from a general and simple
non-linear effect : the amplitude-dependence of
a wave frequency. This basic mechanism traces
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back to the one involved for solitary waves in
conservative systems.
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