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Résumé. — Nous montrons qu’avec une géométriec de réacteur appropri€ée, une structure de Turing
bidimensionnelle de réaction-diffusion peut étre ramenée a une structure quasi-unidimensionnelle localisée le
long d’un front de réaction. Nous donnons un exemple obtenu par simulation numérique. La géométrie
proposée, qui permet de s’affranchir des contradictions habituellement rencontrées dans le maintien des
conditions de non-équilibre, devrait enfin permettre I'observation expérimentale de telles structures.

Abstract. — We show that, with an appropriate reactor geometry, a two dimensional reaction-diffusion Turing
pattern can be restricted to a quasi one-dimensional structure along a stationary front and support our
conclusions by numerical simulations. Such a geometry should free the experimentalists from contradictory
requirements and should allow them to evidence genuine isothermal sustained dissipative structures driven by

pure reaction-diffusion processes.

Introduction.

Isothermal chemical systems maintained far from
equilibrium by fluxes of matter can exhibit spatial
concentration patterns, much the same way other
physical systems do under constrained conditions,
e.g. the Bénard cells or the Taylor vortices in fluids.
Isothermal chemical dissipative structures have been
thoroughly studied from a theoretical point of view
[1-3]. Until now, most experimental studies have
concerned travelling waves including the so-called
target and spiral waves patterns [4-6], but very little
progress has been made on another type of spatial
structure predicted by Turing as early as 1952 [7]. In
an initially homogeneous medium symmetry break-
ing instabilities leading to stationary concentration
patterns can result from the competition between
reaction and diffusion processes. They involve the
same kind of kinetic mechanisms as the oscillating
reactions, i.e. autocatalysis or substrate inhibition
and arise in particular when the autocatalytic species
diffuses slower than the inhibitory species [8]. In
spite of their great potential interest for biology and
morphogenesis, these patterns have never been
clearly observed. In particular most of the transient
mosaic structures reported in Petri dishes [9] have
been shown to result from convective motions [10].

The major problem for the observation of Turing
structures is to sustain the non-equilibrium con-
ditions in a spatially distributed reactor able to meet
two apparently contradictory requirements : on one
hand one must feed the system with fresh reactants
everywhere, on the other hand one must preserve
the natural molecular diffusion. The common but
unpractical requisite of keeping some concentrations
at a uniform constant value is only made for
mathematical convenience ; stationary patterns have
also been predicted for systems only constrained at
the boundaries [11-13]. Here we show that in a
system fed this way, a Turing symmetry breaking
instability can induce a stationary structure along a
reaction front. The achievement of the correspond-
ing experimental set up should be easy. To support
our proposal, we produce a numerical example on
the basis of a simple model.

1. Reaction front structure : general features.

The chemical system is assumed to be limited to a
rectangular two dimensional thin reacting film
(Fig. 1). The concentrations of the different species
are fixed on the boundaries W1 and W2, parallel to
the Ox axis by a continuous stream of fresh chemicals
sweeping a permeable membrane. The initial re-
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Fig. 1. — Schematic representation of the film reactor.

agents, further referred to as the major species, are
fed and constrained to nonzero values, different on
W1 and W2, whereas those produced by the reaction
and referred to as the intermediate species are
maintained at a zero concentration on W1 and W2.
On the orthogonal sides, parallel to Oy, we shall
further assume periodic boundary conditions (i.e.
identical concentration profile on both sides) but no
flux boundary conditions could be used without loss
of generality. Inside the film transport is achieved
only by molecular diffusion.

To set the ideas down, we consider a reaction
between two major species A and B through inter-
mediate species X, Y, etc. The species A and B are
respectively fed on W1 and W2. According to the
symmetries, the composition changes continuously
along the Oy direction whereas the parallels y = ¢ to
the Ox axis correspond to isoconcentration curves
which could be visualized by appropriate color
indicators. The composition changes along Oy are
either smooth, or steep and localized in the region
where A and B meet. These steep gradients are
especially common with high order or autocatalytic
reactions, the rate of which tremendously increases
when the reagents are simultaneously present in a
significant amount. The steep change corresponds to
a reaction front which must not be confused with the
usual chemical propagating fronts found in flames or
phase waves.

We expect that if the conditions for a Turing
instability are met, this instability can break the
symmetry and destabilize the front, generating a
structure in the direction Ox. This can be understood
on the basis of the following elementary arguments.
Many theoretical examples of periodic structures
have been produced in one dimensional reaction-
diffusion systems where the major species were kept
constant and uniform, provided that some inter-
mediate species have different diffusion coefficients.
If, at first, we ignore the transverse diffusion of the
intermediate species (along Oy) and assume that the
consumption of A and B is negligible, an isoconcen-
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tration curve y = ¢ can be considered as such a one
dimensional system. The buffering of the major
species is performed by diffusive transport from the
walls. Thus, for suitable conditions, the homo-
geneous solution along this curve can become un-
stable and lead to a periodic structure in the Ox
direction. Along the curve y = ¢ the concentrations
are no longer constant and the isoconcentration
curves should now present a periodic spatial struc-
ture in the Ox direction. The steeper are the
transverse gradients, the larger should be the ampli-
tude of this spatial modulation. In particular, if the
instability conditions are satisfied, one expects a
large spatial modulation of the reaction front. On
the other hand, close to the walls where the concen-
trations of intermediate species are constrained to a
uniform zero value and where instability conditions
are ruled out by the absence of significant chemical
activity, there is no structure.

The inhomogeneous profile along the gradient
direction Oy could also be destabilized and some
longitudinal modes would develop along this direc-
tion [12, 13] but they should exhibit a continuous
change in wavelength and amplitude due to the
imposed gradient. On the contrary, the structure we
expect is transverse to this gradient, which clearly
evidence the symmetry breaking. Turing instability
always occurs over a limited set of the major species
concentrations. Since we consider steep fronts the
largest concentration changes occur within the front.
In real autocatalytic reactions, these concentrations
can range over four or five orders of magnitude
inside this front. Moreover, close to the wall the
system is stabilized by the boundary conditions and
the low rate of chemistry. Thus the conditions for
instability are more likely to be fulfilled solely within
the front. The strong anisotropy created by the
gradient therefore precludes the formation of a
longitudinal mode and the pattern is limited to the
transverse mode localized along the front. The
problem of the restriction of a Turing structure to a
transverse mode under the effect of a strong ani-
sotropy — here the concentration gradient — has
recently been addressed by Dewel et al. [14] from a
general point of view. The effective reduction in
dimensionality results in a large decrease in the
pattern complexity, which, in some respect, can be
compared with the inhibition of convective rolls
perpendicular to the magnetic field in Rayleigh-
Bénard experiments with mercury [15].

In order to validate these heuristic arguments,
which are based on simple minded assumptions we
shall now give a numerical example.

2. Numerical illustration.

The reaction terms are given by the irreversible
Brusselator, the most popular prototype of kinetic
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scheme in the studies of spatial chemical dissipative
structures :

Ak
B+xhy M
2X+Y 83x

k
X 3 Products .

A and B are the major species, X and Y the
intermediate species. The third step is autocatalytic.
As previous authors we introduce the following
scaled variables :

A=[%}M[A], B = [Z_j] [B]
X = [E]IIZ [X] Yo [[_(2]1/2 [Y] (2)
ky ’ k,
(=ky1, D=3t

where [a] is the concentration of species a, T the
time and D, the molecular diffusion coefficient of

species a. Using mass action law, the rate equation
are :

% =—-ks,A+D,yAA
ox 3)
T =A-(B+1)X+X°Y+DyAX
% — BX - X?Y + Dy AY
. ky k3
Wlth kA:E and sz—k:,—k4'

The first equation does not involve any species
except A. The following analytical solution can be
obtained :

A(y) = Ciexp(wy) + Crexp(— wy) (4)
with

k4 _A@0) - A(¢) exp(wf)

®=.\/D,’ 1 I-expRowl)

C,=A(0)-C,.

Concentrations A(0) and A(f) are fixed on
boundaries W1 (y = 0) and W2 (y = ) as stated in
the previous section but mixed compositions of A
and B were used rather than a strict separation of
species. After the eliminiation of A, the system is
reduced to three independent nonlinear partial diffe-
rential equations, which were solved numerically by
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the method of lines. From previous analytical and
numerical results [1], obtained for one dimensional
geometry with uniform A and B, the following
suitable parameters were conjectured :

AW) =3
onW1{B(0) =2
X0)=Y@0)=0

A() =1
onW2iB(f) =6
X)) =Y{¢)=0
kA=kB=1O_2; DA=DB=12;
DX=4; Dy=20

and where the system dimensions were L = 50 and
f = 43 respectively in the Ox and the Oy directions.

The system was initialized in different
nonhomogeneous configurations in order to let dif-
ferent spatial modes grow. Identical asymptotic
patterns were observed but for a translation along
Ox due to the periodic boundary conditions. We
report different graphic representations of the X
concentration pattern. The same type of profile was
obtained for Y.

Figure 2 is a 3D perspective representation of the
surface X (x, y). The sharp peaks indicate both sharp
gradients in direction Oy (reaction front) and sym-
metry breaking instability in direction Ox (Turing
instability). Figure 3 exhibits some X (x) profiles at
increasing values of y. Close to the walls the
concentration is constant along Ox; far from the
walls a spatial mode of wavelength A = L /3 emerges
as a result of the Turing instability with a maximum
amplitude in the front region (y = 25). Figure 4 is
the concentration map of X. This map shows how
the spatial mode along Ox induces a large modu-
lation of the isoconcentration curves in the front
region. For a better visualization of the front we
imagine a color indicator changing from clear to
dark for X > 1.5 (Fig. 5a). A first color change

Fig. 2. — Concentration map of species X : 3-D represen-
tation.
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Fig. 3. — Concentration profiles of species X at various y
values.

reveals the increase of X with the distance to W1 but
no symmetry breaking. The second change reveals a
sudden decrease of X within the front and the
symmetry breaking related to the Turing instability.
If the color change threshold is raised to 1.9
(Fig. 5b) the front even exhibits a sub-structure in
relation with the sharp peaks of figure 2.

As our purpose is mainly to lay the foundation of a
new experimental approach to the stationary Turing
dissipative structures, we have focused our attention
on the fully developed pattern. Nevertheless, it can
be interesting to determine the nature of the tran-
sition by investigating the vicinity of the bifurcation
point. We report here on the numerical results
obtained when concentration B on wall W2 is taken
as the bifurcation parameter. The amplitude of
spatial oscillations in direction Ox at y =25 was
retained as the order parameter. This amplitude
decreases with B and vanishes at the bifurcation
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. 5a. — Front structure visualized at X > 1.5.
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Fig. 5b. — Front structure visualized at X > 1.9.

point B, = 4.8386 + 0.0001. In the limit of numerical
accuracy no hysteresis was observed which indicates
a supercritical bifurcation (Fig. 6a). Moreover the
Log-Log plot of this amplitude over B — B, is in
excellent agreement with the classical exponent 0.5
as shown in figure 6b.
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Fig. 4. — Concentration map of species X : isoconcentration curves.
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Fig. 6a. — Amplitude of stable spatial mode over bifur-
cation parameter B(f).
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Fig. 6b. — Amplitude of stable spatial mode over B — B,
(Log-Log plot). The straight line has slope 0.5 and
corresponds to the classical exponent.

Conclusion.

The results of our numerical simulations support the
conclusions obtained on the basis of heuristic argu-
ments. We have shown that the symmetry breaking
induced by the Turing instability can be revealed by
the self-organization of a stationary reaction front
where no convective or other thermal processes are
involved, and yields a periodic structure. A practical
experimental set up in agreement with the scheme of
figure 1 should be easy to build. The only role of the
permeable membrane is the separation of the react-
ing medium from the turbulent or convective mo-
tions in the feed. The membrane can be made of thin
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fritted glass or paper filter. Since the reactor is a thin
film of negligible volume, only moderate flows (or
buffered well stirred reservoirs) are necessary on the
boundaries. This solves the crucial problem of the
continuous feed of the system to maintain non
equilibrium conditions. The periodic boundary con-
dition are well approximated either in a thin film
formed by the gap between two close concentric
cylinders or in a flat fluid ring limited by two large
circular walls. No flux boundary conditions (rigid
impermeable wall parallel to Oy) could be used as
well. The expected structure, localized far from the
walls, should be quite insensitive to small pertur-
bations to local feed inhomogeneities on the bound-
aries. These perturbations are damped by molecular
diffusion before they reach the instability region of
the front. This point has been confirmed on the
model by computer tests.

A common objection to the experimental obser-
vation of Turing structures is the need for different
diffusion coefficients : this requirement should be
difficult to achieve in dilute aqueous solution where
most of small molecules coefficients range only from
0.5cm?s™! to 2cm?s~! but in gels or porous films
the differences between the effective coefficients can
be much larger. Use of such media would also avoid
parasitic convective effects.

Finally, analogous experiments performed in a
thin circular flat film of gel with the B. Z. reaction
have just been reported (16). They confirm the
formation of a reaction front visualized in this case
with ferroin as a redox indicator. The observed
deformation kinks propagating along the front
clearly correspond to excitations of the same nature
as the travelling waves in the currently observed
target patterns. Though the propagation is driven by
diffusion, the excitation do not result from a reac-
tion-diffusion instability and these waves are not
relevant of the spatial structures discussed in our
paper. Nevertheless, the possibility of propagating
excitations localized within a reaction front is very
stimulating in the perspective to bring experimental
evidence of a Turing instability through a steady
structured front. Experimental research is currently
in progress.
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