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Résumé. 2014 On étudie les configurations ordonnées possibles permettant de résoudre la frustration d’un

système périodique de films fluides frustrés, tels que ceux construits par les molécules amphiphiles en présence
d’eau, et présentant une topologie cellulaire de type simplement connecté. On montre qu’elles correspondent
à des organisations périodiques des milieux aqueux et amphiphile en cellules polyédriques, semblables aux
structures de type I et II des clathrates. Les murs de ces cellules supportent un film d’un milieu séparant des
micelles finies de l’autre milieu. Cette description est en bon accord avec les structures des phases liquides
cristallines de symétries cubiques rencontrées dans certains diagrammes de phases, entre les phases hexagonale
et micellaire.

Abstract. 2014 We examine the possible ordered configurations with cellular topology of the simply-connected
type, solving the frustration in a periodic system of frustrated fluid films, such as those built by amphiphilic
molecules in presence of water. We show that they are periodical organizations of amphiphilic and aqueous
media in polyhedral cells, similar to type I and II structures of water clathrates. The walls of these cells support
a self-intersecting film of one medium separating finite micelles of the other. This description applies well to
liquid crystalline phases with cubic symmetries found in some phase diagrams, in between the hexagonal and
micellar phases.
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1. Introduction.

In a small number of cases the phase diagrams of
amphiphilic molecules in presence of water exhibit
liquid crystalline phases with structures of cubic

symetries in two distinct concentration domains [1,
2]. An example of such a phase diagram is shown in
figure 1.

Structures of cubic phases observed in the im-
mediate vicinity of lamellar phases are now well
described. Their space groups are Ia3d or Pn3m in
most cases ; perhaps Im3m in some others. They are
presented as structures with « bicontinuous » topolo-
gy, where two congruent, or oppositely congruent,
infinite labyrinths of one medium are separated by
one intersection-free film of the other [3].

Structures of cubic phases observed in the vicinity
of micellar phases are not so well described. Their
most probable space groups might be Pm3n, Fd3m
or P4332 [3]. Two models have been proposed for
the structure with the first space group [2, 3], but

Fig. 1. - Phase diagram for the dodecyltrimethylam-
monium chloride/water system, La = lamellar, Ha =

hexagonal, M = micellar, Qa’ and Qa " = cubic, from
reference [1].

there is no consensus about them, and no description
has been proposed for the two last ones.

Because of their different location in the phase
diagrams there is no reason for these second cubic
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structures to have the same « bicontinuous » topolo-
gy as the first ones. We might expect instead a
cellular or « micellar » topology where an infinite
number of finite cells of one medium are separated
by an infinite self-intersecting film of the other.
Indeed the two models proposed for the structure
with space group Pm3n are partly, or totally, built
with micelles. They are represented in figure 2. The
first one is an infinite cage-like network of rods with

Fig. 2. - The two structures proposed for cubic phase
Q a " of space group Pm3n : a) amphiphilic molecules
build rods and micelles, the rods are connected 3 by 3 or 4
by 4 and build an infinite network determining cages
containing the micelles, from reference [4], b) amphiphilic
molecules build identical prolate micelles, the micelles on
the black sites are isotropically disordered, those on the
white sites are anisotropically disordered around the axes
shown in the figure, from reference [6].

enclosed spherical micelles [4]. It has been shown to
be incompatible with NMR experiments which were
unable to detect the long range translational diffu-
sion of amphiphilic molecules implied by the infinite
network [2, 5]. The second one is a cubic packing of
identical prolate micelles in either isotropic or anisot-
ropic fast rotations on their respective sites which is
compatible with NMR data [2, 6]. However, in spite
of this agreement, we can not adopt this latter model
immediatly. It proceeds from a formal analogy with
the structures proposed for solid y-02, {3-Fz and
N2 and the physics of these molecular crystals may
be suspected to be different from that of films and
aggregates built by amphiphilic molecules in pres-
ence of water.
For these reasons, and in order to get a guide for

the building of structural models, we developed our
analysis of liquid crystalline structures as assemblies
of frustrated fluid films in this case [7, 8]. We recall
that, on the basis of this analysis, we recently
proposed an approach consisting in the search for
the geometrical configurations optimizing the frus-
tration in the films. This approach, which gave
account of the topologies of liquid crystalline struc-
tures [7] and of the geometries of the structures of
cubic phases with « bicontinuous » topology [8],
proves to be valid in the present case too, providing

ordered geometrical configurations whose properties
may agree with the observed ones.

2. Generation of geometrical configurations.

Our approach was presented in references [7, 8] and
is just summarized here. Our point of view is that the
polymorphism of amphiphilic systems is associated
with the set of geometrical configurations which
optimize the frustration between forces perpendicu-
lar to the interfaces, maintaining them at constant
distances, and forces parallel to the interfaces,
controlling their curvature, as shown in figure 3. As
soon as the interfaces become curved this frustration

Fig. 3. - Schematic representation of the idea of frus-
tration : a) flat interfaces, or equal interfacial and middle
area in the film, are compatible with constant distances
between them, this is the situation in lamellar phases,
b) curved interfaces, or different interfacial and middle
area, are not compatible with constant distances between
them if the lamellar symmetry is kept, this frustration can
be solved by changes of topology and symmetry.

is imposed by the properties of our Euclidean space
R3. However it can be homogeneously relaxed if the
structure is transfered into the curved space with
constant positive curvature S3, the hypersphere in
R4. Then, as the structure exists in R3 not in

S3, the necessary mapping of S3 onto R3 is obtained
by introducing the adequate disclinations along the
symmetry axes of the relaxed structure in S3. This
procedure provides the possible configurations of
periodically stacked curved interfaces in presence of
the spatial constraints of R3. It leads to see liquid
crystalline structures as structures of disclinations.

2.1 GENERATION OF THE « MICELLAR » TOPOLOGY

[7]. - A symmetric film, made of two facing
interfaces, supported by a great sphere S2 of

S3 is a representation of a frustrated lamellar struc-
ture whose frustration has been relaxed by the
transfer into the curved space. This results from the
fact that S2 separates S3 in two identical finite sub-
spaces : the interfaces at equal distances from

S2 have area smaller than that of S2, so that the
frustration is relaxed, and every displacement along
a geodesic great circle S, normal to S2 periodically
crosses the film and the two media separated by it,
so that the periodicity of the system is preserved.
This relaxed structure admits C2 symmetry axes
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which are great circles of S2. The introduction of a
disclination along one of these axes brings in a third
finite sub-space, as shown in figure 4. The repetition
of this process, up to the point where the curvature

Fig. 4. - A disclination along a C2 axis of S2 in S3 (for the
sake of clarity only half a sphere S2 is shown in this

stereographic projection of 83 onto R3, and the symmetric
film supported by S2 is not represented) : a) S2 separates
83 in two identical sub-spaces, b) 82 is partly split in two
sheets limited by the C2 axis, c) a third sub-space,
identical to the two first, is introduced between the sheets.

of S3 has decreased to zero, just multiplies the
number of identical finite sub-spaces. We get there-
fore a space-filling packing of identical finite cells
which has the required topology, the cells being
separated by walls connected along disclination lines
which join at vertices. At this stage it is important to
notice that the topological stability of the cells

implies that the walls limiting them meet three by
three along common edges which meet four by four
at each vertex [9]. We have now everything in hands
to search for ordered organizations of these cells

and, because of their identity, the first step is the
search for eventual space filling assemblies of regular
polyhedra, or polytopes.

2.2 SEARCH FOR REGULAR POLYTOPES. - The law
of topological stability imposes the search for

polytopes having three faces per edge and four edges
per vertex or, having three faces belonging to the
same polyhedron around one vertex and three

polyhedra around one edge. This means, in Schlafli’s
{p, q, r} notation [10], the polytopes of the

{p, 3, 3 } family. They are four which, unfortu-

nately, exist in curved spaces only [11] :
- in spherical spaces with constant positive Gaus-

sian curvatures {3, 3, 3}, {4, 3, 3} and {5, 3, 3 }
- in a hyperbolic space with constant negative

curvature {6, 3, 3 } .
As there is no {p, 3, 3 } polytope in a flat Eucli-

dean space our problem admits no solution with
identical regular polyhedral cells [12]. We are there-
fore driven to search for eventual non-regular but,
nevertheless, periodic solutions. For this it is useful
to consider the fact that the regular {p, 3, 3 }
polytopes are found in spaces of decreasing curva-
tures and are therefore met one after the other

during the progressive introduction of disclinations
needed to map S3 onto R3. They are met at well
defined steps of the process, when the curvature of
the space is such that it can be tiled by a {p, 3, 3 }
polytope. In between two steps, when the curvature
of the space is not compatible with a regular
polytope, the filling of the space can not be regular.
This is the situation we shall be confronted with as
our Euclidean space R3 is not compatible with either
{5,3,3}, which exists in the spherical space of
lowest positive curvature for a {p,3,3} polytope,
or the following polytope {6, 3, 3 } , which exists in a
hyperbolic space of negative curvature. Indeed it can
be shown, writting the curvature as a function of p
and making it equal to zero, that, in R3, p =
5.1 and is not an integer [13]. If non regular solutions
exist in R3 they should be assemblies of polyhedral
cells with an average number of edges per face close
to 5.1.
The polytope of interest for us is obviously

{5, 3, 3 } which exists in the space of lowest positive
curvature. We must start from it and find the
disclination process realizing the final mapping of
S3 onto R3 which leads to ordered cellular structures.

2.3 DISCLINATIONS IN {5, 3, 3 } AND NON-REG-

ULAR PERIODIC CONFIGURATIONS. - This question
was previously adressed in the case of clathrate
structures of water and silicon-sodium alloys and, in
a related manner, in the case of the dual polytope
{3, 3, 5 } to analyse the Frank and Kasper’s struc-
tures of Laves phases and A15 alloys [14]. It was

shown that disclinations normal to pentagonal faces
of a dodecahedron transform it into the tet-

rakaidecahedron and hexakaidecahedron shown in

figure 5. These non-regular polyhedra are particu-
larly interesting here as it is known that, when
slightly distorted, they can be packed so that they
build periodic space-filling assemblies of cells [15].
These assemblies are indeed the organizations of
cages trapping host molecules in clathrates of water
molecules, the vertices being occupied by oxygen
atoms and the edges by hydrogen bonds [16].
Coming back to our problem, these organizations
should be those of the film and micelles permitted by

Fig. 5. - Transformation of a dodecahedron (a) into a
tetrakaidecahedron (b) by one - 2 v 15 disclination along
an axis normal to pentagonal faces and into a

hexakaidecahedron (c) by four half disclinations, hexagons
created from pentagons by disclinations are hatched.
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the properties of our Euclidean space, the film being
supported by the faces of the polyhedra and each
cage delimited by it containing a micelle. Several
structures can be built along the above principle and,
among them, we can distinguish two larges families
according to the fact that their dihedral and edge
angles stay close to 120° and 109° 28’ or show

departures from these values [16, 17]. If we limit
ourselves to the first family, whose angles are the
closest to those of fluid films balancing their tensions,
we are left with two relatively simple structures.

One, type I structure, has space group Pm3n and its
crystallographic unit cell contains 2 dodecahedra and
6 tetrakaidecahedra, the local arrangement of its

polyhedra being shown in figure 6. The second,
type II structure, has space group Fd3m and its

Fig. 6. - Aggregation of distorted 12-hedra and 14-hedra
in type I structure, on the right the positions of the 12-
hedra (e) and 14-hedra (0) in the cell of the Pm3n lattice,
from reference [15].

crystallographic unit cell contains 16 dodecahedra
and 8 hexakaidecahedra, the local arrangement of its
polyhedra being shown in figure 7. If larger depar-
tures from the classical angles of films are accepted,
other structures, involving also pentakaidecahedra,
are possible [15], they are reviewed in [16].

Fig. 7. - Tetrahedral aggregation of distorted 12-hedra
with one 16-hedron in the centre (hatched faces) in type II
structure, on the right the positions of the 12-hedra (e) and
16-hedra (0) in the elementary crystallographic cell of

volume 1/4 that of the Fd3m lattice, from reference [15].

3. Comparison with observations.

We recall that the failure of NMR spin echo

experiments to detect any long range translational

diffusion in cubic phases in the vicinity of micellar
phases imposed the idea that the aggregates forming
these phases are finite with rather limited sizes [2].
We therefore chose to work with the cellular, or
« micellar », topology generated in [7] and searched
for possible ordered configurations of films and
micelles in this case. This investigation led to non-
regular periodic cellular structures whose space
groups are indeed among those considered as poss-
ible for these cubic phases, see the introduction and
[3]. If we now focus our attention on structures with
space group Pm3n, about which we have the larger
set of data, we can try more quantitative tests about
the structures of the micelles contained in the cells of

type I structure with the same space group.
The first one concerns the mean size of a micelle

in type I structure, can it be reasonably compared
with the size of one amphiphile ? We shall make this
comparison in the case of the system dodecyl-
trimethylammonium chloride/water which forms a
Pm3m cubic phase with parameter 86 A for a

volume concentration of amphiphile of 43 % [4]. If
the structure were type I, its unit cell of volume
636 000 A3 would contain 2 dodecahedra and 6

tetrakaidecahedra, as each tetrakaidecahedron has a
volume equal to 1.2 times that of a dodecahedron
because of the very nature of the disclination process
the volume of one dodecahedron would be
69 000 A3, that of the micelle contained in it
29 000 A3 and the mean radius of the micelle would
be of about 19 A. This micellar radius compares well
with the length of the amphiphile.
The second test concerns the existence of two sites

with different symmetries in type I structure ; are

they detected experimentally ? The dodecahedra, of
highest symmetry, can be considered as providing an
isotropic environment to the micelles ; the tet-

rakaidecahedra, of lowest symmetry and with an

aspect ratio of 1.16, provides an anisotropic environ-
ment [16]. The amphiphilic molecules should experi-
ence isotropic reorientations in the first case and

anisotropic ones in the second. Their NMR spectra
should therefore contain a narrow component, with
a purely relaxational linewidth, and a broader one,
with a linewidth dominated by residual interactions.
Experimental spectra indeed show a complex shape
with two components [2]. The broad component is
about three times more intense than the narrow one,
as it should be in our model because of the relative
numbers of polyhedra, its linewidth being of about
2 kHz in the case of an NMR experiment with
deuterated molecules, as one might expect from the
anisotropy of the tetrakaidecahedron [18]. There is
therefore no disagreement between what might be
observed, if the systems adopted the possible
ordered geometrical configurations, and the actual
observations.

Three comments can be made at this stage. Firstly
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we point out the absence of any compact f.c.c.

packing of spherical micelles among the observed
structures, or among our configurations. This

suggests that a simple approach in terms of a

compact packing of hard spheres is not adequate and
justifies an approach in terms of films, optimizing
their periodical stacking, which does not impose any
constant distance between first neighbour aggre-
gates. The second comment is to recall that we have
studied two structures in details ony, Pm3n and

Fd3m, although others may be generated following
the same procedure, as discussed at the end of the
preceding paragraph. Our argument for focussing
our attention on these two structures is that they are
built with intersecting films having dihedral and edge
angles close to those of fluid films balancing their
tensions, while the others are not. However this
does not means that we consider that the latter are

impossible. Indeed the same constraint of optimized
periodicity quoted above might impose the distor-
sions of angles existing in these structures. Finally,
we want to stress upon the fact that the « micellar »

structure proposed here must not be confused with
that proposed in [2j. In the latter identical micelles
rotate isotropically or anisotropically according to
their sites in the unit cell whereas, here, micelles on
different sites are different in volume and shape.

4. Conclusion.

The interplay, or frustration, of forces acting in a
periodic system of fluid films built by amphiphilic
molecules in presence of water can find ordered

geometrical solutions within the frame of a topology

of finite cells separated by a self-intersecting film.
These solutions can be described as periodic packings
of polyhedral cells - slightly distorted dodecahedra,
tetrakaidecahedra and hexakaidecahedra - certain
of which are formally similar to type I and II
structures of water clathrates. This description is in
correct agreement with the results of known structur-
al studies of cubic phases found in between hexagon-
al and micellar phases of some phase diagrams. This
agreement, as the one previously obtained in the
case of « bicontinuous » cubic phases [8], exemplifies
the fact that liquid crystalline polymorphism pro-
ceeds from the action of physical forces, existing in
systems of films, within the frame of the geometrical
constraints of our Euclidean space. If we suppress
one force, for instance the interaction between two
films, the order is lost, as in macroscopic soap
bubble froths [12]. Also it must not be forgotten that
the structures found here are but possible geometri-
cal configurations and that we do not discuss their
physical stabilities relative to that of neighbouring
hexagonal and disordered micellar phases. For in-
stance there are systems which do not present
ordered micellar phases and in which the ordering of
the micelles appears as short range fluctuations only
[19], and others which might exhibit ordered phases
with more complex structures and fluctuations in the
same region of the phase diagram [20].
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