Fourth-order coherence-function theory of laser-induced molecular reorientational grating and population grating

Panming Fu, Zuhe Yu, Xin Mi, Peixian Ye

To cite this version:

HAL Id: jpa-00210656
https://hal.archives-ouvertes.fr/jpa-00210656
Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fourth-order coherence-function theory of laser-induced molecular reorientational grating and population grating

Panming Fu, Zuhe Yu, Xin Mi and Peixian Ye

Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, China

(Reçu le 12 mai, révisé le 1er septembre, accepté le 4 septembre 1987)

Abstract. — We have employed fourth-order coherence-function theory to study the influence of the partial-coherence properties of pump beams on the laser-induced gratings. First, we examine the formation of molecular reorientational grating. The different roles of phase fluctuation and amplitude fluctuation have been pointed out. A time-delayed method has been proposed to distinguish molecular reorientational grating from thermal grating. We then apply the fourth-order theory to study the Bragg reflection from a population grating. We obtain an analytic solution which enables us to make an extensive investigation on the temporal behaviour of the Bragg reflection signal. This study is especially helpful for elucidating the generation mechanism of population grating.

1. Introduction.

Recently, a great deal of research works have been devoted to the study of degenerate four-wave mixing (DFWM) because of its ability to generate a phase conjugate wave [1]. When the frequency of the incident beams is near an atomic transition, the resonant nature of the interaction also leads to a strong connection between DFWM and Doppler-free high-resolution nonlinear spectroscopy [2].

DFWM signal comes from the diffraction of light from laser-induced gratings. Since the gratings are originated from the interference of two pump beams in a material, the generation mechanism is influenced by the partial-coherence properties of pump beams. This problem has been studied by Eichler et al. [3]. They gave a second-order coherence-function theory, where, the Bragg reflection signal intensity is represented as an absolute square of a nonlinear polarization which is averaged over the stochastic realizations of the electromagnetic field. A similar theory has also been given by Grossman et al. [4]. According to these theories, gratings cannot be induced by partially coherent lights from two independent sources. Also, no Bragg reflection signal can be observed when the relative time delay between two pump beams, which are generated from a single laser, is much longer than the coherence time. Since it is the signal intensity which is measured, the correct procedure to treat this problem is to average the absolute square of the polarization over the random variable of the stochastic process. Using this method Trebino et al. [5] have studied the effect of pulse-width and grating decay on the formation of thermal grating.

In this paper, we will develop an unified theory which involves fourth-order coherence-function to study the influence of the partial-coherence properties of pump beams on the molecular reorientational grating and population grating. The Bragg reflection signal intensity versus relative time delay between
two pump beams will be calculated. First, we
examine theoretically the formation of molecular
reorientational grating. We derive exact expressions
for the Bragg reflection signal for two types of
radiation model, i.e., amplitude-stabilized radiation
and thermal radiation. The different roles of phase
fluctuation and amplitude fluctuation have been
pointed out. Based on the prediction of fourth-order
theory, we propose a time-delayed method to distin-
guish molecular reorientational grating from thermal
grating.

In the second part of this paper, we apply the
fourth-order coherence-function theory to study the
Bragg reflection from a population grating. The
relevant experimental situations to our theoretical
consideration involve two correlated pump beams to
produce a population grating and a broadband
uncorrelated probe beam. The essential difference
between population grating and molecular reorienta-
tional grating is that the generation of population
grating is dependent on transverse relaxation time
T_2, while its decay is determined by longitudinal
relaxation time T_1. Assuming thermal radiation
source with Lorentzian lineshape as pump beams,
we obtain an analytic solution for the Bragg reflec-
tion signal. One of the relevant problems is the
stationary four-wave mixing with incoherent light
sources, which was proposed by Morita et al. [6] to
achieve an ultrafast temporal resolution of relaxation
processes. Since they assumed that T_2 is much longer
than the light correlation time τ_c, their theory can
not be used to study the effect of light bandwidth on
the Bragg reflection signal. Asaka et al. [7, 8]
considered the finite linewidth effect, however the
constant background contribution has been ignored
in their analysis. Our fourth-order theory includes
both the finite light bandwidth effect and constant
background contribution. Based on the analytic
solution of this model, the influence of various
quantities, such as laser coherence time, transverse
and longitudinal relaxation time, on the Bragg
reflection signal can be investigated in more detail.
This study is especially helpful for elucidating the
generation mechanism of population grating. In
section 2 we study the formation of molecular
reorientational grating. Section 3 is devoted to the
population grating. Finally, section 4 gives our dis-
cussion.

2. Generation of molecular reorientation grating by
partially coherent light.

Consider an optical Kerr medium which is illumi-
nated by two partially coherent pump beams with
the same mean frequency ω. The complex pump
waves E_1 and E_2 can be written as:

$$E_i(r, t) = \varepsilon_i u_i(t) \exp[i(\mathbf{k}_i \cdot \mathbf{r} - \omega t)] ,$$

$$i = 1, 2$$

where ε_i and \mathbf{k}_i are the constant field magnitude and
the wave vector of two pump beams, respectively.
$u_i(t)$ is dimensionless field quantity which contains
the wave dependence of the pump beam fields, i.e.,
phase and amplitude fluctuations. The expectation
value of the modulus of $u_i(t)$ is assumed to be unity.

The order parameter Q of the molecular reorienta-
tional grating induced through the interaction of two
pump beams with molecules is governed by the
following equation of motion [9] :

$$\frac{\partial Q}{\partial t} = -\frac{Q}{T_D} + \frac{4}{3} \nu \Delta \alpha E_1 E_2^* ,$$

where $T_D = \nu/5 k_B T$ is the Debye relaxation time,
ν is a viscosity coefficient for an individual molecule
and $\Delta \alpha = \alpha_2 - \alpha_1$ is optical polarizability aniso-
tropy. Equation (2) can be solved formally, we have :

$$Q(t) = \frac{4}{3} \frac{\Delta \alpha}{\nu} \int_0^\infty dt' E_1(t - t') E_2^*(t - t') \times$$

$$\times \exp(-\gamma_D t') ,$$

where $\gamma_D = T_D^{-1}$.

The molecular reorientational grating is probed by
a light source with complex field amplitude

$$E_3(r, t) = \varepsilon_3 u_3(t) \exp[i(\mathbf{k}_3 \cdot \mathbf{r} - \omega_3 t)] .$$

Here, the mean frequency ω_3 is not necessary to be
equal to the pump beams frequency ω. The induced
polarization which is responsible for Bragg reflection
is :

$$P(r, t) = \frac{2}{3} N \Delta \alpha Q E_3(r, t)$$

$$= \frac{8}{9} N (\Delta \alpha)^2 \varepsilon_1 \varepsilon_2^* \varepsilon_3
\times \exp\left\{i(\mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3) \cdot \mathbf{r} - \omega_3 t\right\}$

$$\times \int_0^\infty dt' \varepsilon_1(t - t') \varepsilon_2^*(t - t') \varepsilon_3(t)$$

$$\times \exp(-\gamma_D t') .$$

The Bragg reflection signal intensity is proportional
to the average of the absolute square of the polarization
over the random variable of the stochastic
process. If pump beams are from a single source with
relative time delay τ, i.e., $u_1(t) = u(t), u_2(t) = u(t - \tau), while the probe beam is from an independent
source, we have the signal intensity $I(\tau) = \beta K(\tau)$ with :

$$K(\tau) = \int_0^\infty dt' \int_0^\infty ds' \langle u(t - t') u(t - s' - \tau) \times$$

$$\times u^*(t - t' - \tau) u^*(t - s') \rangle \exp[-\gamma_D(t' + s')] .$$

Equation (6) indicates that Bragg reflection signal is
dependent on the fourth-order coherence-function.
of the pump beam. For stationary process \(K(\tau) \) is independent of \(t \).

The fourth-order coherence function can be expressed in terms of the second-order coherence function. The recurrence relation depends on the statistical model of the laser field. First, consider the amplitude-stabilized radiation with Lorentzian lineshapes, which has been studied by Picinbono et al. [10]. According to equation (59) in reference [10] we can show that:

\[
\langle u(t-t') u(t-s' - \tau) u^* (t-t' - \tau) u^* (t-s') \rangle = \exp \left[- \alpha (|\tau| + |t'-s'| - |t'-s' - \tau|) \right].
\]

(7)

where \(\alpha = \frac{\delta \omega}{2} \) with \(\delta \omega \) the linewidth (FWHM) of laser source. Evaluating the integral in (6) yields:

\[
K(\tau) = \frac{2 \alpha}{\gamma_D (\gamma_D + 2 \alpha)} \times \left\{ \frac{\gamma_D}{2 \alpha} + \exp \left[- (\gamma_D + 2 \alpha) |\tau| \right] \right\}. \quad (8)
\]

We have the normalized signal intensity

\[
\eta(\tau) = \frac{I(\tau)}{I(0)} = \frac{1}{\gamma_D + 2 \alpha} \times \left\{ \gamma_D + 2 \alpha \exp \left[- (\gamma_D + 2 \alpha) |\tau| \right] \right\}. \quad (9)
\]

Figure 1 is the theoretical curve of (9). When the molecular reorientational relaxation time is much longer than the laser coherence time, i.e., \(\gamma_D \ll \alpha \), we have:

\[
\eta(\tau) = \frac{\gamma_D}{2 \alpha} + \exp \left(- 2 \alpha |\tau| \right) = \exp \left(- 2 \alpha |\tau| \right). \quad (10)
\]

In this limit signal intensity decreases exponentially as relative time delay between two pump beams increases and our fourth-order theory converts to the second-order theory of Eichler et al. [3] and Grossman et al. [4]. However, if \(\gamma_D \gg \alpha \), we have

\[
\eta(\tau) \approx 1 \quad (11)
\]

from (9). In other words, signal intensity is independent of relative time delay when the relaxation time \(T_D \) is much shorter than the laser coherence time \(\tau_c \). Physically, this novel feature can be understood from the following viewpoint. The Bragg reflection signal intensity is sensitive to the contrast factor of the fringes of molecular reorientational grating, whereas it is insensitive to the induced-grating phase. When \(|\tau| \approx \tau_c \), the interference pattern of two pump beams is in constant motion. Now, if \(T_D \gg \tau_c \), the integrated effect will cause the induced molecular reorientational grating completely washed out. In this case, no Bragg reflection signal can be observed and the second-order theory is applicable. However, when \(\tau_c \gg T_D \) the molecular reorientational grating will follow the field interference pattern whose phase is changing randomly on the scale of coherence time. Since no integrated effect reduces the contrast factor of the induced grating, the Bragg reflection signal intensity should not decrease. In other words, the signal intensity is independent of the relative time delay between pump beams. In this limit the second-order theory fails and our fourth-order theory is of vital importance to give correct results.

In order to clarify the different role of phase fluctuation and amplitude fluctuation, we compare the molecular reorientational grating induced by amplitude-stabilized source with that induced by thermal source. The fourth-order coherence function in (6) for thermal radiation is [11]:

\[
\langle u(t-t') u(t-s' - \tau) u^* (t-t' - \tau) \times u^* (t-s') \rangle = \exp \left(- 2 \alpha |\tau| \right) + \exp \left(- 2 \alpha |t'-s'| \right). \quad (12)
\]

Here, Lorentzian lineshape is assumed. After evaluating the integral in (6) we obtain the normalized signal intensity:

\[
\eta(\tau) = \frac{1}{2(\gamma_D + \alpha)} \times \left\{ \gamma_D + (\gamma_D + 2 \alpha) \exp \left(- 2 \alpha |\tau| \right) \right\}. \quad (13)
\]

Figure 2 shows the theoretical curve. When \(\gamma_D \ll \alpha \), we have:

\[
\eta(\tau) = \frac{\gamma_D}{2 \alpha} + \exp \left(- 2 \alpha |\tau| \right). \quad (14)
\]

This has exactly the same form as the normalized

Fig. 1. — Normalized Bragg reflection signal intensity of molecular reorientational grating \(\eta \) versus normalized relative time delay \(\alpha \tau \) calculated for amplitude-stabilized radiation model. Parameters used in the calculations are \(\gamma_D/\alpha = 5 (-\ldots\ldots); \ 1 \ (-\ldots\ldots); \ 0.1 \ (-\ldots\ldots) \).
Fig. 2. — Normalized Bragg reflection signal intensity of molecular reorientational grating η versus normalized relative time delay $\alpha \tau$ calculated for thermal radiation model. Parameters used in the calculations are $\gamma_D/\alpha = 5$ (---); 1 (----); 0.1 (-----).

intensity using amplitude-stabilized source as pump beams shown in (10). However, if $\gamma_D \gg \alpha$ we have:

$$\eta(\tau) = \frac{1}{2} \left[1 + \exp(-2 \alpha |\tau|) \right], \quad (15)$$

which is quite different from (11) when the pump beam is amplitude-stabilized radiation source. This difference is originated from the amplitude fluctuation of the thermal radiation source. From (2) the order parameter of the molecular reorientational grating is proportional to the product of the amplitude of two pump beams. When the relative time delay between pump beams is shorter than the coherence time, the coincidence of the intensity spikes of two pump beams will enhance the Bragg reflection signal, that explains the T dependence of the signal intensity in (15) for $\alpha \ll \gamma_D$.

The fourth-order theory shows that Bragg reflection signal decays to zero when $\gamma_D \ll \alpha$, while to a significant amount of constant background when $\gamma_D \gg \alpha$. This phenomenon can be employed to distinguish molecular reorientational grating from thermal grating. As is well known, if the absorption coefficient of a sample at pump beam frequency is not zero, the molecular reorientational grating is usually accompanied by an undesired thermal grating [12]. For most liquid the decay time of thermal grating γ_T^{-1} is of order of microsecond while Debye relaxation time is only of few picoseconds. If the laser linewidth is chosen such that $\gamma_T \ll \delta \omega \ll \gamma_D$, thermal grating can be suppressed when relative time delay between pump beams is much longer than laser coherence time. On the other hand, Bragg reflection signal from molecular reorientational grating is still observable. Experiments have been performed in dye-dissolving benzene and results will be published elsewhere. Another way to eliminate thermal grating is to use cross polarization configuration of pump beams. However, it measures the different component of order parameter tensor.

3. Generation of population grating by partially coherent lights.

In this section we will turn our attention to the influence of the partial-coherence properties of pump beams on population grating. For the sake of simplicity, we treat a homogeneous broadened two-level system interacting with resonant light, which can be written as $\hat{E}(\tau, t) \exp(-i\omega t) + \hat{E}^*(\tau, t) \exp(i\omega t)$. The basic equations of motion are:

$$\frac{\partial \sigma_{21}}{\partial \tau} = i \frac{\mu}{\hbar} \hat{E}_D - \gamma_2 \sigma_{21}, \quad (16a)$$

$$\frac{\partial \sigma_D}{\partial \tau} = 2i \frac{\mu}{\hbar} \left(\hat{E}_1 \sigma_{21} - \hat{E}_2^* \sigma_{21}^* \right) - \gamma_1 (\sigma_D - \sigma_D^{(0)}), \quad (16b)$$

where $\sigma_{21} = \rho_{21} \exp(i\omega t)$, $\sigma_D = \rho_{11} - \rho_{22}$ with ρ, the density matrix of the system; μ, the electric dipole matrix element of the transition; $\sigma_D^{(0)}$, the thermal equilibrium value of σ_D and γ_1, γ_2, the longitudinal (transverse) relaxation rate. We have already made rotating wave approximation in (16).

Electric field $\hat{E}(\tau, t)$ consists of two pump beams, $\hat{E}_1(\tau, t)$ and $\hat{E}_2(\tau, t)$, and a probe beam $\hat{E}_3(\tau, t)$, i.e.,

$$\hat{E}(\tau, t) = \hat{E}_1(\tau, t) + \hat{E}_2(\tau, t) + \hat{E}_3(\tau, t)$$

$$= e_1 u_1(t) \exp(i k_1 \cdot r) + e_2 u_2(t) \exp(i k_2 \cdot r) + e_3 u_3(t) \exp(i k_3 \cdot r). \quad (17)$$

Again $u_i(t)$ is time dependent field quantity contains phase and amplitude fluctuation.

Neglecting saturation effect, (16) can be solved by perturbation method under the following perturbation chains:

(i) $\sigma_D^{(0)} \rightarrow \sigma_{21}^{(1)} \rightarrow \sigma_D^{(2)} \rightarrow \sigma_{21}^{(3)}$

(ii) $\sigma_D^{(0)} \rightarrow (\sigma_{21})^* \rightarrow \sigma_D^{(2)} \rightarrow \sigma_{21}^{(3)}$

These chains denote that the establishment of population grating consists of two steps. First, optical coherence $\sigma_{21}^{(1)}$ is induced through the interaction of ground state atoms with one of the pump beam $\hat{E}_1(\hat{E}_2^*)$. Then, the interaction with another pump beam $\hat{E}_3^*(\hat{E}_1)$ gives rise to a population grating.
Since optical coherence decays with time constant T_2, the transverse relaxation time plays an important role in the generation of population grating. This feature characterizes the basic difference between population grating and molecular reorientational grating.

By solving (16) yields the population grating

$$\sigma^{(2)}(r, t) = 2 \left(i \frac{\mu}{\hbar} \right)^2 \varepsilon_1 \varepsilon_2 \exp \left[i (k_1 - k_2) \cdot r \right] \int_0^\infty dt_1 \int_0^\infty dt_2 \exp \left[- (\gamma_2 t_1 + \gamma_1 t_2) \right] \times \left[u_1(t - t_1 - t_2) u_2^*(t - t_2) + u_1(t - t_2) u_2^*(t - t_1 - t_2) \right].$$

It is probed by a light field $\mathcal{E}_3(r, t)$ and the nonlinear polarization responsible for Bragg reflection is given by:

$$P(r, t) = N \mu \sigma^{(3)} \exp(-i\omega t)$$

$$= i \hbar N \left(\frac{\mu}{\hbar} \right)^2 \varepsilon_3 \exp \left[i (k_3 \cdot r - \omega t) \right] \int_{-\infty}^t \int_{-\infty}^{t'} \int_{-\infty}^{t''} \exp \left[- \gamma_2 \{ (t - t') + (t - t'') \} \right] \langle u_3(t') u_2^*(t'') \sigma^{(2)}(t') \sigma^{(2)}(t'')^* \rangle.$$

Here N is the atomic density. The Bragg reflection signal intensity, which is the stochastic average of the absolute square of the nonlinear polarization, is:

$$I(\tau) = \beta [K_1(\tau) + K_2(\tau) + 2K_3(\tau)].$$

If pump beams are from a single source with relative time delay τ, i.e., $u_1(t) = u(t)$, $u_3(t) = u(t - \tau)$, while the probe beam is from an independent source with extra-short correlation time, i.e., $\langle u_3(t') u_2^*(t'') \rangle = \delta(t' - t'')$, the signal intensity is:

$$I(\tau) = \beta [K_1(\tau) + K_2(\tau) + 2K_3(\tau)].$$

Here β is a constant and:

$$K_1(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 \int_0^\infty f(t_1, t_2, s_1, s_2) \times \langle u(t - t_1 - t_2) u(t - s_2 - \tau) u^*(t - t_2 - \tau) u^*(t - s_1 - s_2) \rangle,$$

$$K_2(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 \int_0^\infty f(t_1, t_2, s_1, s_2) \times \langle u(t - t_2) u(t - s_1 - s_2 - \tau) u^*(t - t_1 - t_2 - \tau) u^*(t - s_2) \rangle,$$

$$K_3(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 \int_0^\infty f(t_1, t_2, s_1, s_2) \times \langle u(t - t_1 - t_2) u(t - s_1 - s_2 - \tau) u^*(t - t_2 - \tau) u^*(t - s_2) \rangle,$$

with $f(t_1, t_2, s_1, s_2) = \exp \left[- (\gamma_1 (t_1 + s_1) + \gamma_2 (t_2 + s_2)) \right]$. $K_1(\tau)$ and $K_2(\tau)$ are the auto-correlation of population gratings originated from perturbation chain (i) and chain (ii), respectively. $K_3(\tau)$ is the cross-correlation of population gratings from two different chains. Analytic expressions for $K_i(\tau)$ can be obtained if we assume thermal radiation source with Lorentzian lineshape. We get:

$$K_1(\tau) = G_1(\tau) + G_4(\tau),$$

$$K_2(\tau) = G_2(\tau) + G_4(\tau),$$

$$K_3(\tau) = G_3(\tau) + G_5(\tau),$$

with:

$$G_1(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 \exp \left[- \alpha (|t_1 - \tau| + |s_1 - \tau|) \right] = \left[\frac{1}{\gamma_1 (\gamma_1 - \alpha)} \right]^2 \left[\exp \left(- \frac{\alpha}{\gamma_1} \right) \right]^2.$$
The Bragg reflection signal is:

\[G_2(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 f(t_1, t_2, s_1, s_2) \exp\left[-\alpha \left(|t_1 + \tau| + |s_1 + \tau| \right)\right] = \left[\frac{1}{\gamma_1 (\gamma_2 + \alpha)} \right]^2 \exp(-2 \alpha |\tau|), \quad (23b) \]

\[G_3(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 f(t_1, t_2, s_1, s_2) \exp\left[-\alpha \left(|t_1 - \tau| + |s_1 + \tau| \right)\right] = \frac{1}{\gamma_1 (\gamma_2 - \alpha)(\gamma_2 + \alpha)} \left\{ \exp(-2 \alpha |\tau|) - \frac{2 \alpha}{\gamma_2 + \alpha} \exp(- (\gamma_2 + \alpha)|\tau|) \right\}, \quad (23c) \]

\[G_4(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 f(t_1, t_2, s_1, s_2) \exp\left[-\alpha \left(|t_1 + t_2 - s_1 - s_2| + |t_2 - s_2| \right)\right] = \frac{\gamma_1 + \gamma_2 + 2 \alpha}{\gamma_1 (\gamma_1 + 2 \alpha)(\gamma_2 + \alpha)(\gamma_1 + \gamma_2 + \alpha)}, \quad (23d) \]

\[G_5(\tau) = \int_0^\infty dt_1 \int_0^\infty dt_2 \int_0^\infty ds_1 \int_0^\infty ds_2 f(t_1, t_2, s_1, s_2) \exp\left[-\alpha \left(|t_1 + t_2 - s_1 - s_2| + |s_1 + s_2 - t_2| \right)\right] = \frac{\gamma_1 + \gamma_2 + 3 \alpha}{\gamma_1 (\gamma_1 + 2 \alpha)(\gamma_2 + \alpha)^2(\gamma_1 + \gamma_2 + \alpha)}. \quad (23e) \]

The Bragg reflection signal is:

\[I(\tau) = \beta \left[\frac{2}{\gamma_1 (\gamma_2 - \alpha)(\gamma_2 + \alpha)} \right]^2 \left[\gamma_2 \exp(-\alpha |\tau|) - \alpha \exp(-\gamma_2 |\tau|) \right]^2 + \frac{2(\gamma_1 + \gamma_2 + 2 \alpha)}{\gamma_1 \gamma_2 (\gamma_1 + 2 \alpha)(\gamma_2 + \alpha)(\gamma_1 + \gamma_2 + \alpha)} \frac{2(\gamma_1 + \gamma_2 + 3 \alpha)}{\gamma_1 (\gamma_1 + 2 \alpha)(\gamma_2 + \alpha)^2(\gamma_1 + \gamma_2 + \alpha)}. \quad (24) \]

Equation (24) is the main result of this section. Because of its analytic form, the influence of various quantities, such as laser coherence time, transverse and longitudinal relaxation time, on the Bragg reflection signal can be investigated in more detail.

The first term in (24) is just the absolute square of the statistical average of population grating, i.e., \(\left| \langle \sigma_D^{(1)} \rangle \right|^2 \). Unlike the case of molecular reorientation grating, both coherence time and transverse relaxation time influence the temporal behaviour of the signal intensity. The second and third terms give a constant background.

Figure 3 is the theoretical curves of normalized intensity versus \(\alpha \tau \) for different \(\gamma_2/\alpha \) and \(\gamma_1/\alpha \). It shows that the decay time of the Bragg reflection signal increases with the decrease of \(\gamma_2/\alpha \). The underlying physics can better be understood in time domain. As pointed out by Morita et al. [6], a light with coherence time \(\tau_c \) can be considered as composed of a sequence of constant phase subpulses with duration \(\tau_c \). When the relative time delay between pump beams is \(\tau \), the subpulse pairs within two pump beams can be classified into coherent pairings, which are separated by \(\tau \), and incoherent pairings for the other cases [8]. Population gratings generated by coherent pairings have a common phase and therefore grow up coherently. This coherent grating determines the temporal behaviour of \(\tau \). On the other hand, gratings generated by incoherent pairings have random spatial phases. This incoherent grating contributes to the Bragg reflection signal intensity a constant background.

Considering the coherent grating, it can be generated only when the separation between coherent pairings is less than \(T_2 \), because the optical coherence \(\sigma^{(1)}_D \) decays with time constant \(T_2 \). When \(T_2 < \tau_c \), overlap between coherent pairings is required. Since the duration of constant phase subpulse is \(\tau_c \), coherent grating decays according to \(\exp(-\alpha |\tau|) \) in this limit. When \(T_2 \) increases, grating can be generated by coherent pairings with longer separation between them. This leads to the increase of the decay time of Bragg reflection signal.

In this region, the temporal behaviour of \(\eta \) depends on both \(\gamma_2 \) and \(\alpha \). When \(T_2 \gg \tau_c \), the finite coherent time of light can be neglected. In other words, coherent grating is only dependent on \(T_2 \), which leads to a temporal behaviour of \(\exp(-\gamma_2 |\tau|) \) in this limit [6-8].

The constant background is originated from the incoherent grating. Define a parameter \(C \) as \(C = \eta(\infty)/(1 - \eta(\infty)) \), which measures the con-
Fig. 3. — Normalized Bragg reflection signal intensity of population grating n versus normalized relative time delay $\alpha \tau$. Parameters used in the calculations are (a) $\gamma_1/\alpha = 0.1$ and $\gamma_2/\alpha = 0.5$ (---); 1 (----); 10 (----). (b) $\gamma_1/\alpha = 1$ and $\gamma_2/\alpha = 0.5$ (---); 1 (----); 10 (----).

Fig. 4. — Theoretical curves of C versus γ_1/α with $\gamma_2/\alpha = 0.5$ (---); 2 (----); 100 (----).

The situation is different when $T_1 \ll \tau_c$. In this case, no accumulation of population grating can exist, therefore, the incoherent grating is always comparable to the coherent grating. Actually, we have $C = 1$ from (24) in the limit of $\gamma_1 \ll \alpha$ and $\gamma_2 \gg \alpha$. The situation is different when T_2 / τ_c increases. On the other hand, T_2 / τ_c determined the number of incoherent pairings which can contribute to the incoherent grating. It leads to an increase of C when T_2 / τ_c increases.

4. Discussion.

We have studied the influence of the partially coherent properties of light on molecular reorientational grating and population grating. Although the mechanism for the generation of these two types of gratings is quite different, there exists a connection between them. As mentioned before, transverse relaxation time plays an important role in the generation of population grating. However, when T_2 is extremely short the optical coherence induced by one pump beam will decay quickly. Therefore, no grating can be generated unless the induced optical coherence interacts immediately with the other pump beam. This situation is similar to the generation process of molecular reorientational grating since the order parameter responds directly to the...
field intensity. Actually, when $\gamma_2 \gg \gamma_1$, α, we have
from (24):

$$\eta(\tau) = \frac{1}{2(\gamma_1 + \alpha)} \times \left[(\gamma_1 + (\gamma_1 + 2\alpha) \exp(-2\alpha |\tau|) \right]. \quad (25)$$

With the decay rate of population grating γ_1 replaced by the decay rate of molecular reorientational grating γ_D, equation (25) converts to (13) exactly.

In section 3 an analytic expression (24) has been derived for the Bragg reflection signal intensity assuming thermal radiation source (which is often used to approximate a multimode laser) with Lorentzian lineshape for the pump beams. This analytic solution enables us to make a detailed investigation on the temporal behaviour of the Bragg reflection signal. Moreover, if the thermal radiation source has a general form of lineshape, a formal expression is still obtainable. The τ dependence of the Bragg reflection signal is:

$$I_{s.o.}(\tau) = \beta |L(\tau)|^2, \quad (26)$$

with $L(\tau)$ proportional to $\langle \sigma_0^2(\tau) \rangle$, i.e.,

$$L(\tau) = \int_0^\infty d\tau_2 \exp(-\gamma_1 \tau_2) \int_0^\infty d\tau_1 \exp(-\gamma_2 \tau_1) \times \left[\langle u(t - \tau_1 - \tau_2) u^*(t - \tau_2 - \tau) \rangle + \langle u(t - \tau_2) u^*(t - \tau_1 - \tau) \rangle \right]. \quad (27)$$

It is instructive to note that equation (26) is exactly the result of second-order coherence-function theory. According to the Wiener-Khintchine theorem [13], the relation between field autocorrelation function and the power spectrum $S_0(\Delta)$ is

$$\langle u(t - \tau) u^*(t) \rangle \propto \int_{-\infty}^{\infty} d\Delta S_0(\Delta) \exp(-i\Delta \tau). \quad (28)$$

We have from (27)

$$L(\tau) \propto \int_{-\infty}^{\infty} d\Delta \frac{S_0(\Delta) \exp(i\Delta \tau)}{\Delta^2 + \gamma_2^2}. \quad (29)$$

Or the Bragg reflection signal intensity is:

$$I_{s.o.}(\tau) \propto \left| \int_{-\infty}^{\infty} d\Delta S_0(\Delta) \exp(i\Delta \tau) \right|^2. \quad (30)$$

It is not difficult to show that (30) is equivalent to the corresponding results in references [7, 8]. However, Asaka et al. [7] employed rate equation approximation, therefore an assumption of $\gamma_2 >> \gamma_1$ should be imposed in their derivation at the beginning. Here we note that in the limit of $\gamma_1 \ll \gamma_2$, α, the constant background can be ignored.

In conclusion, we have employed fourth-order coherence-function theory to study the influence of the partial-coherence properties of pump beams on the laser-induced gratings. First, we examine theoretically the formation of molecular reorientational grating. By comparing the Bragg reflection signal for two types of radiation model, i.e., amplitude-stabilized radiation and thermal radiation, the different roles of phase fluctuation and amplitude fluctuation have been pointed out. Based on the prediction of our fourth-order theory, we propose a time-delayed method to distinguish molecular reorientation grating from thermal grating. We then apply the fourth-order theory to study the Bragg reflection from a population grating. Assuming thermal radiation source with Lorentzian lineshape as pump beams, we obtain an analytic solution which enables us to make a detailed investigation on the temporal behaviour of the Bragg reflection signal. This study is especially helpful for elucidating the generation mechanism of population grating.

Acknowledgments.

This work was supported by Chinese National Science Foundation.

References

