Comments on: Evidence for magnetic organization of high Tc superconductor YBa2Cu3O7 observed by neutron diffraction

B. Farnoux, R. Kahn, A. Brulet, G. Collin, J.P. Pouget

To cite this version:
Comments on: Evidence for magnetic organization of high T_c superconductor YBa$_2$Cu$_3$O$_7$ observed by neutron diffraction

B. Farnoux, R. Kahn, A. Brulet, G. Collin+ and J.P. Pouget+

Laboratoire Léon Brillouin*, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France
+Laboratoire de Physique des Solides, Bât. 510, UA 02, Université Paris-Sud, 91405 Orsay, France

(Reçu le 21 octobre 1987, accepté le 21 octobre 1987)

In [1] we reported the existence of an anomalous increase of intensity, observed by neutron powder diffraction, occurring in a magnetic field below T_c, on the 001 nuclear reflection ring of the superconductor YBa$_2$Cu$_3$O$_7$. Two symmetric spots appeared in a plane normal to the magnetic field direction. This result was obtained on a non-compacted powder sample.

In the absence of any appreciable modulation in intensity on the rest of the ring (no apparent texturation), we suggested that this effect could be due to a magnetic organization within the sample. However, because of the regular reactor shut-down, we could not perform further experiments.

Very recently additional measurements on sintered and non-sintered samples, with various oxygen concentrations, as well as the observation of other nuclear reflections, reveal that the effect previously reported only occurs for unconstrained powders and is due to a magneto-mechanical orientation of the grains, a consequence of the very anisotropic magnetic properties shown by this material below T_c [2].

The apparent reversibility we observed in the first experiment when the magnetic field was switched off, was due to a disorientation of the grains by the vibrations of our low-temperature device. In absence of vibrations, the structuration of the diffraction ring induced by the magnetic field remains stable even above T_c.

Finally, we recently received a preprint by J.M. Tranquada et al. [3] who reproduced our observation of the alignment of YBa$_2$Cu$_3$O$_7$ particles in a magnetic field, and which provides a confirmation of our results.

Experiments are in progress in order to obtain more information concerning the non-conventional structuration of the diffraction spectrum, associated with this magneto-mechanical effect.

References