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Résumé. — Dans I’approximation dipolaire et dans ’approximation du champ tournant, on donne les solutions
pour les opérateurs correspondant aux populations des niveaux et aux nombres de photons. Les résultats
numériques pour I’évolution dans le temps des populations des niveaux, dans le cas de modes de pompage 1 et
3 initialement cohérents (le mode 2 étant initialement vide), sont donnés et comparés aux résultats pour un
atome a trois niveaux dans les copfigurations en échelle et en lambda.

Abstract. — In the dipole and rotating wave approximation the operator solutions for the level populations and
photon numbers are found. The numerical results for the time-evolution of the level populations for the case of
initially coherent pumping modes 1 and 3 (mode 2 initially in vacuum) are reported and compared with those

for a three-level atom in the ladder and lambda configurations.

1. Introduction.

The exact operator solution for the Jaynes-Cum-
mings (J-C) model [1] of a two-level atom interacting
with a quantized single-mode radiation field was
presented by Ackerhalt [2] in 1974.

A number of recent papers have been devoted to
studies of the dynamics of a three-level atom in-
teracting with two modes of classical [3-6] or quan-
tized [7-12] electromagnetic field. In papers [7, 8],
exact Schrodinger wave functions have been ob-
tained for some special initial states. Li and Bei [9]
have derived, in the interaction picture, the explicit
expression of the evolution operator. The exact
operator. solutions for the level populations and
photon numbers have been found as well for both
lambda [10] and ladder [11] level structure.
Moreover, the strict operator solutions for lambda
configuration of the levels in the case when the two
lower levels are coupled to the upper one by
multiphoton transitions have been obtained [12]. An
interesting review of the dynamical theory of J-C-
type models has been given by Yoo and Eberly [13].

In the present paper we study the dynamics of a
four-level atom coupled in a lossless cavity to a
three-mode resonant quantized field. The structure
of the levels is given in figure 1. The assumed model
contains, in fact, three three-level subsystems with a
common fourth level ; one can distinguish here two
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Fig. 1. — Energy-level scheme.

subsystems in the ladder configuration (levels 1-4-3
and 2-4-3) and one subsystem in the lambda configur-
ation (1-4-2).

Some aspects of the dynamics of a four-level atom
in other level configurations interacting with a
classical field have been studied in references [14-
17].

In this paper we show that the operator equations
of motion for the model assumed can be solved
explicitly. Applying our solutions, we further exam-
ine the dynamical behaviour of the populations of
levels 1 and 2 and compare the results with those for
the three-level atom in the ladder (1-4-3) and
lambda (1-4-2) configurations, respectively, as-
suming in both cases the mode 2 as initially unex-
cited. In other words we study, in the first case, the
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influence of the depopulation rate enhanced by the
possibility of « spontaneous » transitions of the atom
to the additional adjoined level 2 on the dynamics of
the fundamental level 1. In the second case we
compare the dynamical properties of the level 2
« spontaneously » populated in the presence or abs-
ence of pumping of the atom to the upper level 3.

2. The Hamiltonian of the system.

The Hamiltonian for the model under consideration
in the dipole and rotating wave approximation is
given by :

where
4
Hy= Y %oy R; @)
i=1
is the free atomic part ;
. 3 1
e 3w (w6,0)
F Z o A, Ay + 2 (3)

a=1
represents the free field Hamiltonian, and :
1:11 = 7g, (4, R41 + a7 R14) + #g,(4, R42 +4& R24) +
+ #ig3 (43 R34 +d3 R43) 4)

is the dipole interaction part ; the g,(a =1,2,3)
are atom-mode coupling constants.

The photon annihilation 4 and creation 4*
operators for the modes « and B satisfy the commuta-
tion rule :

®)

[da’ d[-; ] = aaﬁ ’

while the atomic operators R,-j = |i) (j|, describing
transition of the atom from the level j to the level i,
obey the relations :

Rij Rkl = Ril 6jk ’

. ) . (©6)
[Rijs Rul = Ry 8 — Ry 8.
In turn, the operator Ri,- represents the population

of the level i with energy 74w, ; the following
conservation law is fulfilled :

4 -
Y R;=1.

i=1

™)

3. Solution of the problem.

With respect to the commutation rules (5) and (6),
the Heisenberg equations of motion for the level
population and photon number (7, = a4} d,)
operators have the form :
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Rll =ig,(4 R41 —af R14) >

Rzz =ig,(4, Ié42 —a; Rz4) ’ ®
Iéss =—ig;(4; R34 — a3 R43) ’
ﬁ1=1§11,ﬁ2=1§22,ﬁ3=—1§33- &)

The relations (9) give the following constant excita-
tion number operators N :
N 1 = ﬁl - Rll Py
Ny =i = Ry, (10)
N 3 = fl3 + R33 .
By the second differentiation of equations (8),
one finds :

23 - - - 3 a
R, =2 ‘Qi(R44 - Raa) —9a Z 9s Taﬁ >
B#a

(@ =1,2,3) (11)

where, for brevity, we have introduced the auxiliary
operators
Ty =Ty = 6,35 Ry +df &Ry,
T3 =Ty = 08143 Ry + a1 43 Ry,  (12)
T23 = T32 = ﬁ2ﬁ3R32+d2+ ﬁ; R23 .
They describe two-photon transitions between the
levels a and B by the common fourth level.

The (2, are the operators of the one-photon Rabi
frequency, and :

2 =g(N, +1),
23 =g5(N,+1), (13)
-ég =9§N3-

Differentiation of the operators (12) leads to the
following three integrals of motion :

a

Caﬁ =—(ga gp Taﬁ+!§iRﬁﬂ+0% Raa’
(a#B=1,2,3) (14

where, obviously, ¢ ap = ¢ pa- Onme easily checks
that these operators commute with the operators
62

With respect to equations (14) and the conserva-
tion law (7), we finally get the following closed set of
differential equations for the level population
operators :

* A A A A > 5
Rya=—-(CB0%+ )R, -3 05 Y Rgp+
B#a

3
+ Y Cop+2 %, (a=1,2,3) (15

B#a
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where

3
2=y 0}.
B=1

(16)

is the operator of the effective three-photon Rabi
frequency.

The solution of the above equations can be found
using the Laplace transform technique. To solve the
problem one should note the commutativity of the
operators .Qﬁ and 2 with the operator RM.

After some lengthy algebra we finally find :
e
2
+ 02 P(t)+ RS

aa >

R,,(t) = —2 a,sin> == + B, sin Ot +

(a=1,2,3) (17)
and, owing to the conservation law (7),

Ryu(t)=—-0Q*P(t)+ Ry (18)
where the superscript (°) denotes the operators at
t=0.
The operator P (t) is :
P(t)=-2dsin?Qt+Bsin2 0. (19)
Formally, the solutions (17)-(18) resemble those
for the three-level two-mode system [10, 11] ; due to
the configuration of levels assumed, the four-level
atom preserves the two Rabi frequency branches
0 and 2 Q of the three-level atom [9-12]. However,

the amplitude operators are different and their form
is as follows :

3
a = (ZQ%Rgp—ﬂzR&+
- 3 3 N
+¥Y ¥ gpgﬂ%y)/w“’
B=1vy>8
- 3 2
B=7Y Rp/2°,

Moreover, with respect to the relations (10), we
get :

a

A (t) = —2dasin2%+[§asin Ot +

+ Q2 P@)+/ (a=1,2,3) (21)
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4. Discussion.

To start with, we shall compare the dynamical
behaviour of the fundamental level 1 of the atom
under consideration and of that of the three-level
atom in the ladder configuration (levels 1-4-3). Let
us assume that at ¢+ = 0 the four- and three-level
atom is in its lower state |1), i.e., that the expecta-

tion value R = (1 | R | 1) I' = 1, and that the field
mode 2 starts from vacuum whilst the field modes 1
and 3 are initially coherent with the mean photon
numbers (A}) =n0 and (AJ) = nd, respectively.
Under these conditions for the expectation values

Ry, (¢) in the case of g; = g, = g; = g, we find from
(17) and (20) :

4 nd(nd + x)

Ry(1)=1- i i ‘

0 0

0 0 2
Q=00 (n1+n3+x)

n{?
—a 3 X
" +nd+x)

X sin2(\/n{’ +nd+xgt )] P PR, (22)

X sinz(\/n{’ +nd+xgt/2) +

where the statistical weights P (n?), i =1, 3, are
obviously given by the Poissonian distributions :

0
0" —
n; -0
P(n,o)=l—0'-e nl.

i

23)

In equation (22) we have introduced the parameter
x in order to present in a single expression the
formulas valid for both the four- and three-level
atom. Namely, in the first case one should put
x =1 while in the latter case x = 0 (then g, = 0).

For great photon numbers nd and nd>1 the
summations over n{ and nJ can be performed analyti-
cally by using the saddle — point method as has been
done for the Jaynes-Cummings model [18]. Here, we
are interested in the influence of the enhanced
depopulation rate related to the existence of spon-
taneous transitions of the atom from the level 4 to
the level 2 on the time-evolution of the fundamental
level population. This influence will be appreciable
at relatively small photon numbers n_? and n—g. Then,

however, we cannot use the saddle-point method
and we have to perform numerical computations.
The results of our numerical solutions are presented
in figures 2 and 3.

Figure 2 shows the short-time evolution of the
fundamental level population. It is readily seen that
the initial oscillation period is shorter for the four-
level atom. This is so because the Rabi frequencies
in the sinusoidal factors in the sums (22) are greater
in this case owing to the extra 1 related to the
spontaneous transitions of the atom to the level 2.
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Fig. 2. — Short-time evolution of the fundamental level

population R;;(¢) for the four-level atom (solid line,
g1=9=69:=4¢, n°— S, n° 0, n0— 1) and the three-

level atom in the lidder configuration (broken line,
91=63=9,9,=0,n0=5, nd = 1).
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Fig. 3. — Time-dependence of the fundamental level

population : a) four-level atom, b) three-level atom. Con-
ditions are the same as in the case of figure 2.

The envelopes of these oscillations collapse to zero
and the collapse time is greater for the four-level
atom. The above conclusions are in qualitative
agreement with the results of Li and Zhu [19].
Strictly, they considered an N-level (N — 1)-mode
system with common upper level and examined the

0

Ry(t) = Z Z

(n1+n +1)2

N° 9

effect of spontaneous transitions to N —2 lower
levels on the dynamical behaviour of the level
populations and photon numbers.

With the mean photon numbers assumed, the
maxima of the second revivals (Figs. 3) are notice-
ably greater than those of the first revivals. In the
case of a two-level atom one has a sequence of
revivals with monotonous decrease of their maxima
[18]. Already in the case of the three-level atom one
deals with different kinds of revivals related to the
two branches of the Rabi frequencies in the sums
(22). The maximum of the subsequent low-fre-
quency branch revival is greater than that of the
preceding high-frequency branch revival [11]. The
greater maxima of the second revivals and the longer
revival times (Figs. 3) suggest that they are related
to the low-frequency oscillations ; albeit, their ir-
regularities show that they are in fact compositions
of the first revival of the low-frequency oscillations
and the next successive revivals of the high-fre-
quency oscillations. The maxima of the second
revivals are practically comparable for both atoms,
contrary to the maxima of the first revivals. We
conclude directly that, for the fundamental level
population, the role of the high-frequency branch of
oscillations (at small photon numbers and upward of
very short times) is diminished in the case of the
four-level atom by comparison with the three-level
atom (see also Eq. (22)). This conclusion coincides
with that arising from the results for the model of Li
and Zhu [19] ; namely, the participation of the high-
frequency branch of oscillations in the fundamental
level population decreases as the number of levels
increases.

Let us now discuss the dynamical behaviour of the
level 2 and compare the results with those for the
three-level atom in the lambda configuration (levels
1-4-2). In both cases we assume that the level 2 is
populated by spontaneous transitions. Here, for the
three-level atom we have to consider one pumping
field only, i.e. the field mode 1. For the four-level
atom we must as previously take into account two
pumping modes 1 and 3. Under the same conditions
as assumed in the relation (22) we find for the four-
level atom

4 sin’ (\/n?+ n?+1gt/2) — sin’ (\/n?+ nd+1 gt)}P(n?) P(n) =

'lz 0n0 0

® ® 4n) —_

=Y Lot (M +n+1gt/) PP (),  (24)

0 nd- 0(n1+n3+1)

and for the three-level atom
© 4n 0
Rp(t) = 3 (n? 1)2 —5— sin’ (\/”1 +1gt/2) P(n)), (25)

2-0

n
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where the statistical weights for coherent pumping
modes are given by (23). Moreover, for both
atoms Ry (t) = ny(2).

It is obvious from equations (24) and (25) that
now the amplitudes of the high- and low-frequency
branch of oscillations are reduced in the same degree
for the four-level atom and hence, contrary to the
formerly discussed case, the maxima of the first and
the second revivals are less for this atom. The results
of our numerical computations are plotted in
figures 4.

Ay
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Fig. 4. — Time-dependence of the level 2 population :
a) four-level atom (g, =g, =¢;=9, nd=10, nd=0,

nl = 2), b) three-level atom in the lambda configuration
(91=9,=9, g5 =0, n? =10, nJ = 0).
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The maxima of the second revivals in the cases
considered in figures 4 are remarkably larger than
those of the first revivals. This feature, as evident
from equation (24), is related with the factor 4 in the
term representing the low-frequency branch of. the
Rabi oscillations (the factors containing photon
numbers are the same for both branches).

To conclude briefly, we have solved the operator
equations for the four-level atom explicitly for the
case of three one-photon resonances. The quantum
electrodynamical expression of the three-photon
Rabi frequency has been found as well. We have
shown that quantum collapse and revival are possible
in the loss-free four-level three-mode system and, as
in the case of the three-level atom, we deal with
different kinds of revivals due to the existence of two
branches of the Rabi frequency of oscillations. As
for the fundamental level population, we note, at
small pumping photon numbers, the diminished role
of only the high-frequency branch of oscillations in
comparison with the three-level atom in the ladder
configurations as reflected in the less maximum of
the first revival.
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