
HAL Id: jpa-00210541
https://hal.science/jpa-00210541

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Amplitudons and phasons in the triple-k
incommensurate phase of quartz-type crystals

M. Vallade, V. Dvorak, J. Lajzerowicz

To cite this version:
M. Vallade, V. Dvorak, J. Lajzerowicz. Amplitudons and phasons in the triple-k incom-
mensurate phase of quartz-type crystals. Journal de Physique, 1987, 48 (7), pp.1171-1179.
�10.1051/jphys:019870048070117100�. �jpa-00210541�

https://hal.science/jpa-00210541
https://hal.archives-ouvertes.fr


1171

Amplitudons and phasons in the triple-k incommensurate phase of
quartz-type crystals

M. Vallade, V. Dvorak (*) and J. Lajzerowicz

Laboratoire de Spectrométrie Physique, B.P. 87, 38402 Saint-Martin-d’Hères Cedex, France

(Reçu le 8 décembre 1986, révisé le 2 mars 1987, accept6 le 4 mars 1987)

Résumé. 2014 Le spectre des amplitudons et des phasons a été calculé pour une structure incommensurable à
3-k, triangulaire, du type de celle observée dans les cristaux isomorphes au quartz, en utilisant un modèle
phénoménologique. Deux excitations ont des courbes de dispersion du type acoustique (phasons sans « gap »)
et quatre excitations sont du type optique, l’une de ces dernières correspondant aux fluctuations de la somme
des phases des trois ondes de modulation. On discute la stabilité de la structure incommensurable
3-k par rapport à ces excitations et on montre en particulier la possibilité d’un amollissement de la vitesse de
propagation d’un phason. Les règles de sélection concernant l’activité de ces excitations en absorption
infrarouge et en diffusion Raman ont été établies.

Abstract. 2014 The spectrum of amplitudons and phasons has been calculated for a 3-k triangular incommensur-
ate structure (such as it is found in quartz-type crystals) using a phenomenological model. Two excitations have
acoustic-like dispersion curves (gapless phasons) and four excitations are optic-like, one of the latter

corresponding to fluctuations of the sum of the phases of the three modulation waves. The stability of the
3-k incommensurate structure with respect to these excitations is discussed and in particular a possible phason
velocity softening is pointed out. The selection rules for infrared and Raman scattering activity of these
excitations are derived.
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1. Introduction

The elementary excitations of incommensurate

(inc.) single-k systems have been shown to be of two
different kinds : phasons and amplitudons [1-3]. The
former ones have acoustic-like dispersion curves

which go to zero frequency when the wave-vector q
(taken from the modulation wave-vector ko) goes to
zero. Such gapless excitations arise from the in-

variance of the system in a global shift of the phase
of the modulation (Goldstone mode). Amplitudons
have optic-like dispersion curves but their frequency
at ko goes to zero at a 2nd order phase transition
point which separates the inc. and the parent (usually
the high temperature) phases. The soft optic branch
exhibits two parabolic minima at ko and - ko, in the
parent phase, so that excitations at ko + q and
- ko + q are degenerate for sufficiently small q
wave-vectors. This degeneracy is lifted in the inc.

phase by the modulated potential created by the

frozen-in inc. wave. The new elementary excitations,
at small q, are found to be the symmetric and
antisymmetric combinations of the normal coordi-
nates 6+q and 6-ko+q of the parent phase

The purpose of the present paper is to investigate
how this simple picture is modified when a triple-k
inc. structure is present, as is the case in quartz-type
crystals. In these systems, the inc. structure results
from the condensation of a soft mode at 6 symmetry
equivalent points in the reciprocal space (± kl,
-+- k2, ± k3) near the I’ point. It is then clear that, for
a given q, six excitations at ± ki + q are degenerate
in the normal phase. The modulated potential
couples these excitations, in the inc. phase, giving
rise to three amplitudons and three phasons. Two
phasons only, however, are gapless excitations at
q = 0 because the inc. structure is left invariant by
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translations within the plane of the modulation
wave-vectors (the basal plane of the hexagonal
structure). The phases of two modulation-waves can
thus be chosen arbitrarily, but the third one is

usually well defined with respect to the others. As a
matter of fact the free energy can contain a cubic
invariant :

where 17 k. = Pi eiefi is the inc. order parameter. The
free-energy does depend upon the phase
«/J = «/J 1 + «/J 2 + «/J 3 and the excitation which corre-
sponds to changes in qi will be a phason with a gap at
q = 0 while the excitations which change the

qi i without modifying 4/ (for example : 5 qi 1 =

correspond to the two gapless phasons.
In the present paper the spectrum of the inc.

excitations is calculated using the phenomenological
theory presented in reference [4] which has proved
to be successful in explaining the most salient
features of the static properties observed in the inc.
phase of quartz-type crystals [5]. The role of the
cubic invariant (Eq. (2)) - which is specific of a
« triple-k » structure - will be particularly em-

phasized.
A brief summary of the present work was previ-

ously published as a short conference report [6]. We

give here a thorough discussion of the problem and,
in addition, the infrared and Raman activity of the
excitations will be discussed in the last section.
Walker et al. [7] have also discussed the dynamics of
the inc. phase of quartz but they focussed their
attention on the coupling between the phasons and
the acoustic phonons and they did not consider the
other (optic like) excitations.
We were also aware, during the course of this

work, that Shionoya et al. [8] were also studying the
same subject in connection with recent light scatter-
ing experiments. Their conclusions concerning the
general picture of the excitation spectrum agree with
the results published in [6], and therefore with those
of the present paper. However those authors did not
make a complete analysis of the wave-vector and
temperature dependence of the mode frequencies
and our present results are not’in agreement with
theirs concerning the Raman selection rules.

2. Amplitudons and phasons spectrum in the triple-k
inc. phase of quartz.

The onset of an inc. phase in quartz-type crystals has
been shown to arise from a coupling between a zone
center soft optic mode (which induces the a-,B
structural phase transition) and acoustic phonons
propagating in the (0,0,1) plane. After elimination
of the elastic degrees of freedom the free energy
takes on the general form :

the k dependence of the quartic term coefficient B
will be neglected for the sake of simplicity.
Taking the hexagonal symmetry of the high-tem-

perature phase, into account the coefficients A and
G, when expanded as a function of k, can be written
[4] :

where kj = I kj I and 0 j is the angle between

kj and the 2-fold crystallographic axis Ox.
(A slightly different form of the cubic invariant

was taken in [4] but it can be easily proved to be
equivalent to (Eq. (5)) when the condition kj + k j I
+ km = 0 is taken into account.)

It has been shown in [4] that, for some values of
the parameters, F exhibits a minimum for a state

corresponding to a symmetric triangular triple-k
structure, i.e. when the only non-zero Fourier com-
ponents in equation (3) are l1:tkl’ 7itk29 11:tk3 with

When relations (6) are inserted into equation (3) one
gets
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where the following reduced coordinates have been
used in order to simplify the notations :

The + and - signs in (7) correspond to the two
possible values of sin qi. They explain the existence
of « macro-domains » in the inc. phase. In the

following we shall consider a single-domain state

corresponding to sin qi = - 1. In order to keep a
symmetric form for the three modulation waves, we
choose the origin of the phases such that at equilib-
rium :

so that :

The minimization of (7) with respect to 0 and k
leads to :

An explicit expression of p can only be obtained in
the limit t --+ 0 :

with

The elementary excitations at wave-vector q are

found by calculating the excess free-energy AF
associated to a change Aq (r ) of the modulated order
parameter, of the form :

the part of AF which is quadratic in Qj, can be
written as a matrix dot product :

and the (6 x 6 ) matrix V (q ) is given by

with:

The absence of any zero in V (q) expresses the fact
that the potential created by the frozen-in triple
modulation couples together the 6 degenerate modes
at (--t kj + q).
The eigenfrequencies squared Cù j(q) of the excita-

tions are given by the eigenvalues of V (q ). Let us
consider first the case q = 0. Then, one has :

where again the reduced parameters (8) have been
used. The matrix V (0 ) can be easily diagonalized
using the unitary transformation

With

For q = 0 excitations, the normal modes Q! which
diagonalize V (0), can be classified according to their
transformation properties in the symmetry operation
of the point group of the inc. structure. In the

present case, one can easily establish [13] that this
point group is C6. The symmetry operations of this
group send the wave-vectors kl of the star into each
other and the Q!(O) normal modes are the linear
combinations of the 3. which transform according to
the irreducible representations of this group. This
result generalizes that obtained for single-k inc.

structure, for which the group of ko is C2 and the
normal modes are the symmetric and antisymmetric
combinations of the Qi, associated respectively to
the even and to the odd irreducible representation of
this group. The eigenvalues of V(O) and their

corresponding eigenvectors are found to be :



1174

The last two frequencies vanish since :

is proportional to aF/ a p (see Eq. (7)) and thus
vanishes at equilibrium. The other frequencies can
be calculated in the limit t - 0 :

(with p as defined in Eq. (10)).

One can note that, owing to the degeneracies of

w2 and w 2, the matrix V can also be diagonalizedA2 A3 

using a real transformation (associated with the
« physically » irreducible representation of C6). The
eigenvectors are in this case :

The apparent antisymmetric form of the amplitudon
as a function of Q;, which contrasts with its usual
symmetric form in single-k inc. systems, arises from
the fact that the equilibrium amplitudes have been
taken pure imaginary.
The physical meaning of these eigenvectors is

readily pointed out by noting that for q -+ 0 the
complex amplitudes Qj are related to small uniform
changes of q

so that :

c/J + and 0 - correspond to translations of the inc.
modulation in the basal plane (along the Ox and Oy
axes respectively) and are the gapless phasons.
0 1 is the phason associated with a change A qi and is
thus an optic-like excitation.
The Ai are the amplitudon modes. All these

modes are illustrated in figure 1. Let us now consider .,

the case q 0 0. The matrix V (q ) can no longer be
easily diagonalized. For sufficiently small q and not
too small t the eigenfrequencies can be calculated
using a perturbation technique. The matrix

5 V = V (q) - y (0) has diagonal terms proportional
to q 2, but some of the non-diagonal terms are

proportional to q so that a perturbation calculation
up to second order is necessary to get the £c) f( q) to
lowest order in q. Unfortunately this perturbation
method is of limited interest because it is invalid

when t goe to zero, since the 6 eigenvalues become
degenerate.

Therefore the diagonalization has to be performed
numerically in order to determine the behaviour of
the eigenfrequencies near the phase transition tem-
perature Ti. Such a calculation has been performed
for various sets of the parameters A, G and
G’. The dispersion curves obtained for A = 9,
G = 2, G’ = 10 are shown in figure 3 for various
temperatures and for two different orientations of
the wave-vector q. This particular set of parameters
has been chosen because it leads to a temperature
dependence of k and 0 (cf. Fig. 2) in qualitative
agreement with those observed in quartz [10,11]. (A
detailed comparison between the phenomenological



1175

Fig. 1. - Constant amplitude curves for the inc. modu-
lation q (r) = q, (r) + Aq , (r) where q 0 (r) is the equilib-
rium value of 17 and å 17 j (r ) corresponds to each of the six
q = 0 normal mode excitations.

The dashed curves correspond to 17 : 0, the full curves
correspond to 71 &#x3E; 0. The dashed-dotted lines correspond
to T?o = 0.

theory and experimental observations will be given
in a forthcoming paper).
When considering the dispersion curves of

figures 3 and 4 some points of special interest can be
noted :

i) The slopes of the acoustic-like phasons at

q = 0, just below Ti are different from the slopes of
the soft-mode at T = Ti, in the vicinity of the
modulation wave-vector ki.

This phenomenon is analogous to the discontinuity
of the sound velocity observed at a 2nd order

transition point. This discontinuity of the phason
velocity arises in the present case from the depen-
dence of the phason frequency upon the parameters
G and G’, for T Ti.

ii) The anisotropy of the dispersion curves

changes drastically with t and/or q. For small q and

Fig. 2. - Reduced modulation wave-vector k and tilt

angle 8 ¢ of the equilibrium « 3-k » inc. structure as a

function of the reduced temperature t. They are obtained
from minimization of the free energy (Eq. (7)) with

d=9, G = 2 and G’=-10.

sufficiently large t, the dispersion curves are isotropic
in the (001 ) plane. This is in agreement with the
point group symmetry of the inc. phase (C6 for the
triangular structure) : when the q dependence of
w?(q) is dominated by the quadratic terms (oc q 2),
the dispersion curves are expected to be isotropic in
this plane. On the contrary for large q (or sufficiently
small t) one recovers the anisotropy of the uncoupled
excitations, characterized by the parameter A (quite
large in the present case).

iii) The eigenvectors of the amplitudons A2,
A3 and of the phasons 0 2 and 0 3 exhibit a strong
wave-vector dependence associated with « anticros-
sing » effects quite visible in figure 3. The smaller t
is, the narrower the range of wave-vector over which
the excitations keep their pure phason or amplitudon
character.

These effects are also a consequence of the
existence of the cubic terms (Eq. (2)).

3. Possibility of a phase transition induced by a
phason instability.

As discussed in (4) several types of inc. structures
can be found according to the values of the par-
ameters in the free energy (Eq. (3)). In order to be a
possible equilibrium state, the « triple-k » triangular
state defined by (Eq. (6)) has to correspond to a
local minimum of the free energy F considered as a
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Fig. 3. - Dispersion curves of the 6 excitations of the inc.
phase at small q wave-vectors. t is the reduced temperature
measured from Ti and 0 is the angle between q and the Ox
cristallographic axis. t = 0.0 curves correspond to the set
of dispersion curves of the soft mode at T = T;, in the
vicinity of the 6 modulation wave-vectors ki.

Fig. 4. - Same dispersion curves as in figure 3 plotted as a
function of 0 at constant q, in order to show the tempera-
ture dependence of the anisotropy.

function of the 12 parameters: p i , iki, ki, Oi i
(i = 1 to 3). Among these 12 parameters, 8 only are
relevant, since F depends on Oi only through

qf = L .p and the 5 function in equation (3) implies
i

that k1 + k2 + k3 = 0. The stability of the state

requires that the (8 x 8 ) matrix of the second

derivatives (a2FB,9xi 9xj) be definite positive. The
calculations can be most easily performed when

using as independent variables (p, p’, p ", ,
cp’, cp", k, If) defined by :

The matrix (a 2 Flaxi axj) can then be decomposed
into three block diagonal matrices which involve
respectively the second derivatives with respect to

(p, K , k), to q-i and to (p’, p ", 0 ’, 4, ") - .
In the limit t --+ 0, the stability condition can be

simply written :

The upper bound for p corresponds to the fact that
higher order terms are required to stabilize F for
t  0 and p &#x3E; 15. (First order transition above

Ti). The lower bound Po lies (for 2l &#x3E; 0) between 2
and 6. For p  6 it has been shown in [4] that the
« single-k » state is more stable than the « triple-k »
state. For po -- p « 6, however, the « triple-k » state
remains « locally » stable and one can readily check
that the squared eigenfrequencies (Eq. (18)) are

actually all positive. A question then arises : what
kind of instability occurs near p = po ? Numerical
calculations show that the slope of the lowest phason
branch becomes negative for p -- po. The situation is
then similar to that found for a ferroelastic phase
transition, for which the instability of the lattice

against a homogeneous strain is accompanied by the
vanishing of a sound wave velocity (12). The analog
of the strains are in our case the gradients of the
phases Vjt/J i (r), i.e. the wave-vectors ki in the plane-
wave approximation and q = 0 limit. The distorted
inc. phase corresponds to changes in the wave-
vectors k,, both in length and in orientation and the
inc. structure is a homogeneously strained triangular
lattice. Numerical calculations show that for A = 9,
G = 2, G’ - - 8.7 (p = 4.43  po), the ferroelastic-
like transition occurs when varying the temperature
(see Fig. 5). It seems that the cubic terms (G and
G’) act as a « piezoelectric-like » coupling between
the amplitudons (A2, A3) and the phason (02, cP3)
and the decrease of the frequency wA2 when t goes to
zero induces the phason instability (the stability limit
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Fig. 5. - Temperature dependence of the lowest phason
dispersion branch indicating a « ferroelastic » like instabili-
ty of the incommensurate structure for the values of the
parameters A = 9, G = 2 and G’ = - 8.7.

po, given in equation (23) for t = 0, is then a

decreasing function of t).
The present discussion is probably not relevant for

quartz since the triple-k structure seems to be stable
in this material. One can guess, however, that a
phase transition between two different triple-k inc.
phases, induced by a phason instability could well be
found in other systems.

4. Infrared and Raman activity of phasons and
amplitudons.

The optical activity of excitations can be discussed
by assuming that the optical wavelength is far larger
than the modulation wavelength. The selection rules
can then be established by classifying these excita-
tions according to the irreducible representations of
the point group of the inc. phase. This point group
can be defined as the group of symmetry elements
which leave the system invariant, except for an
irrelevant phase shift [13]. One can thus easily see
that the triple-k triangular inc. structure of quartz
belongs to the point group C6. The way the amplitu-
dons A; i and the phasons 0 i transform, can be
derived by expressing Aq (r) as a function of these
coordinates (using Eqs. (11) and (17)) :

The functions C i (r) and di (r) are simple combi-
nations of the exp (± i K . r ) which transform as

irreducible representations of C6 and one can thus

deduce the transformation properties of Ai and
j. The results are summarized in table I.
The infrared and Raman activity selection rules

can then be established as for phonons. One must
distinguish the case of optic-like excitations (AI,
A2, A3, 01) and that of acoustic-like excitations

(0 2, cP3) [3, 14]. For the former ones, the mode is
infrared (respectively Raman) active if it transforms
as a vector component Pi (resp.) a symmetric 2nd
rank tensor component a il. For the gapless phasons,
one must consider the transformation properties of

(qi 0 j ), associated with the gradient of the phases
and analogous to the strain tensor. The results are
summarized in table I. It is noticeable that the

excitation 0 1 is silent (infrared and Raman inactive).

Table I. - Infrared and Raman activity of the amplitu-
dons and phasons, deduced from their symmetry proper-
ties in the point group qf the 3-k inc. phase of quartz
(C6). The upper part of the table indicates the selection
rules for the optic-like excitations and the lower part
. for the acoustic-like excitations (gapless phasons).

In the preceding sections we only considered the
dispersion curves for wave-vectors lying in the (0, 0,
1) plane, nothing new being expected when they lie
in the other planes. For the sake of completeness we .
give the selection rules for arbitrary direction of the
wave-vector in table I.
An alternative way to establish the preceding

selection-rules is to build the various invariants of
the high-temperature phase, which involve a uniform
polarization component Pi (or polarizability compo-
nent a ij) and powers of the order-parameter 7q and
of its spatial derivatives [14, 15].

Discarding the invariants which are exact deriva-
tives and which thus vanish after integrations, the
other ones allow a determination of the kind of

coupling which exists between Pa i (or a ij) and the
excitation eigenvectors Ai or Oi. Limiting ourselves
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to lowest order terms, two types of invariants have
to be considered :

(where X stands for P; or aij and c.p. means « cyclic
permutation » over the indices).

1J k. + q is then expressed as a function of A1 (q) and
i (q) while nki is taken at its equilibrium value
1J ki 

= i p. For optic-like excitations it is sufficient to
consider equation (22) for q = 0, but for acoustic-
like excitations one has to keep terms linear in q.
Since the infrared (or Raman) efficiency is pro-
portional of the coupling terms (Eq. (25)), this
method presents the advantage to provide informa-
tion concerning the temperature dependence of this
efficiency. The various invariants, expressed as a
function of p (the order parameter amplitude),
ko and 6 (the tilt angle of the inc. wave vectors from
their direction at T = Ti) are listed in table II. (let us
recall that 5 oc p oc (tri - T)1l2).

The results are obviously in agreement with the
selection rules derived by group-theory, but they
disagree with those given in reference [8] concerning
the phasons. The origin of the discrepancy could
arise from the fact that Shinoya et al. implicitly
assume that the cubic term coefficient (B with their
notation) does not vanish at Ti whereas it contains a
term cos 3 cP (see Eqs. (7), (9)).

5. Concluding remarks.

The whole analysis presented in this paper is based
on the free energy (Eq. 3). This form of the free-
energy has been obtained after elimination of the
elastic degrees of freedom so that the coupling
between the order parameter q and the strain field

Uij does not appear explicitly in our treatment. A
more rigorous approach would consist in studying
the dynamics of the acoustic phonons and of the
phasons and amplitudons simultaneously (terms
like (q. U q) T1  ki + q T1 k; for example couple acoustic
phonons near q = 0 bilinearly with the excitation
coordinates Qki)’ This kind of coupling was previous-

Table II. - List of the lowest order terms invariant in the symmetry operations of the p-phase of quartz, which couples
a vector component Pi, or a symmetric 2nd peak tensor component a; ; with the a-fl order parameter n or its first
derivatives (0 r¡/OXj)’ (Only terms which are not exact derivatives have been retained) The column on the right hand
side, indicates the corresponding invariants which involve the excitation coordinates and Pi or (Xij’ p is the amplitude
and ko wave-vector length qf the inc. modulation wave. 6 is the tilt angle qf the wave vector, from the  1, 0, 0 &#x3E; crys-
tallographic directions.



1179

ly considered for amplitudons by Hirotsu et al. [15]
and for phasons by Bruce et al. [2] and Poulet et al.
[3]. In the case of quartz it has been discussed by
Walker et al. [7]. These authors, on another hand,
did not consider the optic-like excitations which play
an important role in the shape of the dispersion
curves of the phasons, as shown in section 2.
The damping of the excitations was also ignored in

the present work. However, nothing qualitatively
new is expected for « triple-k » inc. structures,
compared to the usual « single-k » case. Phason and
amplitudon damping is roughly given by that of the
soft mode at ki in the high temperature phase [14,
17]. In quartz-type crystals neutron scattering experi-
ments [18] indicate that this damping is rather large
(= 0.3 to 0.7 THz) so that the phasons and probably
also the amplitudons are overdamped over the
whole range of temperatures of the inc. phase. This
makes a direct experimental observation of these
modes quite difficult. It is likely that a large amount
of the central component intensity observed in
Raman and Brillouin scatterings [19] is related to
these excitations, since this intensity shows a maxi-
mum in the inc. phase. The indirect effect of phasons
and amplitudons on the sound wave velocity disper-
sion [7, 14, 20] could be another way to get
information about the eigen frequencies of these
excitations.

To conclude, we have shown that the spectrum of
the low frequency excitations of the triple-k inc.

phase of quartz-type crystals is composed of two
gapless phasons and four optic-like other excitations,
one of which corresponds to fluctuations of the sum
of the phases of the 3 modulation waves. We have
pointed out the special role played by the cubic
invariant term on the shape of the dispersion curves
and in particular our phenomenological model sug-
gests the possibility of a phase transition between
two triple-k inc. structures induced by a phason
velocity softening which results from the presence of
this cubic invariant. Such an instability, however,
occurs when the triple-k structure is only meta-
stable ; it would be interesting to look for other
phenomenological models for which it would actually
occur in the domain of stability of the triple-k
structure.
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