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The roughening transition of crystal surfaces.
I. Static and dynamic renormalization theory,
crystal shape and facet growth

P. Nozières (1,*) and F. Gallet (2)

(1) Institut Laue Langevin, B.P. 156, 38042 Grenoble Cedex, France
(2) Groupe de Physique des Solides de l’Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05,
France

(Requ le 22 juillet 1986, accept6 le 17 novembre 1986)

Résumé. - Le traitement de la transition rugueuse par une méthode de renormalisation est repris à la base, tant
dans le cas statique que dans le cas dynamique. Les résultats antérieurs fondés sur une approximation asymptotique
sont corrigés, en particulier en ce qui concerne la mobilité. Pour un interface incliné, ou en présence d’une force
appliquée F, il apparaît une nouvelle échelle de longueur, qui doit être comparée à la longueur de corrélation 03BE. De ce
fait, la transition rugueuse est étalée, la transition progressive se situant en dessous de TR. Nous approchons cette
transition par les deux bouts, par une technique de « renormalisation bloquée » du côté rugueux, dans un schéma de
« marches discrètes » du côté facetté. A ce dernier stade, la discussion est surtout qualitative. La comparaison avec
l’expérience sera faite ailleurs.

Abstract. 2014 The renormalization approach to the roughening transition is reconsidered, both in a static and in a
dynamic picture. Earlier results based on an asymptotic approximation are corrected, especially as regards the
interface mobility. For a tilted interface, or in the presence of an applied force F, a new length scale appears, which
must be compared to the correlation length 03BE. As a result, the roughening transition is blurred, the crossover
occurring below TR. This crossover is approached from both ends, via a « stopped renormalization » technique on the
rough side, within a « discrete step » picture in the faceted state. At this last stage, the discussion is mostly qualitative.
Comparison with experiment is done elsewhere.
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The existence of a roughening transition of planar
crystal surfaces was predicted long ago by Burton,
Cabrera and Frank [1]. It is now well established that
this transition is of the type described by Kosterlitz and
Thouless [2, 7, 9] in a different context. Standard
theories are based on a renormalization group ap-
proach, in which the length scale is progressively
enlarged [3]. Such a renormalization may be carried
out either in real space, or more conveniently in
momentum space [4], by elimination of short wave-
length fluctuations of the surface. However, such a
momentum renormalization must be carried out

carefully [5], and in this respect, much of the existing
literature is incorrect. Moreover, all existing calcula-
tions rely on a « logarithmic » approximation, which is
only correct at the transition temperature itself. In

(*) Also at College de France, 3, rue d’Ulm, 75231 Paris
Cedex 05, France. ,

order to interpret recent experimental results on the
roughening of 4He facets at the transition and away
from the transition, one needs a more systematic
theoretical picture.

In the present paper, we first reconsider the renor-
malization theory of a static roughening transition. We
extend it to a vicinal surface with a finite tilt angle 0
and, for T : TR, we analyse the transition from a
« rough » behaviour at large 0 to a discrete step regime
at small 8. We then turn to the dynamic behaviour of
the surface, i.e. its response to an applied overpressure.
That problem was considered by Chui and Weeks [6],
who demonstrated a crucial result : the dynamics is
« conventional », in the sense that the mobility remains
finite at TR. Their approach, however, is exact only at
T = TR, as usual with renormalization methods : we
shall see that it may be significantly improved away
from TR. More generally, we shall discuss both the
linear mobility at T &#x3E; TR and the transition towards a
non linear homogeneous nucleation regime at T  TR.
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These results are used in order to interpret experiments
in 4He in the accompanying paper [10].
The main purpose of the present paper is to expound

explicitly, to correct and to extend ideas which are

present in the literature, in a way which allows compari-
son to experiment.

1. Static renormalization. 
’

We consider a planar interface, whose height fluctua-
tions are described by a profile z (r ). The corresponding
energy is

where a is the lattice spacing normal to the surface, y
the surface stiffness, related to the surface energy
a (0 ) according to

The pinning potential V tends to fix the interface at
integer values of z/a. In order to give (1) a meaning,
we need a cut off. Following Knops et al. [5], we
assume that equilibrium fluctuations for V = 0 are such
that

The original cut off Ao is - a - 1 ; the form factor

f (x ) goes to 1 if x - 0, to 0 if x &#x3E; 1: its precise shape is
irrelevant (sharp step function or smooth cut off).
Technically, (2) is achieved by the replacement
’Y -+ ’Y If in (1).

In a renormalization transformation, we write
z = f + 5z, in such a way that in zeroth order (in V)

(gi (110) will eventually be made infinitesimal).
We can formally introduce the following Hamil-

tonian :

in which zk and 8zk are now independent statistical
variables. It is easily verified that (1) and (3) are

equivalent, in the sense that they yield the same

partition function Z

(If we carry the summation over 8zk first at constant
zk, we recover the partition function of (1) within an
irrelevant constant factor : (1) and (3) are physically
equivalent).
The spirit of renormalization is to eliminate 5z by

integrating (4) over 8zk at constant Fk, thereby defining
an effective energy E for the truncated fluctuations

The periodic potential V = V cos (2 7razz) creates a
mode-mode coupling, so that

where ( ) denotes a Gaussian average over SZk- (5) is
still exact : in order to proceed, we expand in powers of
V

The expression (6) is the basic approximation of the
theory, valid for weak coupling V  T.
From now on, the algebra is standard. Since it is

done elsewhere [3], we only sketch it. We introduce a
correlation function

(Jo is the zeroth order Bessel function) from which we
infer

The dimensionless quantity n = 17 T/ ya2 will be crucial
in what follows. The first order correction to E is simply
a renormalized periodic potential, with a strength

reduced by the fluctuations 8z. In second order, we
find

with p = r’ - r.

The first term in the bracket is an harmonic which we
discard as irrelevant. The second term involves the

difference (z - z’ ) : it will act to renormalize y.
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For an infinitesimal renormaiization, 6 g is small and
we can write

One could then argue that the range of p is small, so
that a further expansion is allowed

If we accept (8), the renormalization of y follows at
once :

Indeed, that is the procedure followed in many
papers on the subject. Unfortunately, (9) is wrong. If
we use a sharp cut off A, the integral over p is

identically zero (it involves the integral

which vanishes since the Fourier components of z and
8z are non overlapping). If one uses a smooth cut off
that extends down to k = 0, the integral is finite.

However 8 y is then an artefact of the cut off pro-
cedure : because the renormalization touches long
wave length fluctuations (k -+ 0), one must correct y ;
but that correction is put by hand and it has nothing to
do with mode-mode coupling. (This is especially obvi-
ous if one considers an harmonic potential V = Ez2/2
instead of the periodic potential used here : the above
formulation does yield a 8 y, while physically all modes
are obviously decoupled).
We are thus forced to two conclusions : (i) a smooth

cut off should not extend down to k = 0 if the renor-
malization 5 y is to make any sense ; (ii) the expansion
(8) is then incorrect, since it would yield 8 y = 0 : the
correct procedure was given by Knops and den Ouden
[5]. When handling the factor cos (2 17 (z - z’) I a) in
(7), we should consider that F is the sum of two

contributions : the equilibrium fluctuations ieq, and a
small correction £ in which we are explicitly interested
(for instance the response to a small long wave length
perturbation). We want to expand with respect to " but
not with respect to T,-q- Consequently, we average over
aeg before expanding in I :

In analogy with 8 g, we define

from which we infer (in lowest order V = 0)

The erroneous result (9) is then replaced by

6 y is thus controlled by all fluctuations, those of z as
well as of 8z. Note that all divergences have been
eliminated, in 8 g because the region k = 0 is excluded,
in h because we consider the difference (z (0 ) - z (p ) ).
(10) is finite and well defined, even for a sharp cut off
(the convergence is ensured by the new factor

exp (- 2 nh )).
Until now, the form factors f and qi were left

completely open. We now make one further assump-
tion : the renormalization transformation is merely a
change of scale. In the first stage of renormalization,
the cut off is reduced from the original Ao to some value
A, so that the form factor is the scaled expression
f (klA). Subsequent renormalization brings to

11, so that

It is easily verified that

More generally, all quantities may be expressed in
terms of the dimensionless variables r=p7l and
k = k/ A. For instance

For an infinitesimal transformation, A = .4(1 - E), we
have similarly

If we introduce the potential energy U = V/A 2 over a
(1/A x 1/A) cell, the scaled renormalization equations
take the simple form :

in which we have set
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The equations (12) are the usual Kosterlitz-Thouless
renormalization equations, the only new feature being
an accurate expression of A (n ), valid for arbitrary
values of n (i.e. of 7J up to second order in U. That
improvement will be important when fitting experi-
ments away from TR [9-10].
Note that (13) holds for an arbitrary form factor f

(hidden in 77). It is well defined even for a sharp cut off,
f(x)= 8(1-x).
The renormalization constant A (n ) depends on tem-

perature. It may be written as

from which we infer at once the value at the fixed point
n = 2 :

(at the fixed point, A is controlled by r &#x3E; 1). For a
sharp cut off, we find

(r is Euler’s constant). The behaviour at n # 2 will be
discussed later, within a slightly different, « dynamic »,
renormalization scheme : it will be seen that A (n )
differs appreciably from its usual approximations.
Our result (12) and (13) differs from those of

Minnhagen [11], who also derived renormalization

equations away from the fixed point. For instance, our
A (n ) is smooth, displaying no singularity at a tempera-
ture T*  TR. The origin of that discrepancy is unclear,
the two languages being very different. Minnhagen
scaling equation for U is non local in the parameter E, a
surprising feature within a first order calculation. In
contrast his scaling equation for y is simple. It may be
that his approach includes some of the higher order
term (ooooo U3), which we do omit. We can only argue
that our calculation is systematic to order U2: to that
order, and for our particular renormalization scheme,
the expression of A (n ) is exact.

2. Dynamic renormalization.

Following Chui and Weeks [6], we start from a

Langevin equation for the profile fluctuation z(r, t ) :

q is a friction coefficient, R a random noise force with a
white spectrum

Note that no mass is attributed to the interface : this

means that any deformation would diffuse rather than

propagate along the interface.
In the absence of a periodic potential V, (14) is linear

and it yields

In order to reproduce the result of section 1,  z¡) =
(T/yk2) f, we have two possibilities :

(i) either correct the stiffness term yk2 : that was the
choice of section 1.

(ii) or cut off the spectrum of the random force,
setting

From now on, we adopt the latter philosophy
(« modified » fluctuation dissipation theorem), which
will result in a slightly different renormalization
scheme.

When V = 0, the solution of (14) is straightforward

where Xo is the diffusion response function

The distribution of Zk is Gaussian, and the correspond-
ing correlation function is simply

We can again introduce dimensionless variables,
p A = rand ’Y ’T I TI P 2 = x: all correlation functions

depend on F and x, for instance

At large values of r, r &#x3E; 1, we can ignore the cut off
factor in the second term of (16) : we then find

a relationship which we shall use later.
When V is finite, an explicit solution such as (15) is

no longer possible. We can solve (14) by iteration ; once
again the best way is to set up a renormalization

scheme. Quite generally, z (t ) is a functional of R,
z [R (t’ ) ]. We split R in two parts, R = R + 8R which
are statistically independent, such that the resultant
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power spectrum G is the sum (G + 8 G ) of the

respective contributions of Rand 8R. We then perform
a partial average over BR, defining

As a result of non linearities, the equation of motion
for T is modified. Note that we eliminate a piece of the
random force R, and not of the fluctuations zk, as in
section 1 : beyond a linear approximation, the two
schemes are different, as we shall see shortly. Setting
8 z = z - T, we obtain two equations of motion

We solve for 8z by iteration, expanding in powers of V.

In zeroth order

where 8 R is characterized by its power spectrum

(notations are similar to section 1). In first order

We carry the resulting 8 z into the equation of f, and we
perform the average. We thus find, to order V2

S 9 (p, T ) is the correlation function of 8 z (0) (here, it is
retarded).
V = V exp [- n 8 g (0, 0)] is the new periodic poten-

tial reduced by fluctuations, as in section 1. As it

stands, (19) is still exact to order V2.
We now introduce approximations. In the bracket

of (19), we discard the first term as an irrelevant

harmonic. In the second term, we follow the same

course as in section 1 : 7 is the sum of an equilibrium
fluctuation (over which we average), and of a slowly
varying part which we follow explicitly (for instance the
response to an external probe). We thus make the
replacement

where  ) Ii is an average over large scale fluctuations.
(In a simple minded expansion, this last factor would be
missing). When Taylor expanding (F - F’), the V’F
term acts to renormalize y, the afl at term corrects q.
For an infinitesimal transformation (,B g : small), we
thus find

in which h and 8 g are the retarded versions of our
previous static quantities. (20) replaces our former
static result (10).
We did not specify yet the new form factor

f = (1- t/1) f : again, we choose it so that the spec-
trum of R is deduced from that of R by a simple change
of scale, A - A As in section 1, everything may then
be cast in dimensionless variables, r and x. Using our
explicit expression for Xo, we obtain the following final
set of equations for an infinitesimal scaling transfor-
mation :

in which we have set
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(We again assume a sharp cut off, f (x ) = 0 (1 - x)).
(21) and (22) constitute the basic result of our dynami-
cal scaling theory. Within second order in U, the

equations are exact : we do not use any « long time »
approximation in evaluating the coefficients A (n ),
B (n ), which are well defined for arbitrary values of n
(i.e. of the temperature). Note that the x integration
(« time ») guarantees convergence.
At this stage, two questions arise :

(i) To what extent is the dynamical result (21) equiv-
alent to our former static result (13) ?

(ii) How does (21) compare with the former result of
Chui and Weeks [3] ?

In order to answer point (i), we note that

(a relation which follows from (22)). Integrating by part
over r, we may cast A (n ) in the form

(to the extent that (23) converges, i.e. if n -- 2). At the
fixed point n = 2, the integral (23) is dominated by
large values of r, for which the approximate result (17)
holds. In our reduced units, that means

The integration over x is then obvious, yielding

In comparison, the static result (13) may be written as

(we integrate by parts over r) . We conclude that the
static and dynamical calculations o f A are identical at the
fixed point n = 2. This result was expected since the
behaviour at the fixed point is universal.
Away from the fixed point, the equivalence no

longer holds (integrals are not dominated by large r).
This result was also expected, since we use different
schemes in eliminating short wavelength fluctuations
(cutting off Zk in one case, the random force Rk in the
other). In what follows, we shall prefer the dynamical
result (23), partly because it is based on a more

intuitive cut off scheme, partly because it allows a

systematic joint treatment of q and y, summarized in
the dimensionless equation

with C = 4 B/A.
In order to construct the scaling trajectories, we must

know the functions A (n ) and B (n ) (which are usually
approximated by their fixed point values at n = 2). At
the fixed point itself, we know from our static calcula-
tion that A (2 ) = 4 e- 4 r = 0.398. A numerical inte-

gration yields C (2) = 2.35. For high temperatures,
n &#x3E; 2, the integrals in (21) are dominated by small
values of r, and we may expand H and 5g. The results
are expressed in terms of the exponential integral

At low temperatures, n -+ 0, we may set e- 2 nH -
1 : we then find A (n) - n2, B(n) = (n/2 ) + o (n2). In
between, we integrated (21) numerically : the results
are shown in figures 1 to 3. We note that the renormali-
zation of y and q disappears at low and high n (i. e.
T  TR and T &#x3E; TR).
One may rightly question the relevance of these

results below TR (n  2). For a flat interface in equilib-
rium, we know that U blows up when the length scale
exceeds the correlation length : the expansion in powers
of U is then meaningless, and the precise behaviour of
A (n ), B (n ) does not matter much. However we shall
see shortly that one may have to interrupt renormaliza-
tion at some finite length scale, either because the

interface is tilted or because it is growing. Even if

T  TR, it may happen that U is still small when scaling
stops, in which case the second order equation (21)
remains valid : A (n ) and B (n ) are then physically
meaningful, despite the fact that n  2.

In their basic paper, Chui and Weeks [6] also
calculated the coefficients A, B, C. Their results are
shown in figures 1-3. As regards A and B, the compari-
son is only qualitative, since their definition of the
renormalized potential U is somewhat ambiguous. On
the other hand, there is no ambiguity in the ratio

C (n ) : the two calculations clearly disagree. Chui and
Weeks find a divergence of C (and B) at n = 1, which
does not appear in our more accurate expansion to
order U2. From a purely technical point of view, such a
discrepancy probably arises from their use of a logarith-
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Fig. 1. - The constant A (n ) as a function of n = (7T TI ya 2).
The full line is our result obtained from (21). The dashed line
is an estimate from Chui and Weeks calculation.

Fig. 2. - Same data as in figure 1, for the coefficient

B (n ) that controls the renormalization of the friction coeffi-
cient q.

mic approximation (common in such problems), in

which all correlation functions are replaced by their
long time T, long length p asymptotic behaviour (at
least, it is our guess, as their paper does not give much
detail on the way the calculation is handled). We saw
that such an approximation, while valid at the fixed
point, was definitely wrong for n # 2. Indeed, let us
assume that the relation (17), valid for large r, holds
everywhere. We may then integrate it to obtain

Integrating (21) by parts over p, we may write

[dn /dy ] =

Fig. 3. - The coefficient C(n) = (’Y / 17 ) ( d 17 / d ’Y). The full
line is our result deduced from (21). The dashed line is the
result of Chui and Weeks. The dotted line corresponds to a
« logarithmic » approximation to our accurate result, based
on the asymptotic behaviour of correlation functions. Note
that the full and dotted lines cross at the fixed point
n = 2, where the logarithmic approximation is valid.

In view of (24), the integrals over x and p separate out,
and we obtain

The numerator must be calculated numerically. The
resulting C is also displayed in figure 3 : it resembles
the result of Chui and Weeks (it also diverges at

n = 1), but it is drastically different from the actual
C (n ). We thus conclude that logarithmic approxima-
tions must be used with caution. Away from the fixed
point, an accurate calculation of the scaling coefficients
A and B is essential: that is why we discussed our
renormalization scheme in great detail.
At this stage, it may be useful to put our calculation

of A, B, C in perspective. Strictly speaking, a renor-
malization scheme is universal only at TR : away from
the transition, different schemes lead to different
intermediate results in the scaling process (our static
and dynamic approaches provide a specific example).
Thus, it is not surprising that our results and those of
Chui and Weeks should differ (although the slight
difference of C (n ) at the fixed point n = 2 should not
be there : the origin of that discrepancy is unclear). In
their paper, Chui and Weeks were concerned with a flat
interface near equilibrium, for which scaling proceeds
to the end: their result is meant to apply only when
r 3== TR, a region in which our results are similar. Here,
we shall also exploit the scaling equations below
TR : we then need a more accurate determination of A,
B, C - admittedly non-universal, but exact within a
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well defined renormalization scheme. In this way, we

may hope to obtain reasonable results, albeit approxi-
mate since the scaling process is not unique. While
essential quantitatively, such an improvement does not
modify the main qualitative conclusions of Chui and
Weeks.

Once we know A (n ) and B(n), the scaling trajec-
tories are easily deduced from (21). In the (U, y )
plane, they are the usual Kosterlitz Thouless hyper-
bolae near the fixed point. Away from n = 2, they
depart from that shape, even to order U2 : the correc-
tions are significant in order to compare with ex-

periments. Indeed, such corrections considerably im-
prove the theoretical fit of curvature and step energy
measurements. The numerical integration of (21) is

shown in figure 4, using our exact result for A (n ).

Fig. 4. - Renormalization trajectories in the (X = 2/n,
Y = 2 1TU 11) plane, using our exact expression of A (n ).

3. Vicinal surfaces : interrupted renormatization.

Until now, we only considered an average interface
parallel to the crystal planes. We now extend our
argument to a vicinal surface, making a small angle 0
with the crystal planes. We still ignore anisotropy
around the crystal axis, as well as « in plane »
periodicity : our crystal is a stack of isotropic plates.
The surface energy a (0 ) depends on orientation : if

the surface fluctuates by a small additional z(r)
(grad z = 8’ ), the surfaces energy has the form

I-

fl; i only has a longitudinal component (along the

projection of the crystal axis on the average surface).

For an interface which is fixed at the ends, the

corresponding term in the energy integrates to zero.
Similarly, y has different longitudinal and transverse
components :

The term a arises from surface stretching (via the factor
(1 + (J,2 )112), the second term is due to surface rotation.
From yij, we infer the thermal equilibrium fluctuations

In our former scaling relations, y will thus be replaced
by the average (yi y,)"2 - namely

From this brief discussion, it is clear that all the physical
information is contained in a (0 ). ,

When T &#x3E; TR, a (0 ) is an analytic function of 0.

Below the roughening transition, a (8 ) displays a

singular cusp at 0 = 0, resulting in the formation of
facets : we want to understand this crossover by extend-
ing our renormalization scheme to a tilted interface.
Rather than tilting the interface, we tilt the crystal
planes : the equilibrium profile is still z = 0, but the
periodic potential is now - V cos (2 ’IT(z + Ox)la). (A
similar approach was used by Horowitz et al. [4]). The
calculation is essentially the same as before, but for the
replacement of z by (z + 8x) everywhere. It can be
done either in the static or in the dynamic version : we
first try the static one.

In first order, the scaling equation (12) for U is

unchanged, but for the refined expression of n (actually,
the anisotropy of y is of order V 2 : it will not affect
much the scaling trajectoires). In second order, we
again discard the harmonic contribution. The remaining
« effective » second order energy is similar to (7).

(where p., is the component of p = r’ - r along the tilt
axis). Again, we assume that i is the sum of an

equilibrium fluctuation Zeq (over which we average) and
a small slowly varying perturbation t (which can be
expanded). In zeroth order in " (26) generates directly
the surface energy a (0), which in an infinitesimal
renormalization (V = V ) acquires a contribution :
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(The tilt only enters through the extra factor
cos (2 lTOPxla). Similarly, the terms of order t and
c 2generate the stress coefficients Bi i and y,,- -.

r

We could equally well carry the renormalization in a
dynamic language : we would thus recover the scaling
equations (21), with an extra kernel K(2 w 0FlaA) in
the integral, with

(cp is the azimuthal angle of p).
From (27) and (28), it is easily verified that

We thus recover the thermodynamic identities (25), but
for one point : we have lost the « stretching &#x3E;&#x3E; contri-
bution a 5ij to the surface stress tensor. The error

arises from the replacement of (1 + 8’2)112 by
1 + e’2/2 at the beginning of our calculation. Higher
order terms are indeed negligible if they multiply
(grad z )2, but they are not in a zeroth order contri-
bution such as (27). More specifically, a slope 6’ =
grad z will modify the thermal average of  BZ2) , hence
the second order energy (26) and ultimately the stress
l’ - a 2£/ a (J ,2. A detailed analysis yields the exact

identities (25), as expected.
Of course, thermal fluctuations are controlled by the

total y ij, including the stretching part of a 8 i j : strictly
speaking, our former renormalization scheme is thus
incorrect. However, the error is only significant in the
initial stages of the scaling process. Comparing (27) and
(28), we see that the ratio 8 l’ I 8 a is - (p laf -
1/ (Aa f. The stretching contribution to y is thus
sizeable only if aA - 1, a condition which is indeed met
at the microscopic level. On the other hand, .4 is
smaller and smaller as scaling proceeds : the « stretch-
ing » contribution to 5 y quickly becomes irrelevant. It
does not affect the universal Kosterlitz-Thouless be-
haviour near the fixed point. It only acts in the initial
« transient » stages of renormalization to correct the
quantitative value of y. Since the initial parameters of
our model are largely adjustable, we shall ignore such
corrections. We use (28) for yij, disregarding the small
stretching term. As a result

a simple relationship which we shall use later.

As seen in (28), the problem now has two length
scales, a cut off A-1 which we are progressively
increasing, and the quantity d = al8 which corres-
ponds to the distance between crystal steps. As long as
Ad &#x3E; 1, the effect of the tilt is negligible (the cos in (28)
is ~ 1). On the other hand, when Ad « 1, the integrals
over p are cut off by the tilt factor : then,

V keeps decreasing, while the scaling of y essentially
stops (note that 8 y involves V’ rather than U2 =
(V/A)2 : it does not matter whether n &#x3E; or  2).
Rather than using the exact expressions (28), a

simple minded approximation is the following:
(i) we integrate the scaling equation with no tilt

( 9 = 0) from the original Ao up to A - d- 1 = 0 1a.
(ii) We stop scaling there : y and q depend on 0

through the final scale A.
Such an approximation only has logarithmic accuracy.

Indeed the cut off A - d-1 must be different for

1’1 any ’Y 1. in order to achieve the anisotropy predicted
in (29) : renormalization stops earlier for 1’1 that for
yj_. In order to obtain consistent results, we must
estimate one of the y’s - say 1’.J.. - and deduce the
other from (29) :

where I = Log (Ao/A) - Log (1/8). With that word
of caution, the « stopped renormalization » method is
reasonable as long as the scaling equations are valid,
i.e. when U is small.
When T -- TR, U scales down to zero : the renormali-

zation approach is always valid, yielding a rough
interface whose y and q depend on angle 0. That

dependence is obtained by integrating the fundamental
scaling equations (12) or (21). Since the calculation was
done elsewhere [7], we only quote the main results,
assuming for simplicity that A (n ) is constant.

(i) The scaling equations have a first integral

the constant being fixed by the initial values Uo,
yo. The strength of the pinning potential is measured
by the dimensionless coupling constant t, =
- ., -- r-:- I ".

(ii) At the transition

the surface stiffness is :

It goes smoothly from the bare yo at large angles to the
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universal value yR = lTT R/2 aZ when 8 = 0. The ap-
proach to yR is very slow (logarithmic in 8).

(iii) When T:&#x3E; T R, the reduced temperature t =

I T - TR t /7R should be compared to t,. At zero angle
(I - oo ), the surface stiffness is

(it is isotropic). At finite tilt, y approaches ’Y 00 as a

power law of angle, (’Y 00 - y)- 040’, with a - t if
t  tc, or u - (ttc)"2 if t &#x3E; tc. The angle scale is

logarithmic, and y varies very slowly.
In the opposite limit T  TR, the scaling calculation

is no longer valid when U - T, i.e. A - -1, where ) is
the correlation length of the surface, as given by
reference [7] :

For a tilted interface, 0 = aid, two cases are possible :
(i) Large angles, 0 &#x3E; a / : scaling stops before the

trajectory has diverged, the renormalization approach
is valid. The surface remains rough, even though
T  TR. Physically, that regime corresponds to a dis-
tance d between steps much smaller than their width 6:
the steps overlap and are no longer identifiable. The
surface behaves as if it were rough. (Put another way, a
finite tilt 8 blurs the transition).

(ii) Small angles, 0  al6 : scaling then breaks
down for A6 - 1. The surface breaks into discrete steps,
with a width - 6 and an energy per unit length
fl - ya2/6.

In between, there is a crossover region, in which
11 and 1.1. are universal functions of a single parameter
0 6 Ia. We can only approach these functions from both
ends.
Let us first consider the « rough » side of the

crossover, 0§ &#x3E; a. As 9 decreases, 11 and yl increase,
with 1.1.:&#x3E; yin view of (29). Since y will eventually
depart appreciably from yR, one must take account of
the n-dependence of A.in writing the first integral (30),
which becomes (for T close to TR) :

In principle, one may infer from this relation a differen-
tial equation for y (I), yielding the angular dependence
y (0 ). Since the expansion in powers of U breaks

down, such a calculation makes little sense. Only one
feature is sure : in the « scaling region », 1’1 and
l’ 1. increase when 8 goes down.

In the opposite limit a, the interface is best

described in terms of a step density ns per unit length
along the crystal planes,

The energy per unit area (of crystal plane) is [8]

where Eo is the reference surface energy of a facet

( 6 = 0), Bn, the energy of individual steps, On3 their
interaction resulting for a pair interaction energy
Old 2. Within our Sine-Gordon model, 0 results from
the confinement of step fluctuations by their neighbours
(in real crystals, there exists also an elastic interaction
via the strain of the underlying crystal which has the
same 1/d2 dependence). In order to estimate 4&#x3E;,
consider the transverse thermal fluctuations of a single
step

Since  8xZ) is confined to a range - d2, all long wave
length fluctuations are frozen, with qmin - T 117 f3 dZ.
Each frozen mode costs a free energy - (- T), hence a
repulsive interaction energy (per unit length)

As expected, the interaction varies as 1/d2, and

-, 
-

From E(ns), one infers the surface energy per unit
interface area, a = cos 8 E (ns ), and finally the surface
stiffness.

The physical interpretation of (32) is simple. yi corres-
ponds to a fluctuation wave vector perpendicular to the
steps, hence to a step compression (the steps remain
straight) : 11 is controlled by the step compressibility
E"(n), as expected. In contrast, 1 J. involves a wave
vector parallel to the steps, hence a step wiggling (d
being unchanged) : 1 J. results from step stretching

We recover (32). The net interface fluctuations involve
the combination

In the vicinity of TR = 2 1’azl’IT, y is of order y : the

fluctuations of a vicinal surface are comparable to those
of a free surface, despite the fact that the fluctuation
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mechanisms are completely different. The scarcity of
steps is compensated by their very large transverse
fluctuations (assuming of course that the steps are not
pinned by the in plane periodicity).
From (32), we infer the qualitative behaviour of

yp and yl as a function of the universal variable
s = 0 6 la, shown in figure 5. For s &#x3E; 1, the behaviour
is logarithmic, while for s  1 we have 1’1 - l’ *s,
yi - y */s. Within our formulation, we cannot charac-
terize the crossover more accurately.

Fig. 5. - A sketch of the longitudinal and transverse

coefficients yj and yl as a function of the tilt angle 0. The

crossover occurs when the universal parameter Ola is of
order of 1.

’YII (0) and yj_(O) determine the equilibrium profile
of the interface under an applied over pressure
8p. Let us define

(Fa is the force on a single step per unit length). For a
cylindrical geometry the equilibrium profile 0 (r) is

governed by Laplace’s law :

(In a, step regime, 0 § la « 1, (33) may be interpreted as
a mechanical equilibrium of steps, under the combined
action of F, step repulsion and step line tension [8]).
Using the exact identity yi = ’Y 1. + tan 0 d’Y 1.ld6, (33)
implies

The measured profile thus gives access to y_L(o).
Below TR, a flat facet appears, with a radius

R* = 2 p /Fa which follows from (32) and (34).
(R */2 is the collapse radius at which line tension
overcomes the applied force F).

It should be realized however that (33) implies a local
relationship between y and 0, a condition which breaks
down if the relevant length scale is small compared to
the step distance d = ns 1. Near the facet edge, that
distance is of order (4) / {3 )1/2 - ç : the very concept of
a facet is thus meaningful only if R * :&#x3E; ç, a rather
obvious statement (the « edge » of the facet has width
ç). At a given temperature, there exists a characteristic
force

When F  F *, the facet is large and well defined.
When F 2: F *, the edge step spreads to the centre and
the facet disappears. We conclude that the roughening
transition is blurred under an applied force F. Facetting
appears progressively at a temperature T  TR such
that (T) - (’}’a/F)112. Above that temperature, the
interface looks rough, despite the fact that T  TR.

This important conclusion can also be reached within
our renormalization scheme. Under the applied force
F, a free interface acquires a curvature radius Ri -
2 y /F. A surface element of width L thus bulges, with
a vertical displacement C - L 2/ Ri ; this average dis-

placement is superimposed on the short wavelength
(kL  1 ) thermal fluctuations. Two cases are then

possible.

(I) £ « a, i.e. small scales L  (aRi )112 : the bulge is
unimportant, and the surface element fluctuates as if F
was zero.

(ii) ;-&#x3E; a : the bulge averages the periodic potential
V to zero, even in the absence of thermal fluctuations.
The surface behaves as if it were free.
We are thus led to stop renormalization at a charac-

teristic scale L * = 1/A* - (aRi )112, beyond which the
pinning potential is irrelevant. If L * 6, the surface is
basically free. The crossover L* - § is exactly the
condition (35). (In much the same way as a finite slope
yielded a new characteristic length d = ns 1, an over-
pressure introduces the length (aRi )112, which must be
compared to §).

4. Growing interface under an applied force.

Instead of considering the static curvature of an inter-
face under an applied force F, we assume that it moves
while staying planar (on the average). We first consider
an interface parallel to the crystal planes ( 9 = 0 ), with
a normal velocity u. We define a mobility 1/’Y1 as

T1 depends on T and possibly on F in the non linear
nucleation regime. We want to understand that be-
haviour starting from the opposite ends of low and high
temperatures.

4.1 T  TR : HOMOGENEOUS NUCLEATION REGIME
[6]. - The free energy of a circular terrace with radius r
on a flat facet (more exactly, it is a free enthalpy) is
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E(r) = 2 71’r{3 - lTrz Fa. A critical germ has a radius
re and energy Ec given by

Such a germ only makes sense if rc  ç (which implies
E, &#x3E; f3 ç - 7). Thus, we have a choice of two regimes :

(i) rc 5 ç, Ec:5 T : there is no real nucleation.
Thermal fluctuations on the flat facet are sufficient to

provide growth, through a local attachment process
controlled by a suitably renormalized friction q. The

growth law is linear or quasi linear (TI is nearly
independent of F), characteristic of a rough interface
for which the pinning potential is irrelevant.

(ii) r,, &#x3E; 6, Ec &#x3E; T: then homogeneous nucleation
controls growth (we discard possible Frank-Read sour-
ces).
We briefly recall [7] the main features of the non

linear nucleation regime : an interface area S contains
Sir; possible independent germs, each of which appears
with a probability

(the prefacor To requires a refined analysis). After a
time t, the number of germs is (S I r;) (t I ’T ): their
distance is

Each germ grows radially with a velocity vs = JLs Fa,
where u, is the step mobility. The germs coalesce when
their radius r = vs t is equal to 8, i.e. when

At any given time, the surface is covered by growing
gernzs, with a size - 8. The net vertical growth rate is

(note the factor 1/3 in the Arrhenius factor). The
growth law is highly non linear and u quickly vanishes
as J3 becomes sizeable.
The crossover between regimes (i) and (ii) corres-

ponds to r, = § , which is nothing but (35). At a given
r TR, F * thus marks both the disappearance of a
well defined facet in a steady equilibrium curved

interface, and the transition nucleation - rough
growth of a moving planar interface. Both in the static
and in the dynamic problem, the transition is smooth :
there is no sharp roughening transition when F :A 0.

4.2 T -- TR : RENORMALIZATION OF rj. - The rough
growth regime may then be treated within our scaling
approach. Let u be the average normal velocity. The
interface sees crystal planes drift by with a period
T = a/u : the problem thus has another unit of time T,

in much the same way as a tilted vicinal interface had a
new unit of length d = ns l. Our approach will be
similar to that of section 3 : we shall stop renormaliza-
tion when the relevant time scale is of order T (the
drifting of lattice planes then averages V to zero). We
shall thus obtain an estimate of y and q as a function of
T and of F (via T), thereby displaying the onset of non
linearities and the smooth transition at rc - g.

In the frame of the interface, the periodic potential is

Following the same course as in section 3, we construct
scaling equations for y and 17 which are similar to (21),
except for an additional factor Kt resulting from the
time lag in second order terms

(the reduced variable x = y (t - t’)1 71 P 2 is the same as
in section 2). At a given stage of renormalization, the
relevant length scale is p - A-I 1 (i.e. F - 1). The
integral is dominated by x - 1, and thus the correspond-
ing time scale is

(it is the diffusive scale associated to p). Kt cuts off
when this diffusive scale is ~ ’T, i.e. when

(The mobility disappears from (37), due to the lack of
an intrinsic time unit in the problem). L * marks the
transition between two regimes :

(i) AL * &#x3E; 1 : the motion of the interface has no
noticeable effect on the scaling process, which proceeds
as if the force F were zero.

(ii) AL * ..c 1: Kt averages to zero and the renormali-
zation of y and q stops.
The scale L * obtained in this dynamical argument is

identical to the scale (aRi )1 derived from the bulge of
a static interface : in either case, an applied force F
stops renormalization when AL 1 (thereby blurring
the transition).

In principle, one may solve the exact equations (21)
with the additional kernel Kt. A simpler qualitative
picture is obtained by carrying the renormalization as if
F were zero up to the maximum scale A = 1/ L * :
experiments were interpreted in that way [9-10]. Such
an approach makes sense if L *  § , i.e. if the force F
exceeds the characteristic F * defined in (35) : the

scaling theory is complementary to the nucleation

regime.
In practice, the facet grows as it were rough. Since q

increases as scaling proceeds, the macroscopic mobility
1/,q decreases as temperature goes down. For an
infinitesimal force F, it goes to the value calculated in
section 2 when T = TR (with an infinite slope) ; below
TR, the mobility vanishes. When the force F is finite,
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scaling stops earlier and 1 I 11 is larger, resulting in a
non linearity (1) which persists down to F = 0. Below
TR, it holds only when F&#x3E;F*. This behaviour is
sketched in figure 6. Detailed calculations will be done
in connection with experiments [9-10] : here we only
note that 1/17 is an increasing function of both T and F,
which can be calculated explicitly within our « stopped
renormalization scheme ».

Fig. 6. - The mobility of a flat facet 1 /,q as a function of
temperature for varying applied forces F. The full curve

corresponds to F -+ 0 (the facet does not grow below

TR). The dashed curves (1), (2) correspond to increasing
forces : the transition between linear growth and nucleation is
smooth at a temperature T : TR.

When L*&#x3E; the scaling approach breaks down.
Steps develop on the surface and facetting sets up. The
renormalized periodic potential saturates to a value

It is easily verified that (2 irla) V miD:&#x3E; F: in the
absence of fluctuations, the interface cannot slip over
the maxima of V. It is indeed pinned, and the crystal
grows by nucleation. It is gratifying that the crossover
criterion is the same when approached from either side

However, we are lacking a theoretical description of
the intermediate region.

e) Non linear crystal growth has been discussed by Saito
[12], in a simple variational language, and by Neudecker [13]
in a more elaborated renormalization approach. The resulting
equation of motion is local in time, which we believe is

incorrect once the cut off length scale L * is exceeded. As a
result, oscillatory growth is probably an artefact which is
washed out by fluctuations on a macroscopic scale.

4.3 GROWTH OF A VICINAL INTERFACE. - Consider
an interface tilted by a small angle 0, subject to a force
F. Can we calculate y (F, 6 ) and q (F,0) ? We first
consider the limit of small F, in which case the F

dependence can be neglected. We already discussed the
behaviour of y (Fig. 5) : we now turn to q. The scaling
approach predicts a slow decrease of 1/,q as 0 goes
down: what we want to understand is the subsequent
crossover when 0 - al g.
For small F, nucleation is negligible. In the vicinal

limit, 8  a/’, growth occurs through the sideways
motion of vicinal steps. Each step moves at a velocity
vs = JLs Fa, and the interface grows at a rate u =

ns avs - hence a net mobility

(The linear dependence in 0 is characteristic of the step
regime.) In order to estimate FLs, we start from the

equation of motion of the profile z (x, t ) of an interface
presenting a single step :

(qo, y and V are suitably renormalized by short wave
length fluctuations of scale « § ; qo would be the actual
mobility on that scale if ,the interface were not pinned
by the periodic potential). In equilibrium (F = 0), the
properties of a single step are easily obtained from
(39) : its profile zo (x ) and energy j8 are

When F =1= 0, we multiply (39) by ez/ ax and we
integrate from (- oo ) to (+ oo ): we thus obtain the
condition

(which is nothing but energy conservation). In the linear
regime, we can replace z by zo, and thus

JL S is proportional to g (the force F acts on an « active »
region of width 0. Carrying JL into (38), we obtain the
macroscopic mobility

The « step drift » regime and the « rough » regime join
smoothly at (J -- g I a. The behaviour of 1/n (0) is
sketched in figure 7 : after a slow initial drop in the
scaling region, 1 /,q plunges down to zero when

(J - g/a.
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Fig. 7. - Sketch of the facet mobility 1/,q at a fixed

temperature T TR as a function of the tilt angle 0. Note the
smooth transition from a step regime at small 0 to a rough
surface at large 0.

When the force F is large, another question arises :
we must compare the characteristic lengths due to the
tilt, d, - al 0, and due to the growth rate, d2 =
(ya/F)1/2: thus a characteristic angle appears, Oc =
(Fal y )". If either d1 or d2 is -- , the interface is

rough.
(i) If 0 ::. Oc (i.e. di  d2), the spatial cut off

dominates. The growth law is strictly linear, with a
weak angle dependence.

(ii) If 0  Oc (i.e. d1 :&#x3E; d2), the time cut off dominat-
es. The mobility is 8-independent, but slightly non
linear in F.

We can also calculate the surface energy a and the
stresses yl, yl. When 0  (J c’ a becomes analytic in 0
and thus yl = yl, as shown in figure 8.

Finally, for small forces F again, an interesting
question is the crossover between step sideways drift
and homogeneous terrace nucleation for very small

Fig. 8. - Sketch of the surface stiffness as a function of angle
under a finite applied force F &#x3E; F * (see (35)).

angles (J. The distance of vicinal steps is d = al 0, while
the distance between nucleation terraces is 8: the
relevant parameter is dl,6.

(i) If 0 &#x3E; alS, the vicinal step structure is hardly
modified by a few, large nucleation terraces: the

mobility (40) is controlled by sideways drift of vicinal
steps.

(ii) If (J  a18, nucleation terraces are hardly af-
fected by a few vicinal steps (d &#x3E; 8 ) : growth is
dominated by nucleation. All physical quantities
(mobility q, energy a, stiffness y) are regular when
0 - 0. In terms of the vicinal step density n, =

alO, a reasonable interpolation for the surface energy
seems to be

which implies a saturation of the stiffness y when

0 -+0: 

As a result, a growing facet is not strictly flat: it has a
small curvature

which grows rapidly as F increases (the tilt angle is

0 - al8, corresponding to a facet radius - RF 0 -
(3 I Fa, as expected). When F reaches the threshold
F *, the curvature is so large that the facet has

practically disappeared : we enter the rough regime,
with linear growth and no facetting. Even if it is small,
such a curvature of a growing facet (due to rearrange-
ment of the nucleation terraces) is essential in order to
understand the smooth transition between facetted and

rough states.

5. Conclusion.

In this paper, we tried to give a comprehensive review
of both static and dynamic aspects of the roughening
transition. Following reference [5], we gave a formula-
tion of the scaling process which is exempt from the
usual pitfalls. We examined the relationship between
the static and dynamic methods (which are only identi-
cal at the fixed point). Our detailed analysis provides
an explicit form of the renormalization constants for
the surface stress y and friction q: our results differ

appreciably from those of Chui and Weeks [6], who
probably relied on a « logarithmic » approximation,
valid only at the transition T = TR. These more precise
results are used elsewhere in interpreting experiments
[9-10].

Finally, we analysed the various crossovers between
the fixed flat interface and other more complicated
situations, such as

(i) Static vicinal surfaces, with a finite tilt 0.

(ii) Growing facet with a finite velocity u.
(iii) Growing vicinal surfaces.
In each case, we approached the crossover from both

ends. On the « rough » side, we used a stopped
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renormalization description, the cut off being either
spatial (for a tilt 0) or temporal (for a velocity u). In this
way, we explain the small angle dependence of y or the
small non linearity of growth. In the opposite end, we
use a step picture, based on the interaction of vicinal
steps or on nucleation of two dimensional terraces.
These two limits join smoothly, but the intermediate
region lies out of the range of our theory. It can be
described only in exactly soluble models, such as the 6-
vertex model of Van Beijeren [3].
One feature emerges from this analysis : the roughen-

ing transition is sharp only for a flat, infinite interface at
rest. If the interface is tilted, the transition is blurred
when crystal steps begin overlapping. A similar blurring
occurs if we apply a finite overpressure force F, both in
the static case (bent interface with a finite facet radius),

or in the dynamic regime (growing interface). In all
these examples, a gradual crossover occurs when the
correlations length g (T) is comparable to some new
characteristic length (step distance d = alO for a

vicinal surface, critical nucleation radius rc = /3 IF). As
a result, the blurred transition occurs below TR : the

rough behaviour extends below the nominal transition
temperature. Such an analysis is essential in fitting
experimental result: this comparison will be done in
another paper.
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