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Résumé. - Nous présentons une simulation numérique utilisant une technique de relaxation non linéaire
modélisant le comportement d’un empilement aléatoire de cylindres durs et mous. De plus, les cylindres durs
présentent de faibles fluctuations de rayon. La dépendance force-déplacement macroscopique est comparable au
comportement microscopique (loi de Hertz) pour des cylindres de même taille. Au contraire, les fluctuations de
rayon sont responsables de changements importants du comportement macroscopique. Pour environ 80 % de
cylindres durs, nous observons un seuil de « percolation » élastique.

Abstract. 2014 A model is simulated, with non-linear relaxation methods close to molecular dynamics, describing the
mechanical behavior of a random array of hard and soft parallel cylinders. Moreover, the hard cylinders fluctuate
slightly in their radii. The relation between compression and force is about the same for the whole system as it is for
two cylinders (Hertz law), if only soft cylinders exist. Instead, the radius fluctuations of the hard cylinders produce
drastic deviations between the macroscopic and the microscopic elastic response. For about 80 % of infinitely hard
cylinders we observe an elastic « percolation » threshold.
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1. Introduction.

This second part of our simulation of disordered

systems of cylinders studies the compression of this
model, introduced in the companion paper [1], of a
composite random material under an external force.
Many parallel cylinders are packed together ; each

cylinder is either hard, with probability p, or soft, with
probability 1- p. The soft cylinders have all the same
radius ; the radii of the hard cylinders fluctuate by one
percent. Cylinders which do not touch each other exert
no forces whereas compressed cylinders follow the

(non-linear) Hertz ,law of elastic response. In an

experiment [2] the soft cylinders consist of rubber, the
hard ones of plexiglass. Now we first describe in detail
the model and its numerical solution, then the various
results.

2. Techniques.

The force F on a soft cylinder of equilibrium radius R,
exerted by a parallel plane of distance r from the axis of

(3) Permanently at: Inst. Theor. Phys., University,
D-5000, K61n 41, F.R.G.

the cylinder, is assumed to vary with the microscopic
exponent IL :

Here R = 1/2 in units of the lattice constant of the

triangular lattice formed by undisturbed soft cylinders.
Thus the various prefactors from elasticity theory are
incorporated into our definition of the dimensionless
force. Since the cylinders are supposed not to fluctuate
in shape or radius along their axis, we can simply
consider the problem to be two-dimensional. The
« force » in equation (1) is therefore in reality a force
per unit length.

In the simulation of the whole system, we exert

opposite and equal forces on the cylinders in the
outermost layers ; these forces are thought to come
from the two missing neighboring cylinders which
would be present had we chosen a larger system (see
Fig. 1). Thus in our calculation a unit force corresponds
actually to a force B/3 exerted per unit length on every
cylinder in the top and in the bottom layer.

For a pair of hard cylinders, equation (lb) is replaced
by F = AJL(R - r)" with a factor A of proportionality
typically equal to 2 in our case, much smaller than the
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Fig,1. - Geometric setup of a cylinder lattice of height
H = 3 and length L = 4. Forces are applied to the top and
bottom layers, as shown by arrows. Note that H has to be
odd. The heavy lines denotes solid bars.

experimental value. (Our convergence was lost for A
much larger than 10).
The microscopic elastic exponent &#x3E; defined by

equation (lb) is known [3] to be 3/2 (« Hertz law ») for
spheres and for cylinders whose axes are not exactly
parallel. Most of our calculations used this value

JL = 3/2 since experimentally one cannot expect the
cylinders to be exactly touching (for zero force) along
the whole line. We will show that the choice JL = 1

does not change much our results. In the analogy with
nonlinear electrical resistivity calculations [4] one

should regard &#x3E; as a free parameter. Empirically
reference [2] finds &#x3E; =1.8 ± 0.1, for a pair of plexiglass
cylinders presumably due to shape imperfections along
the axis. Note, however, that even for g =1 our model
differs from the usual central force elastic model [5]
because we have only repulsive, no attractive forces
(« diode effect »). Also, in contrast to some exper-
imental situations, no torques are felt by our cylinders ;
one can imagine them to be immersed into an excellent
lubricant [2].
For the hard cylinders, we assumed mostly a distribu-

tion of radii homogeneous between 0.49 and 0.51

(« continuous distribution »), but we will also give
results with a bimodal distribution where each cylinder
has either the radius 0.49 or, with equal probability, the
radius 0.51. In that bimodal case, both hard and soft

cylinders fluctuated in their radius. Finally, to estimate
a rigidity threshold pR of cylinder mixtures with infinite
force ratio A, we used the same radius for all cylinders,
hard and soft.
The force between two cylinders of radius Rl and

R2 and distance r  R, + R2 between the cylinder axes
is thus

with a = 0, 1/2 and 1 for soft-soft, soft-hard and hard-
hard contacts. For a given external force, typically of
order 0.001, we then calculated by an iteration pro-
cedure the equilibrium position of the cylinders. We
started with a triangular lattice and then let the

cylinders move continuously in the direction of the
force until the forces and the movements become

negligibly small. If the total force exerted in x-direction
on a cylinder is Fx, then its centre is shifted by
cv FX into the x-direction, with to chosen typically as
about 1/2. The same w applies for the analogous shift in
y-direction. Our model thus is not a lattice approxi-
mation ; instead it has similarity to a molecular

dynamics simulation on a continuum. (To simplify the
calculation, we took the x- and y-components of a force
calculated from equation (2) always as ± 1/2 and

± B/3/2 of that force, since our distortions from the
original lattice structure amount only to a few percent
or less. For much larger deformations also equations
(1), (2) would have to be modified).
Once a cylinder has been shifted in the direction of

the force applied on it, we go to its neighbor in positive
x-direction, and apply the same procedure to it. Thus
our program went through the lattice like a typewriter.
After having gone through the lattice once, the next
iteration starts in the upper left corner, and so on.
102 to 104 iterations were made to find a good equilib-
rium, mostly of systems of length L = 50 and height
H = 5. (For larger H one needs much more iterations ;
for larger L the probability for numerical instabilities is
enhanced).
The y-coordinates of the cylinders in the bottom row

were kept fixed, as well as the x-coordinates of the
rightmost and leftmost column of cylinders. The y-
coordinates of the cylinders in the top row were all
forced to be equal. We then calculated the relative

compression 8 as

where Ytop is the y-coordinate of the top row. Equation
(3) is true only for the case of zero fluctuations in the
radius since this 5 measures the compression relative to
the height H* B/3/2 for the undisturbed triangular
lattice. If the radii are not all the same, then even for
zero force the coordinate ytop(F = 0) is no longer
H* 1/3/2 but larger. We thus have to find by extrapola-
tion the (negative) compression

for zero external force, and define the compression 5
with external force as

We cannot use the zero-force expansion calculated in
reference [1] for our purposes here since it depends
strongly on the length L of the system and since it was
calculated by building up the system row by row, and
not through the different zero-force limit of our

iteration. I
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3. Results.

Now we present, mostly in graphical form, the results
of our simulations.
With only soft cylinders, p = 0, all having the same

radius, the macroscopic and the microscopic behaviour
are about the same. That means we assume g = 3/2 for
the force between two cylinders, and then get

force oc (compression)3/2 (5)

for the force needed to compress the whole system.
This result agrees with the experiments for rubber

cylinders [2]. Only for very large forces, when the
compression 8 is more than just a few percent, do we
find slight deviations due to lattice distortion ; thus 6
should be restricted to 8 , 0.1 in this work.
When hard cylinders are added with concentration p,

we first try to determine a rigidity threshold pR for the
case of all hard cylinders also having the same radius.
Geometrically, for all concentrations p &#x3E; Pc = 1/2 the
hard cylinders form an infinite network [5] connected
by nearest-neighbour distances (site percolation on a
triangular lattice). But the rigidity threshold PR can be
larger [5, 6] than this percolation threshold pc. To find
it we let A (i. e. the ratio of forces needed to compress a
hard and a soft cylinder by the same amount) go to
infinity and check from which concentration pR on we
find no compression at all (see Fig. 2).

Fig. 2. - Search for rigidity threshold, without radius fluctua-
tions (JL = 1.5, force = 0.001). The compression 8 is plotted
linearly versus 1/A, the ratio of soft versus hard microscopic
elastic response. For A = oo we estimate a phase transition at
p = 0.8 (one fifth soft cylinders) where the extrapolated
macroscopic response vanishes.

Figure 2 suggests that in this limit for p  0.8 one
finds a finite compression whereas for p &#x3E; 0.8 the

compression approaches zero if 1IA goes to zero. Thus,
for this limited system size, the rigidity threshold is

for our model, roughly compatible with the exper-
imental [2] estimate 0.7. The bond percolation

threshold 0.655 of references [5] and [6] corresponds,
to first order in 1- pR, to a site percolation threshold

1- pR =1 (1- 0.65), thus PR "’" 0.825 compatible with2 ) PR p

equation (6). However, in contrast to references [5]
and [6], our forces are zero if the cylinders do not
touch. For p = pR one expects a nontrivial power law

relating compression and force ratio A ; but our

5 x 50 systems are not large enough to estimate reliably
the corresponding critical exponent.
For a bimodal radius distribution, R = 0.5 ± 0.01 for

both hard and soft cylinders, we see in figure 3 already
what is seen later for the more realistic continuous
distribution. The compression 5 is a complicated func-
tion of force. Small forces allow the system to expand
compared to the original triangular lattice ; the amount
of expansion, - 60, in the limit of zero force should be
extrapolated such that a power law behaviour is found.
We see that with an expansion of about 4 % we get a
reasonable straight line in our log-log plot for small
forces:

with a macroscopic elastic exponent m near 4, close to
the experimental value [2] for pure plexiglass (p = 1).
Instead, for intermediate forces near 0.01 in our units,
the system crosses over to the trivial behaviour of

equation (5) observed without fluctuations in the

radius, as also shown in this figure. (Except where
otherwise noted we work with force ratio A = 2, height
H = 5, and length L = 50).
We thus conclude that small fluctuations in the radius

can drastically influence the elastic response because
they lead to an expansion of the system in the limit of
zero force. A small external pressure then first has to
counteract against this initial expansion, and it does so
with an effective macroscopic exponent m, equation
(7), much larger than the microscopic exponent
JL = 3/2. Once the influence of this initial expansion
has become negligible, the trivial result m = u is
recovered. Before the compression many cylinders do

Fig. 3. - Log-log plot of compression versus force for bimod-
al distribution of radii at p = 0.5 and 9 = 3/2. Several

assumptions for the zero-force expansion are tested. The

triangles give the « trivial » result m = JL found when all radii
were identical.
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not touch (thus the initial expansion). During the

compression more and more contacts are being made.
These contacts enhance the rigidity of the system so
much that m &#x3E; J.L.

This conclusion is confirmed by our more realistic
simulations with a continuous distribution of radii
between 0.49 and 0.51, for the hard cylinders only. We
find about the same result, whether we use only hard
cylinders (p = 1, Fig. 4), a 50 % mixture (Fig. 5), or
mostly soft cylinders (p = 0.2, Fig. 6, and p = 0.05,
Fig. 7). Experimentally a continuous variation of m
with concentration p was observed in reference [2], in
contrast to our simulations at p = 0.05, 0.2, 0.5 and 1.
The elastic exponents g and m for the microscopic

and the macroscopic relation between force and com-
pression are not critical exponents in the sense of phase

Fig. 4. - As figure 3 but for p = 1 and with continuous
distribution of radii between 0.49 and 0.51 lattice constants.

Fig. 5. - As figure 4 but for p = 0.5 ; only the radii of the
hard cylinders fluctuate.

Fig. 6. - As figure 5 but for p = 0.2.

Fig. 7. - As figure 6 but for p = 0.05.

transitions. Therefore our rather small systems seem
sufficient. Figure 8 shows that neither an increase in
length L to 500, nor in height H up to 51, changes the
result appreciably.

Fig. 8. - Search for finite-size effects. In the top part we plot
the expansion versus reciprocal lattice height, in the bottom
part versus reciprocal lattice length, for two different vertical
forces (IL = 1.5, p = 0, continuous).

All these calculations were made for u = 3/2.
Figure 9 indicates that even with it =1 one finds the
same qualitative behaviour. The effective exponent
/7t &#x3E; &#x3E; is dominated by the expansion 60 in zero force
and its influence on the collective elastic response,
whereas the microscopic force law (IL) between two
cylinders is less important for small forces. The case

Fig. 9. - As figure 5 but with microscopic exponent &#x3E; = 1.
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JL = 1 is the most sensitive to variations in 60 so that it
is the best for a precise determination of 80. With
JL = 3 again the same effective exponent m &#x3E; 1 is
found in figure 10 ; but since now m is nearly equal top
one does not see anymore the crossover at force near
0.01 for u = 1 and = 3/2.

Fig. 10. z As figure 9 but with &#x3E; = 3.

This absence of a clear crossover allows perhaps for
JL = 3 a more accurate determination than for our

smaller g values of the effective exponent m. Figure 10
suggests

and 80 = - 0.015 ; the same 60 should then be used in
the cases of figures 5 and 9 since the zero-force

expansion must be independent of JL. Indeed these two
other cases are roughly compatible with such 60.

Simulations of an analogous but numerically simpler
resistivity problem allowed a direct determination of
8 o and at very small currents again the macroscopic

exponent m became equal to g [7]. This throws doubt
on our extrapolations for 80. Nevertheless it confirmed
our main result m &#x3E; 1.

In contrast to some experimental observations it
seems that most of the nearest-neighbour pairs of

cylinders are exerting forces on each other. Also, the
horizontal forces trying to push the side walls out is not
very small ; for p = 0.5, JL = 3/2 and A = 2 this
horizontal pressure is about 1/3 of the external vertical

pressure which causes the contraction of the system.
Since our vertical boundaries were fixed a measurement
of the Poisson ratio is meaningless. No hysteresis in the
elastic response was found (for large forces).

4. Summary.

Our simulations have given qualitative agreement with
experiment [2] : for a mixture of hard and soft cylinders
the macroscopic exponent m relating force to compres-
sion is appreciably different from the microscopic
exponent JL. We actually found it independent of 4 and
dominated by the disorder from small fluctuations in
the radius of the hard cylinders. In contrast to exper-
iment, our effective exponent m near 3.5 is roughly
independent of the mixing ratio p form 3= 0.05. Only
for zero fraction p of fluctuating hard cylinders do we
get the smaller exponent m = tL.
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