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The dynamics of entangled polymers
J. M. Deutsch

Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, U.S.A.

(Requ le 20 mars 1986, révisé le 4 août, accepté le 21 août 1986)

Résumé. 2014 On étudie la dynamique des chaînes polymériques linéaires en solutions concentrées. Ce travail est
basé sur le modèle de « reptation » de de Gennes qui constitue une théorie du mouvement d’un polymère en
présence de nombreuses contraintes topologiques. On présente ici un travail théorique et numérique qui étend
cette théorie aux interactions à plusieurs chaînes. On présente un argument théorique qui donne le

comportement d’échelle du plus long des temps de relaxation d’une fondu de polymères en fonction du poids
moléculaire M des chaînes individuelles. Le résultat principal est que ces interactions de volume exclues
modifient le temps de relaxation de M3 à M3 exp ( const. M2/3 + O(M1/3)). Cette nouvelle théorie est,
dans une large mesure, en accord avec une simulation directe du modèle de reptation qui incorpore de
nombreuses interactions de volume exclues des chaînes.

Abstract. 2014 The dynamics of linear chain polymers is studied in concentrated solutions. This paper is based on
the « reptation » model of de Gennes, which is a theory of the motion of a polymer in the presence of many
topological constraints. Here theoretical and numerical work is presented to extend this theory to include
many chain interactions. A theoretical argument is presented that gives the scaling behaviour of the longest
relaxation time of a polymer melt as a function of the molecular weight M of individual chains. The main
prediction is that these excluded volume interactions alter the relaxation time from M3 to

M3 exp (const.  M2/3 + O (M1/3)). This new theory agrees in many respects with a direct simulation of
the reptation model that incorporates many chain excluded volume interactions.
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1. Introduction.

The viscoelastic properties of linear chain polymer
melts and concentrated solutions have been studied

extensively [1] as a function of molecular weight of
individual chains. When the number of monomeric
units on a chain exceeds a critical value, which
corresponds to a molecular weight of Me’ the system
starts to exhibit an elastic response to external stress
over some duration of time. We denote this time the
relaxation time trel. For time scales longer than tel
the polymers behave like a liquid. Above Me’ the
viscosity appears to obey the empirical relation

The purpose of this paper is to propose a theory and
present numerical evidence which explains this empi-
rical observation. Over all, experimental data on
concentrated polymers are reasonably well explained
by the reptation model [2, 3]. In the next section,
reptation is reviewed, and I will only mention now
that the reptation model predicts

which is a significant deviation from experimental
results, but presumably not enough to warrant

abandoning reptation as an approach. The main
result of this work is that incorporating another
physical effect, many chain interactions, that was left
out of the simple reptation model leads to predictions
that agree better with experiment, namely equation
(1). In order to study what the effects of these
interactions are, I have done both theoretical and
numerical work. I present the numerical work first,
in section 3, and the theoretical investigation in
section 4. In section 5, I give some tentative ideas
concerning corrections to the reptation model, and
in section 6, I conclude by comparing my work with
experimental data.

2. The reptation model.

In this model, to calculate the motion of one

polymer, we assume that the net effect of the other
polymers is to confine the polymer of interest to a
« tube ». In other words the polymer cannot move
perpendicular to the direction of the tube by more
than a tube diameter, as illustrated in figure 1. The
only modes of motion allowed are ones that allow

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01987004801014100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01987004801014100


142

Fig. 1. - A polymer chain reptating. (a) The idealized
motion of a polymer chain through other polymer chains.
The solid curve represents a section of polymer, the other
polymers are represented by dots. (b) A picture of the
tube with the polymer wriggling inside it. For short times,
the motion of a monomer is that of local relaxation along
the tube. (c), (d), (e) and (f) The tube changing position
owing to the motion of the chain as a whole.

diffusion along the direction of the tube. As the
polymer moves, it will form new pieces of tube and
destroy old pieces of tube at the two ends of the
polymer. Eventually it will loose all correlation with
its initial tube, as the polymer will have formed a
completely new tube. The time it takes to do this

(the reptation time trep) scales as M3. This is because
the friction coefficient v, along the direction of the
tube is proportional to M, so that the time it takes a
point in the middle of the chain to diffuse out to the
end of the initial tube is proportional to VM2 = MI,
which should scale as trep. Other predictions of the
reptation model are that the elastic modulus G ( t )
has a plateau up to a time of, order the reptation
time, and that the value of G ( t ) at this plateau is
independent of M. This is because for times much
less than the reptation time, entanglements act as
crosslinks as in rubber, and the number of crosslinks
is independent of chain length. The plateau in

G ( t ) and the independence of its magnitude as a
function of M are indeed observed experimentally
[4] which is further evidence for the experimental
validity of the reptation model. However the visco-
sity is related to G ( t ) by

So since the value of the plateau of G ( t ) is

independent of M, the relaxation time trel should

scale as the viscosity does namely trel oc M3.4. This
differs from the reptation model which has

trel oc trep oc M3.

3. Numerical work.

Consider N chains on a lattice of dimensions
B x B x B. Each chain is M steps long and no two

monomers can occupy the same lattice site. The

dynamics that I employ are called « reptation dyna-
mics » [5]. In the case of no excluded volume this is
equivalent to the « primitive chain model » of Doi
and Edwards [3]. We clip of the end monomer of a
chain at random. Then an attempt is made to add it
to the other end of the clipped polymer in some
randomly chosen direction. If the lattice site we are
trying to place the monomer on is already occupied,
we reject the move. Otherwise it is accepted, and the
whole process begins again. This procedure is illus-
trated in figure 2. Note that in this model, the time
step At is not really independent of molecular

weight, but should be proportional to M. As men-
tioned above, if we take out the excluded volume
constraint this model gives = At M2 = M3. How-
ever we will see that the situation is substantially
changed when we put in the excluded volume
constrain. « Skew » boundary conditions were used
for most of this work, with some simulations being
run with periodic boundary conditions. No detecta-
ble difference between these two boundary condi-
tions was encountered.

Fig. 2. - An illustration of reptation dynamics. In (a), one
end (painted black) attempts to move to a new position
(shown in white). This attempt is rejected since the new
site is already occupied. On the other hand, the move
shown in (b) succeeds since the white monomer has filled a
vacant site.

To equilibrate the systems, an initial system was
moved until almost all the polymers had escaped
from their original tubes, and this process was

repeated at least several times. Statistical properties
were checked and showed that after this equilibra-
tion process, static correlations were in thermal

equilibrium. These equilibrated systems, were then
run and dynamical correlations were measured as
described below. Averaging was performed until

satisfactory convergence was achieved, ranging from
6 to over 100 statistically independent runs.
Using the above model, I have computed a variety

of dynamical correlation functions for different sys-
tems. I have discussed a more limited numerical
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analysis done at only one chain length, but which
also looked at the case of no excluded volume,
previously [6]. I will now define the correlation
functions used in my simulations.
The monomer-monomer displacement (,2 ( t) )

is given by

where ri ( t ) is the position of the ith bead of a chain
at time t. The average denoted by angled brackets is
done over all chains and many independent runs.
This measures the average deviation of a monomer
from its position at t = 0.
The centre of mass correlation function

( R;m ( t) ) is defined as

where

Let n f ( t ) denote the number of moves accepted in
the « forward » direction and nb ( t ) denote the
number of moves accepted in the « backward »
direction then

(the convention for the forwards and backwards
direction is of course arbitrary). This function measu-
res the mean square displacement of the polymer
along its own arclength.

I also calculated the viscosity within the framework
of the Doi-Edwards model. In this case the elastic
modulus G ( t ), is proportional to the amount of
polymer left in the original tube and is straight-
forward to calculate numerically. Then using equa-
tion (3). I computed the viscosity by integration. It is
questionable whether this procedure precisely gives
the experimentally measured shear viscosity but it

provides a well defined measure of the total relaxa-
tion time. A better measure of G ( t ) would be
obtained from studying the decay of birefringence of
an initially anisotropic system. Though this better
measure may be relevant to understanding the
difference between viscosity and diffusion data, it is
not discussed here due to difficulties in computation
and interpretation. Preliminary numerical work indi-
cates that a detailed understanding of G ( t ) requires
analysis of time scales longer than those considered
in this paper. A detailed investigation of this problem
will be the subject of a future paper.

Figures 3-9 display some results of the simulations
for systems with different chain lengths and densities.

In figure 3, (,2 ( t) ) is plotted for different
chain lengths. The systems illustrated all had identi-
cal densities of occupied sites maintained at
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Fig.. 3. - ,2 ( t) &#x3E; as a function of time for different
chain lengths. These systems all have identical densities
(62.22 %). The five sided stars are for runs with chain
length M = 10, four sided : M = 25, three sided : M = 50,
square : M = 150, and triangle : M = 600.

62.22 percent. The five sided star is for a system with
chain length M = 10, four sided : M = 25, three
sided : M = 50, square : M = 150, and triangle :
M = 600. The box size was 15 for all runs except at
600 where it was 30. In the case of no excluded
volume, and for long chains, there are two distinct
slopes for (,2 (t) ), on a log-log scale [6]. For
times less than the relaxation time ( oc M2 x At) ,
the slope of (,2 ( t) ) approaches but never goes
below 1/2. For times longer than the relaxation time,
the slope of (,2 ( t) ) approaches 1. In figure 3,
which has the excluded volume constraint enforced
however, the slope dips to below 1/2, indicating that
motion is slowing down due to many chain interac-
tions. Although this slowing down in the relaxation
time is hard to detect for M  150 (due to finite size
effects), these effects are still present, as can be seen
from data on viscosity (see below). For chains of
length 600, three distinct regimes are present
although the simulation was not run for long enough
in time to probe the eventual diffusive regime
( ,2 ( t). ) oc t. At 1/2 regime is marked by the solid
line. Before this regime, the relaxation is much
slower, though it is not clear what functional form
would fit this slow relaxation best. Further numerical
data presented in section 4, suggests that it is loga-
rithmic.

Figures 4 and 5 illustrate R 2 (t) and

s 2(t) ) for the same systems as in figure 3.
Similar remarks apply to these curves regarding the
slowing down of relaxation due to many chain
interactions : for short times, the slopes of these two
correlation functions are substantially smaller than
in the no excluded volume case.
The viscosity computed from equation (3) was com-

puted for the above systems. The results are displayed
10
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Fig. 4. 2013 ( r m (t) ) as a function of time for different
chain lengths. The systems and symbols are the same as in
figure 3.

Fig. 5. -  S2 ( t) &#x3E; as a function of time for different
chain lengths. The systems and symbols are the same as in
figure 3.

for chain lengths going form 10 to 150 in figure 6. The
lower solid line represents the results from reptation
q oc M2 åt, and the upper line gives

The diffusion coefficient (Fig. 7) was calculated by
a least squares fit to a straight line done typically on
the last ten data points displayed in figure 4. Again
we see that the slope on this line is less than the no
excluded volume case, represented by the solid

straight line.
For comparison, the viscosity and the diffusion

coefficient are displayed in figures 8 and 9 for
simulations done at a density of 50 percent and a box
size of 20. In both figures, higher molecular weight

chains are needed before deviations from the no
excluded volume case become apparent.
The above results show that the addition of

excluded volume interactions to the reptation model
substantially slows down the motion of chains. This
effect goes in the right direction in regard to

experiments. A better understanding of the nature
of this slowing down is needed before the relation-
ship between these results and experiment can be
ascertained. This is done in the next section.

Fig. 6. - The viscosity q as function of chain length M for
the same systems as in figure 3. The data points are

squares, the solid line running through the data is

11 / M oc M2.4 , and the line below it is n/M oc M2 which is
the result obtained without the inclusion of excluded
volume.

Fig. 7. - The diffusion coefficient D as function of chain
length M for the same systems as in figure 3. The solid line
is DM oc M-1 which is the result obtained without exclud-
ed volume.
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Fig. 8. - The viscosity as a function of chain length M for
systems at a density of 50 %. The data points are squares,
the solid line running through the data is q /M oc M2.4,
and the line below it is q /M oc M2 which is the result
obtained without the inclusion of excluded volume includ-
ed.

Fig. 9. - The diffusion coefficient as function of chain

length M for systems at a density of 50 %. The solid line is
DM oc M-1 which is the result obtained without excluded
volume included.

4. Theory.

(i) Analysis of the simulation.
I will first develop a theory to explain the numeri-

cal results of section 3, and then consider its relation
and extension to a real melt. Consider a long
« black » polymer chain of unit step length in a melt
of identical « white » chains initially in thermal

equilibrium as shown in figure 10 (a). We now freeze
the motion of the white chains but let the black one

Fig. 10. - (a) A black chain in thermal equilibrium with a
dense melt of white chains. (b) The black chain has
reptated so that there is a density deficit close to one end
(the striped region), and the other end sees a high density
(marked in gray).

move according to reptation dynamics, as described
above. Note that for long times, the freezing of the
white chains leads to new and erroneous statistics for
the black chain. However for short times, the black
polymer should feel a frozen background, even if the
other chains are moving, since changes in lattice

occupation occur only at or near chain ends. Since
the average distance between chain ends is propor-
tional to M1/3, then for times corresponding to chain
end displacements of much less than MI/3, the

freezing of the white chains should be justified. Now
in equilibrium, the total density of the melt is nearly
constant. We see in figure 10 (b) that as the black
polymer reptates it leaves behind a hole (striped
region) and moves into a new region shown in grey
with a higher than average density. Another way of
viewing this is that the black chain sits in a « hole »
which acts as an attractive potential, due to the
absence of white polymer in this region. So we can
think of the problem of a chain reptating in a melt as
being equivalent (for short times) to a chain reptating
in the presence of another fixed polymer (namely the
original tube) with an attractive interaction between
the tube and the polymer. We want to know the free
energy of the polymer plus hole system as we vary
the amount of overlap between the polymer and the
hole. We expect that when the tube and the hole are
nearly coincident, that the free energy will be
lowest, but as the chain reptates away from the hole,
the free energy should increase.
Note that the whole concept of a free energy of

the hole plus polymer system is only meaningful if
the polymer is localized around the hole for long
enough that the polymer has almost equilibrated.
This is similar in spirit to nucleation theory. We will
see that, in analogy with nucleation, the height of
the free energy barrier that the polymer has to
overcome is very large (for large M).
We will analyse this system in mean field theory.

This problem is similar to the adsorption of a

polymer of length M next to a wall, since the fractal
dimension of a random walk and a plane are both 2.
Let us compute the entropy loss in confining a
polymer to a width OR surrounding the tube (see
Fig. 11). Within segments of radius OR, or lengths
AM - AR , the polymer can take any configura-
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Fig. 11. - A chain (thin line) in equilibrium with a fixed
hole (thick striped line). The chain is highly correlated
with the hole at distances greater than AR, which is the
radius of the circles illustrated.

tion. So only MOM segments need be fixed in order
to confine a polymer to the hole. This means the
reduction in entropy is

(this is identical to (1.56) of de Gennes’ [7]). Within
OR, the number of intersections between the tube
and the chain (of length AM) is proportional to the
volume of this region times the density of tube times
the density of chain, which gives the answer

AM/AR. Balancing energy and entropy we find that
the chain in equilibrium is confined to a small
diameter around the hole given by

where 5 describes the amount of attraction between
the polymer and the hole, and should be of order 1
in a concentrated system. The free energy of adsorp-
tion should be

(see 1.58 and 1.59 of de Gennes [7]). Actually in the
case discussed by de Gennes of polymer adsorption
onto a plane, this kind of mean field analysis yields
the incorrect dependence on 5, a more accurate
analvsis [81 of the 5 denendence gives

In the case of interest here, the dependence on 8
may have a different exponent since we are interest-
ed instead in the adsorption of a polymer onto a
random walk. In any case, there is a strong correla-
tion between the tube and the hole. When the chain

reptates a distance s out of its original tube it feels a
reduction in free energy proportional to s. So the

chain should be localized about some equilibrium
location with the probability of an excursion by an
arclength s being proportional to exp(- const. x s).
As mentioned earlier, this analysis should only be
valid for s  M2/3, since the environment ceases to
appear frozen for s , M2/3 ( or r &#x3E; M1/3) . At these
distances, relaxational processes can take place
between chains that can alter the metastable configu-
rations. As a polymer reptates it leaves a density
deficit at one end and a density excess at the other.
Another polymer a distance M1/3 away can lower
the free energy by either moving out of a high
density region or into a low density one. There must
be some complicated « shuffling » processes needed
in order to rearrange chain ends after some new
metastable configuration has been established. This
analysis implies that it is necessary to surmount a

free energy barrier of order M2/3 which gives a
relaxation time

If we plot monomer displacement rz ( t ) , we expect
to see a logarithmic type relaxation for t  M2

exp ( M2/3) of the form

and power law relaxation of the form

for t &#x3E; M2 eM2I3. This is indeed the kind of relaxation
that was seen in numerical experiments (Fig. 3). To test
these predictions more thoroughly, I ran a simulation
where one chain could move but the rest were frozen,
with M = 300, B = 30 and 62.22 percent of lattice sites
filled. From the above argument, one would expect
that the frozen system and a system of mobile chains
should behave almost identically for times correspond-
ing to motions of chain ends ( ,2 ( t) ) M213 as in
equation (12a). For times greater than this the mobile
system should start moving much faster as in

equation (12b), but the frozen system should continue
to move slowly according to equation (12a) for much
longer times. These predictions are confirmed by the
numerical results displayed in figure 12, which shows
that all three correlation functions measured are nearly
identical up to 4 000 time steps which corresponds to

( ,2 ( t) ) = 15 ( = M2/3/3 ). However after this

time, the frozen system moves much more slowly
then the mobile system, with the slope of ( ,2 ( t) )
on the log log plot going down to about 0.15. Such
slow growth of r2 ( t ) is indeed reasonable confirma-tion of equation (12a), that is ,2 (t) appears to grow

logarithmically.
(ii) Analysis for a real system.
Now I consider how the above results should be

modified in the case of real melts with an entangle-
ment length Me. Here preservation of constant
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Fig. 12. - Correlation functions for a mobile set of chains
and for one chain in a frozen environment. The density of
the system is 62.22 %, and M = 300. In the mobile case,

( R;m (t) ),  ,2 (t) &#x3E;, and S2(t) ) are illustrated

by the squares, four sided stars, and crosses respectively.
In the frozen case, (R;m ( t) ), , ,2 ( t) &#x3E;, and
 S2 (t) &#x3E; are illustrated by the three sided stars, five
sided stars, and triangles respectively.

density is not a problem. As the black polymer
reptates it can push white chains out of the way. In
the same way, a void created at the other end is

easily filled in. What happens instead is that stress is
generated in the regions that the polymer has
entered, or vacated.

In other words, the main theoretical difference
between the situation in the simulation, and a similar
analysis of a real melt, is that in the computer model,
changes in density are important, but in a real melt,
it is local shear deformations that give rise to

changes in the free energy. This is because a melt is
virtually incompressible and density fluctuations
relax very quickly, on a time scale of no relevance to
the processes considered here. (In semi-dilute solu-
tion both local shear and compressional deforma-
tions contribute to changes in the free energy.) So
what happens when a polymer end reptates into a
new region, as shown in figure 10 ? We first consider
the related question of what happens if one inflates a
macroscopic balloon in a polymeric liquid [9]. On
time scales less than the relaxation time, the melt
behaves much like rubber. If we inflate a macrosco-
pic balloon in a piece of rubber, the static pres-
sure inside the balloon will increase due to the fact
that the rubber in its immediate vicinity has been
stretched. So one expects that in a polymeric liquid,
the pressure in the balloon should decay in a time
proportional to the relaxation time.
Now consider the question : what happens when

the radius of the balloon becomes smaller than the

tube diameter ? I will argue in the following that the
system behaves in the same way as it would with a
large balloon, but with the modification that the
stress field gets cut off at a radius of order the tube
diameter D. That is, there is a stress field at

distances larger than the tube diameter that can only
relax through tube disengagement.

If we look at a point in a melt, a long distance r
from an inflated balloon of radius R, then the radial
displacement of that point after the balloon is
inflated is 5 r - R3 /,2 (assuming that the medium is
incompressible). Clearly this formula is true even for
an infinitesimally small balloon. So the change in
free energy should be approximately

where G is the plateau modulus 1 Me . Note
that the integral has been cut off at a distance of
order the tube diameter. This is because stress
induced by local deformations will relax almost

instantaneously provided that we are looking at

spatial frequencies with wavelengths smaller than
the tube diameter D (since we are probing distances
below the entanglement length). But at wavelengths
larger than D, one would expect that there is a
residual stress present due to orientational aniso-
tropy which can only decay through tube disengage-
ment.

This last point is in accord with the theory of Doi
and Edwards (which only considers homogeneous
deformations however). After an initial fast relaxa-
tion process, where monomer density adjusts so as
to balance the tensile forces acting on primitive
chain segments, the stress will have relaxed to a
finite value, given by equation (4.8) of the second
paper of Doi and Edwards (p. 1807). This resulting
stress, due to anisotropy in the orientation of

primitive chain segments, then relaxes through tube
disengagement. For an inhomogeneous deformation
varying on a length scale larger than the tube
diameter, I see no additional mechanism for stress
relaxation outside the two mentioned above.
An application of the above discussion is the

calculation of the change in free energy induced by
adding an entanglement length of chain to a melt.
This amount of chain is equivalent to a balloon of
volume R3 - Me. Substituting this into equa-
tion (13) gives

To calculate the free energy increase induced by
the black chain reptating an arclength S, one has to
solve the following problem : what is the elastic

energy when we inflate a thin cylindrical balloon in
the shape of a random walk, and of total length S, up
to some radius R ? To calculate the energy required
to inflate a small balloon whose size is less than D, it
is necessary to apply a small distance cutoff at D.
How do we generalize this to an arbitrary strain field
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u (r) ? Normally the stress energy is But since the melt behaves like a liquid on length
scales smaller than D, the most natural generaliza-
tion of the above formula is

where we could take g ( r ) to be for example a

Gaussian with width D. The last equality expresses the
formula in terms of Cartesian coordinates and Fourier

transformed variables. This has the effect of cutting of
stress at spatial wavelengths of order D. So to find the
elastic energy we minimize this equation subject to the
constraint V. u = 0. AF is a linear function of S, for

large S. To see this, one can approximate the u field by
linearly superposing the strain field of many infinitesi-
mal spheres that are spaced uniformly along the path
r(s), 0sS

or

substituting this into equation (16) gives

Since g ( r) is short range, this is a linear function of S,
for large S, but is a S2 for S -- N, since g ( r ) has a

width of order D.

Basically what the above results hinge on is the fact
that if we inflate two balloons in an elastic medium, the
energy required to do this is only very weakly depen-
dent on the distance between the balloons. For a more

general version of this fact see reference [10].
So the increase in free energy resulting from an

excursion of the polymer by an arclength s should also
result’in an increase in free energy proportional to s.
We also know the prefactor dependence on Me if we
assume the 5 dependence of equation (10b) and also
use equation (14). Since g (r) has a range of order D,
it is useful to think in terms of the primitive path of the
polymer, which has a step length of D. Then

8 = Me 112. The distance between chain ends is oc M’3,
so the free energy barrier is the number of primitive
path steps the polymer must reptate times the free
energy per step which equals

So the relaxation time in a melt should go as

The relaxation time in semidilute solution should
also also have the same exponential dependence on
molecular weight, since one expects stress to be induced
by a similar mechanism as in a melt.

5. Beyond the reptation model.

In this section I briefly look at an effect outside the
reptation model that may alter the exponential depen-
dence of the relaxation time from trel ooooooo exp (M213) to,
for example trel oooooo exp (M1I5) .
There may be a very weak dependence of the tube

diameter and the entanglement length on time, say
Me -- D2 -- log t. This may be due to polymer chains
doubling up occasionally on themselves and moving
perpendicular to the tube as shown in figure 13.

This kind of « weaving » motion is very slow and is
closely related to the motion of star molecules [11]. In a
polymer melt this effect may lead to a slow drift in the
position of the tube due to the « weaving » of different
polymers. So it may be possible that D2 -- log t. This

Fig. 13. - The thick line represents a chain in equilibrium
with other chains, represented by the dots. The thin line
represents the same chain at some later time after it has
performed an unlikely motion that is completely disallow-
ed in reptation theory.
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kind of effect would be hard to detect experimentally
but may be present. Equation (22) trel --

exp ( M213 / D 11/3) can then be solved self consistently
to eliminate D assuming D2 _ log trel’ giving t,,, -

exp (M4/17). Of course this exponent depends on the
precise variation of D with time. Therefore the expo-
nential form of relaxation that I have predicted is
sensitive to small departur. s from the reptation model.
So unless the tube model is rigorously correct, an
accurate calculation of the relaxation time is rather
difficult.

6. Conclusions.

In this paper I have studied the dynamics of polymers in
the framework of the reptation model but also including
excluded volume interactions. At first sight, one might
guess that in analogy with static properties of a melt,
long range excluded volume interactions are screened
out, however this turns out not to be the case. In

particular other dynamical processes must come into
play, in order to maintain screening in equilibrium. I

have given a theoretical argument of how excluded
volume interactions increase the relaxation time within
the framework of the reptation model. This theory may
provide an explanation for the experimental deviations
of the viscosity from the predictions of the reptation

Fig. 14. - A comparison of the function q = M3 exp
(0.1 M2/3) (curved line) with q = M3’4 (straight line).

model. I have also performed a computer simulation
which appears to agree quite well with experiment. The
reader may ask how it is that experimental results show
a power law behavior for the viscosity while the present
theory predicts an exponential ? If we plot

M3 exp ( 0.1 M213) versus M, then as can be seen

(Fig. 14), over two decades it is quite close to

M3’4. Also this exponential prediction is only true in the
limit of exceedingly long chains. The effects of fluctua-
tions should be quite strong in the experimentally
accessible regime. In fact the numerical work of section
3, suggests that this is the case as for chains of up to

length 150, the relaxation time looks to be a power law.
The experimental determination of the diffusion

constant in polymer melts is still the subject of much
research with some conflicting results between different

groups. Some groups [12] observe D oc M - 2, while
others [13] see a much lower exponent, roughly
D oc M- 2.8 . Therefore at the present time it is difficult
to compare diffusion data to the present theory which

predicts that

Furthermore to theoretically understand the relation-
ship between viscosity and diffusion, the difficulties
mentioned in the paragraph below equation (7) must
be addressed.
Another explanation [14] for the viscosity data differ-

ing from the one in this paper, argues that the

anomalous viscosity is a cross-over effect and that for

very long chains q oc M3. Analysis of this idea appears
to indicate that the cross-over effect is not strong
enough to explain the experimental data over the entire
range of molecular weight. However this explanation
still cannot be dismissed and certainly deserves further
investigation [15]. It might even be that for quite low
molecular weights this effect dominates, but for higher
molecular weights excluded volume effects become
more important.
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