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Résumé. 2014 Dans cet article, nous proposons quelques conjectures sur le comportement statique et dynamique
des polymères en anneaux. Lorsque ceux-ci sont non attachés et en phase fondue, ils pourraient avoir un
comportement statistique intermédiaire entre ceux de chaînes gaussiennes et de chaînes collapsées. Un
traitement très simple (à la Flory) suggère que le rayon R des anneaux suive une loi de puissance en fonction du
degré de polymérisation N avec l’exposant v = 2/5 (R ~ N2/5) . Au contraire, un anneau dans une phase
fondue de longues chaînes linéaires composées de la même espèce chimique devrait être gonflé. De plus, des
anneaux d’une espèce (A) peuvent être compatibles avec des chaînes linéaires d’une autre espèce (B), même
lorsque les chaînes linéaires A et B sont incompatibles. Le comportement d’anneaux dans un réseau
d’obstacles fixes est aussi discuté. Une analyse simple de la dynamique d’un tel anneau indique que sa
constante de diffusion D (dans un espace à 3 dimensions) suit une loi de puissance en fonction du degré de
polymérisation N avec l’exposant - 2 (D ~ N-2). Cette prédiction est confirmée par des calculs de
simulation sur ordinateur. Enfin nous proposons qu’un anneau noué formé irréversiblement dans un solvant 03B8
et dans des conditions particulières, doit rester gaussien une fois placé en bon solvant.

Abstract. 2014 We present some conjectures concerning the equilibrium statistics and dynamics of ring polymers.
We argue that unconcatenated ring polymers in the melt may have statistics intermediate between those of
collapsed and Gaussian chains. An extremely crude (Flory-like) treatment suggests that the radius R of such a
ring scales with its polymerization index N as R ~ N2/5. In contrast, a ring in a melt of long linear chains (of
the same chemical species) should be swollen. Moreover, rings of one chemical species (A) can be compatible
with linear chains of another (B), even when linear chains of A and B are not compatible. Rings in a network
of fixed obstacles are also discussed. A simple analysis of their dynamics shows that the diffusion constant D of
such a ring (in three dimensions) scales with its polymerization index N as D ~ N-2. This prediction is
confirmed by computer simulations. Finally, we consider a knotted ring formed irreversibly in a theta solvent,
and argue that, under appropriate formation conditions, such a ring may remain Gaussian when placed in a
good solvent.
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1. Introduction.

The equilibrium statistics of flexible, linear chain

polymers are by now. quite well understood [1].
Relatively little is known, however, about the statis-
tics of « ring polymers ». These are long, flexible-
chain polymers which are made (for example) in
dilute solution by covalently linking the ends of a
linear chain together. It is expected that, under
appropriate synthesis conditions, large rings can be
made which are neither knotted with themselves,
nor concatenated with one another [2] (Fig. 1).
A major reason for the lack of progress in

understanding rings is the fact that the configurations
of a given ring are restricted to a single topological
class. Even in the simplest idealized case of unknot-

ted, unconcatenated rings (to which, with the excep-
tion of section 4, we restrict our attention in this
paper) it is not obvious how to write down an
appropriate partition function. Despite this, a num-
ber of theoretical discussions (and some numerical
results) [3-8] concerning the statistics of rings at low
densities have been given(’). There is also a certain
amount of experimental data for chain statistics in
the dilute regime [9, 10].

(1) Note that most theoretical treatments have conside-
red only the effects of the simplest topological invariant,
the winding number, and have avoided analysing the
effects of an infinite number of higher topological inva-
riants.
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Less seems to be known about the equilibrium
statistics of ring polymers at high densities. For

example, if the solvent is evaporated off from a
dilute solution of ring polymers, one is left with a
melt of rings ; in such a melt, the rings must remain
unconcatenated so long as covalent bonds are not
broken. There have been experimental studies of the
dynamics of polymers in such a melt [11,12], and of
dilute ring polymers in a linear matrix [13] ; how-
ever, the interpretation of the results remains
somewhat controversial [14]. In this speculative
paper, we consider the equilibrium statistics of ring
polymers in dense systems. To our knowledge,
measurements of the gyration radius of such poly-
mers have not been made - possibly because of a
widespread assumption that rings, like linear chains
at melt densities, obey Gaussian statistics.
We argue here that rings in the melt are very

possibly not Gaussian. This is because the topological
interaction which ensures that two rings always
remain unconcatened is not necessarily « screened
out » by the presence of a high density of other rings.
(This contrasts with conventional excluded volume
interactions, which are fully screened). Similarly the
requirement that one ring is not knotted with itself
should lead to the swelling of an isolated ring
polymer in a melt of linear chains.

2. Static configurations.

2.1 A RING POLYMER IN A FIXED NETWORK. -
Before considering the effect of topological interac-
tions in melts containing ring polymers, we discuss a
simpler case ; that of a ring which is free to move in
a fixed network (but which is not concatenated with

Fig. la. - On the left is a permitted configuration of an
unknotted ring. It cannot turn into the forbidden (knotted)
configuration on the right (nor vice versa).

Fig. Ib. - On the left is a permitted configuration of a
pair of unknotted, unconcatenated, rings. It cannot turn
into the forbidden (concatenated) configuration on the
right (nor vice versa).

it). For example, one can consider a uniform gel in
contact with a reservoir containing a very dilute
solution of rings. In this case, since the ring can
enclose none of the fixed obstacles, its statistics are
those of a branched polymer or « lattice animal » of
a tree-like structure [15] (Fig. 2a). Note that this
lattice animal is self-avoiding at large length scales,
since a fixed network cannot adjust its density so as
to screen out the excluded-volume interactions
between points on the added ring. (For similar
reasons, a linear polymer in a fixed network is a self-
avoiding walk (SAW) at large distances [16].) On a
scale very much larger than the network of obstacles,
the size R of a ring polymer in a network thus scales
with the polymerization index N as R - N’ where

v =1/2 . (1) 
This exact result of Parisi and Sourlas [17] for self-
avoiding lattice animals in three dimensions is coinci-
dentally the same as for a Gaussian chain or ring ;
however, all other aspects of this structure are

entirely different.

Fig. 2. - A three-like lattice animal corresponding to the
structure of a ring in a fixed network. (See also refe-
rence [15]).

Thus a ring polymer in a fixed network looks like a
self-avoiding lattice animal ( v = 1/2), whereas a
linear chain would be an SAW v = vsAw - 3/5 ) -
We see that the topological interaction of the ring
with the network leads to a considerable reduction in
the size of the ring. Moreover, the entropy of a ring
polymer in a fixed network is severely reduced from
that of a chemically similar linear chain of the same
polymerization index, N, in an identical network.
Specifically, we expect the increase in free energy,
AF, to vary asymptotically as [1, 18, 19]

where A is a constant. Thus the equilibrium concen-
tration of ring polymers in a gel which is held in
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contact with a solution of such rings should be
strongly surpressed, compared with a similar experi-
ment using linear chains of the same chemical

composition.

2.2 RINGS IN RINGS. - We now turn to the more
difficult problem of calculating the equilibrium statis-
tics of ring polymers in the melt. Here the obstacles
are not fixed, but instead consist of strands of other
ring polymers. All configurations of the ring melt are
equally likely subject to the constrains that :

(a) no two monomers, whether on the same or
different chains, occupy the same spatial position
(this is the usual excluded volume interaction) ;

(b) no two rings are concatenated, nor is any ring
knotted with itself.

Of these two interactions, the first is completely
screened out, so long as each chain remains overlap-
ped with many other chains [1, 18, 20]. Hence the
screening of excluded volume is complete even for
partially collapsed chains so long as these have
v &#x3E; 1 /3 in three dimensions. (In two dimensions the
requirement is v &#x3E; 1/2 ; thus linear chains in the
melt are themselves marginally swollen [1].)
To account for constraint (b) is much more

difficult. We first consider two proposals concerning
the ring polymer melt and show that neither is fully
self-consistent. We then give a crude argument along
the lines of Flory [18] which leads to a non-trivial
self-consistent estimate for v. (Of course, « self-
consistent » does not necessarily mean « correct ».)
The first proposal is to say that in a melt of rings,

all the rings are, in fact, Gaussian. Supposing this to
be true, let us imagine adding one extra ring to the
system. This can be done by first creating a very
slight density deficit in some region : this is a

« correlation hole » [1] into which we then add the
extra ring. There is an immediate problem, how-
ever : even at the lowered density, the region in
question contains a very large number of rings,
which make up a complicated network of strands.
We somehow have to add the extra ring in such a
way that it is not concatenated with any of these

neighbouring rings. In view of this constraint, it
seems very implausible that the added ring would be
Gaussian. Instead, to avoid threading the other rings
it would have to curl up into some more collapsed
structure. Thus the assumption of Gaussian rings is
not really self-consistent (2).
An opposite approach is to say that for any ring,

the topological constraint of nonconcatenation with
other rings is so strong that these other rings can be
treated as a fixed network for the purposes of

topology. Unlike a fixed network, however, the

system is certainly able to equilibrate its density, and

(2) Of course, there are many ways of forcing the ring to
be Gaussian. One way is to insist that the ring doubles
back perfectly on itself, forming a linear chain of half the
length and twice the thickness of the original ring.
However, even in a fixed network, such configurations are
extremely unlikely ; they carry a probability - e- N.

so screen out excluded volume effects. But in a fixed
network, with screened excluded volume interac-
tions, any given ring would be a segregated, collaps-
ed structure of v = 1/3. (This result arises because
an ideally Gaussian lattice animal has v = 1/4,
which is less than that of a compact structure in
3 dimensions.) Hence this proposal is also not self-
consistent : in such a segregated system, each ring
overlaps only marginally with its neighbours, and is
thus very unlikely to behave as these formed a fixed
network of constraints.

In an attempt to obtain a self-consistent theory,
we allow the rings (of polymerization index N) to
have some arbitrary size R ( N ) . We then estimate
the free energy per ring. If a ring has size R, it is
overlapped with a number of neighbouring rings of
order RDIN (in d dimensions). The more spatially
extended the ring, the more entropy is lost by the
nonconcatenation constraint with its neighbours.
The simplest possible estimate of this is to say that
roughly one degree of freedom is lost for each of the
Rd/N neighbours which the ring is prevented from
threading (3). This gives a contribution to the free
energy

On the other hand, there is also an entropy penalty if
the ring becomes too squashed. Now, the free

energy required to squash a Gaussian chain of N
steps into a region of linear size R less than
N1/2 scales as kTN /R2 [1]. Of course, there are also
terms associated with the increased topological
entropy loss (from the fact that the ring is not
knotted with itself) upon squeezing ; we hope these
terms are unimportant (3).
Hence we write

which, upon the usual minimization, yields

or R - NL.f::&#x3E; in three dimensions (4,5).

(3) Here we neglect large local contributions to the free
energy arising from the exclusion of configurations which
are knotted or concatenated at very short length scales.
We expect these contributions to be fully screened, i.e.,
they generate a free energy dependent only on the local
sity, which is constrained to be everywhere constant.

(4) More generally, one might argue that the form (3)
for the estimated entropy loss due to the’nonconcatenation
constraint should be replaced by F - kT( Rd/N) a
where a is an unknown exponent. This gives, instead of
equation 5,

Hence

v
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Some remarks are now in order. Firstly, equations
(3)-(5) are to be taken seriously only for d = 2 and
d = 3. For, unlike the case of excluded-volume
interactions, it is not clear that topological interac-
tions can be discussed meaningfully in noninteger
dimension d. It should also be noted that for
d -- 4, there are no knots [21]. Hence the topological
interaction between rings does not exist, and the
estimate (3) of the constraint energy is inapplica-
ble - instead the rings are Gaussian. For a two-
dimensional melt of ring polymers, on the other
hand, we obtain v = 1/2. Since this result corres-
ponds to both the Gaussian and the segregated chain
limit, it is presumably indeed correct for the melt of
rings in two dimensions.
Our second remark is that if one accepts (4) as the

free energy, it seems likely that the minimization
procedure which follows from it is fairly reliable.
This is because each chain is interacting with many
others, and fluctuations are small. Thus the usual
objections to Flory theories for excluded volume

problems [1, 22] do not really arise. Against this
should be weighed the fact that our intuition for
these topological interactions is not highly develop-
ed, and we do not know to what extent mean field
arguments apply even at high density. Moreover, we
stress that we have not provided any rigorous
justification for the terms which appear in equa-
tion (4). Therefore we do not attach much signifi-
cance to the actual value of v = 2/5 that was
obtained ; our motive for presenting the above
calculation is only to make more plausible our

conjecture that rings in the melt have some value of
v intermediate between v = 1/2 (Gaussian) and
v = 1/3 (segregated).

2.3 RINGS IN LINEAR CHAINS ; RINGS IN SOLU-

TION. - For a ring polymer in a melt of linear chains
there are no topological constraints other than that
the ring always remains unknotted with itself. This
constraint on its own is capable of causing the ring to
swell. (For example, one expects an isolated ring
polymer to be distinctly swollen in a solvent which is
at the theta point T. for a linear chain of the same
chemistry [3-7].) The question is whether this topolo-
gical self-interaction is screened out by the presence
of dense linear chains.

Crudely, we can imagine dividing the topological
self-interaction of the ring into two parts [6] : a

short-range part, and a global part. The short-range
part arises because, wherever two sections of the
ring are close together in space (Fig. 3), very many
local configurations are lost through the topological
constraint. (Essentially, one must discard some

All intermediate a give lid  v ( a )  1/2. Thus, whilst
our choice of a = 1 is the simplest possible, our qualitative
conclusions apply for any finite positive a.

(5) The fact that this exponent is greater than 1/3 means
that excluded volume interactions are fully screened, so
that it was consistent not to include them in equation (4).

Fig. 3. - Short-range repulsion between points on a ring
generated by topological interactions. Knotted configura-
tions, such as that shown, are forbidden.

finite fraction of the configurations in which there is
a knot between the points a, b, c, and d (6).)

Following a suggestion of des Cloizeaux [6], we
account for this short range part of the topological
interaction by setting the excluded-volume interac-
tion between points on the ring to be somewhat
larger than between points on other chains (or
between one point on the ring and one on another
chain). Consequently, a ring and a linear chain of
the same chemical species should have a negative X
parameter (7). This means that a single ring polymer
in a melt of linear chains of an identical chemical

species should be swollen. Similarly, it may be

possible to find pairs of chemical species A, B such
that linear chains of each species are incompatible
( x &#x3E; 0), but that rings of one species are compati-
ble with linear chains of the other (X  0). This
remark applies even in the limit of very long chains ;
it would be very interesting to see if this compatibili-

(6) This assertion rests on the rather plausible assump-
tion that the probability of there being an exactly matching
« antiknot » nearby is not very close to unity.

(7 ) For two polymers A, B with excluded volume

parameters wAA, WBB and WABI the effective interaction w
between points on the A polymer in a melt of chains B
obeys [20]

If A and B are respectively ring and linear polymers of
the same chemical species, then WBB = WAB but

WAA = wBB + wt, where wt is a topological contribution.
Hence w = wt, and the conformation of the loop A in the
melt of linear chains B is the same as it would be in a
solvent at the theta temperature T 8 of the linear chain. (In
such a solvent, wBB = 0, WAA = wt). The Flory X parame-
ter is related to the excluded-volume parameters by
X oc W AB - (w AA + WBB ) /2 wt/2. For a discussion,
see reference [1].
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zing effect of the topological interaction could be
detected experimentally.
Under certain conditions, the local excluded

volume interaction, including the topological contri-
bution, can be made to vanish. (For example, this
will happen for a ring polymer in solution at a shifted
theta temperature, Tø*, somewhat below that of the
linear chain analogue.) This leaves us with a residual,
« global » self-interaction of the ring which comes
from the impossibility of configurations like that in
figure 1, in which parts of the ring are not in close
contact but the ring is globally knotted. Sadly, we do
not know how to estimate the strength of this global
interaction. Since it is long-range in character, it
might in principle turn out to dominate over the
local contributions that we have been discussing so
far, in the limit of long chains (8). In this case the
asymptotic behaviour of a ring in a melt of linear
chains (or in a solvent at any temperature T &#x3E; Tø*)
would be governed by a new exponent v ring &#x3E; vSAW.
The alternative is that vr;ng = vsAW in both of these
cases ; this will hold if (as proposed in Ref. [6]) the
local part of the topological self-interaction domina-
tes over the global part at high N.

3. Dynamics of a ring in a fixed network.

We now give a discussion of dynamics, concentrating
on the case of a ring in a fixed network (9) [23]. Here
one can estimate the diffusion constant relatively
simply, by adapting the « kink-gas » picture of de
Gennes [24], as used in the theory of reptating
chains. Essentially, diffusion proceeds by the trans-

Fig. 4. - Transport of a kink by Rouse-like progression
along the chain backbone.

(8 ) For example, if it produced an effective power-law
potential between points on the ring.

(9) This problem has previously been studied by Rubins-
tein in reference [23]. However, our results (-T - N3;
D-N -2 in d = 3) are in marked disagreement with .his

port of kinks along the chain (Fig. 4). Each kink
takes a time TRouse -N2 to travel a spatial distance
of order R ( N ) , the linear size of the polymer. If
there were only one kink on the chain at any time, .
the centre of mass diffusion constant Do would obey

where the right hand side represents the mean
square displacement of the centre of mass arising
from the transport of one kink across a distance R.
In reality, the number of microscopic kinks present
at any time is proportional to N. Hence the true
centre of mass diffusion constant D scales as

Here v (d) is the size exponent for self-avoiding
animals in d dimensions. (This obeys v (d) =
5/ ( 2 d + 4) [25]; hence v (2) = 5/8, whereas

v (3) = 1/2, exactly [17], as mentioned in sec-

tion 2.1.)
It thus appears that (i) the fundamental relaxation

time for the centre of mass diffusion of a ring
polymer in a fixed network is T - N3, which is the
same as the reptation time Trep for a comparable
linear chain in a melt ; (ii) in three dimensions, the
diffusion constant D - N-2 also scales the same way
as for a reptating linear chain. This latter result
arises purely from the accidental coincidence of v for, 
Gaussian chains and self-avoiding animals in three
dimensions. In two dimensions, one expects
D - N-7/4.
We have tested these predictions numerically in

both two and three dimensions, with a dynamic
Monte Carlo simulation. We used a lattice model
similar to that of Evans and Edwards [26], with the
addition of a repulsive interaction between chain
monomers. We refer the reader to reference [26] for
a detailed description of the model. In essence, a
ring polymer is placed on a simple cubic lattice ; its
motion is restricted by the presence of a « cage »
composed of lines that run parallel to the three
lattice directions (with one cage line running through
the centre of every face of each unit cell). Thus we
prohibit the movement of monomers along diago-
nals, but allow sections that immediately double
back on themselves to « flip ». Throughout the
motion, the ring remains unconcatenated with the
cage. To maintain swollen chain statistics (as discus-
sed in section 2.1) a local two-body repulsion is
introduced. The total energy takes the form

where ri is the co-ordinate of the ith monomer, and
v(r) = u if r = 0, v (r) = 0 if r:o 0.
Two dynamical correlation functions were moni-

ed : the mean square displacement of a monomer
from its position at time zero, and the mean square
displacement of the centre of mass. More speci-
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fically, the monomer-monomer displacement
( r2( t) ) is defined as

where ri ( t ) is the position of the ith monomer on
the chain at time t. The average denoted by angle
brackets was taken over enough independent runs to
obtain adequate statistics.
The centre-of-mass correlation function

( R;m ( t)) is defined as

where

After initially equilibrating the ring polymer, these
correlation functions were computed. The results
are displayed in figures 5 and 6.

Theoretically, we may adapt standard arguments,
from the theory of reptating polymers [24, 26], to
predict that the above correlation functions will have
the following behaviour. For t  N2, we expect
Rouse-like motion occurring on a convoluted path of
fractal dimevsion df = 1/ v, so that

Fig. 5. - Simulations of a swollen ring polymer in a fixed
network in three dimensions. The energy penalty for self-
intersections is U = 0.5 kT. The filled circles and triangles
denote data points for ,2 ( t) ) and (R;m ( t) )
respectively for a ring of length N = 60. The solid lines are
a theoretical fit to this data (described in the text). Open
symbols denote corresponding data for a chain of length
N = 30.

Fig. 6. - Simulations of a swollen ring polymer in a fixed
network in two dimensions. The filled circles and triangles
denote data points for ,2 ( t) &#x3E; and (R;m ( t) )
respectively for a ring of length N = 90. The solid lines are
a theoretical fit to this data (described in the text). Open
symbols denote corresponding quantities for a chain of
length N = 60.

For N2 : t : N3 we expect diffusive motion along
the same fractal path. Hence

The N-dependence in (12) is obtained by requiring
continuity of equations (11) and (12) at t = N2.
Finally, for t &#x3E; N3 we expect normal diffusive
motion

where similar requirements of continuity demand
D - N2v (d) -3 (cf. Eq. (7)).
For the centre of mass motion, we expect

for t  N 2 and

at longer times. Throughout equations (11)-(14), the
relevant v is that for swollen lattice animals

(v = 1/2 in three dimensions, v =-z 5/8 in two

dimensions), as discussed previously.
Figure 5 shows simulation data in three dimen-

sions. Motivated by the above arguments, we have
fitted the data (for a chain of length N = 60) with
the functions ( r2 (t) = 0.000075 t + 0.044 t1/2 +
0.26 t 1/4 and R m ( t ) = 0.000075 + 0.0049 t1/2.
In figure 6, simulation results for two dimensions
are plotted. The solid curve represents a fit to the
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data (for a chain of length N = 90) with the functions
r2(t)) = 0.001 t + 0.018 r+0.29 tV/2 and

R m = 0.001 t + 0.0022 t", with v = 5/8. As can
be seen, both sets of data are fitted reasonably well
in this fashion. We conclude that these computer
simulations are basically consistent with the discus-
sion of dynamics given above, including the
result (7).

In contrast, to the above results for a ring polymer
in a fixed network, the dynamics of a ring in a melt
of other rings could be remarkably complicated. If
our conjectures concerning the equilibrium statistics
are correct, we expect the dynamics to be slowed
down considerably as a result of the interpenetration
which neighbouring rings. For a discussion of dyna-
mics in the remaining case of interest - a ring in a
linear chain matrix - we refer the reader to a recent
article by Klein [27].

4. Knotted rings.

Throughout sections 1-3, we have considered only
the idealized limit in which our ring polymers are
formed in an unknotted configuration. This limit
may be realized experimentally if the rings are made
by a polymerization mechanism in which monomers
are added one-by-one into a pre-existing unknotted
loop. Commonly, however, ring polymers are made
by chemically bonding the ends of a long linear
chain. This may lead to the trapping of many knots
on the ring. One would expect the distribution of
knots to depend on the preparation conditions [10] :
for example a ring formed in a good solvent should
have fewer knots than one formed in a theta solvent
or poor solvent.
An interesting limiting case arises if dilute Gaus-

sian chains (in a theta solvent) are made to form
loops by the following two-stage process (10) :
(i) functional end-groups, having a strong but rever-
sible dimerization tendency, are incorporated at

both ends of each chain ; (ii) after a (long) equilibra-
tion period, a quenching agent is added which

prevents the dimerized end-groups of each chain
from coming apart at any later time.

After stage (i) one has an ensemble of « Gaussian
rings », i.e., a set of isolated ring polymers with an
equilibrium distribution of topologies (these will

obey R - N 1/2 , as usual). After stage (ii), the
distribution of topologies is « frozen in ». The

quenching procedure should have no effect on the
size of the chains at later times (since the quenched
sample is unbiased), so long as they remain in a theta
solvent.
We now ask, what happens to this ensemble of

knotted rings when we put them in a good solvent ?

(lo) The idealized two-stage process described here
should be equivalent to a number of other mechanisms by
which ring polymers could realistically be made in a Theta
solvent. The .only requirement is that the set of trapped
topologies provide an unbiased sampling of the Gaussian
loop ensemble.

An appealing conjecture is that the rings remain
Gaussian. For, as discussed in section 2.3, there is
(after the quench) a topological two-body repulsion
between any two sections of each ring. Hence, upon
going to a good solvent, the total two-body repulsion
is merely increased from an already positive value.
One expects such as change to represent an irrele-
vant perturbation, i. e. , to lead to no change in the
exponent v from its Gaussian ring value

( v = 1/2 ) (11). Thus we can argue that an ensem-
ble of knotted rings made by the two stage process in
a theta solvent, and then transferred to a good
solvent, should have v = 1/2. This would be very
different from an ensemble of rings made directly in
the good solvent (by an otherwise identical two-
stage process). In the latter case, one expects to
generate a set of self-avoiding rings, with quenched
but unbiased topologies ; these would have

v = vSAW.

5. Conclusions.

In this paper, we have tried to convince the reader
that the topological interactions of ring polymers
may give rise to qualitatively new effects in systems
at high density. For example :

(i) Ring polymers in the melt may be partially
collapsed, rather than Gaussian, with an exponent v
of about 2/5.

(ii) A single ring polymer in a melt of linear
chains, of the same chemical species, should be
swollen v , vsAw . 

(iii) The topological repulsion between rings may
cause an increase in the compatibility of ring poly-
mers of one chemical species and linear chains of
another.

(iv) The equilibrium concentration of ring poly-
mers in a gel should be less than that of linear

polymers of the same chemical species.
(v) Under certain conditions, rings prepared in a

theta solvent may remain Gaussian when placed in a
good solvent.
We believe that a more detailed study of the

equilibrium statistics of ring polymers in these dense
systems, by experiment, theory and computer simu-
lation would be worthwhile. For example, an

improved knowledge of the static configurations
might make it easier to explain the results of recent
experiments [11-14] on the dynamics of these sys-
tems. In the case of a ring in a fixed network, the
relevant dynamics appear to be simple ; the funda-
mental relaxation time scales like the reptation time
for the corresponding linear chain: For the other
systems we have discussed, especially for rings in the
melt, the dynamics may be much more complicated.

(11) This argument is not altered when the long range
part of the topological interaction is taken into account.
For if this interaction dominates the asymptotic behaviour,
it is all the more likely that an increase in the local two-
body repulsion, from an already positive value, is irrele-
vant.
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