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Résumé. — On étudie l'instabilité de Marangoni dans une mince lame horizontale de fluide lorsque la tension
de surface est une fonction non linéaire de la température. Un tel comportement est typique de solutions aqueuses
d’alcools a longue chaine. La zone des solutions stationnaires convectives est déterminée en fonction du nombre
d’onde et d’'un nouveau nombre sans dimension, le nombre de Marangoni du second ordre. On montre que les
cellules prenant la forme de rouleaux et de rectangles sont instables alors que les hexagones sont stables. Les
équations de champ sont exprimées sous forme d’équations d’Euler-Lagrange d’un principe variationnel qui
constitue le point de départ de la procédure numérique, basée sur la méthode de Rayleigh-Ritz.

Abstract. — Marangoni instability in a thin horizontal fluid layer exhibiting a nonlinear dependence of the surface-
tension with respect to the temperature is studied. This behaviour is typical of some aqueous long chain alcohol
solutions. The band of allowed steady convective solutions is determined as a function of the wavenumber and a
new dimensionless number, called the second order Marangoni number. We show that the cells which take the
shape of rolls and rectangles are unstable while hexagonal planforms remain allowed. The field equations are
expressed as Euler-Lagrange equations of a variational principle which serves as the starting point of the nume-

rical procedure, based on the Rayleigh-Ritz method.

1. Introduction.

In most papers on Marangoni instability, the surface-
tension is supposed to be a monotonically linearly
decreasing function of temperature [1-4]. This
behaviour is typical of a large class of fluids like water,
silicone oil, water-benzene solutions, etc. In excep-
tional cases, one may find systems like some alloys,
molten salts or liquid crystals with a surface-tension
growing linearly with temperature [5-7]. There exists
however a third class of fluid systems characterized
by a surface-tension exhibiting a nonlinear dependence
with respect to temperature and passing through a
minimum (see Fig. 1). This behaviour is representative
of aqueous long chain alcohol solutions and some
binary metallic alloys [8-9].

The purpose of this paper is to study the effect of a
nonlinear temperature dependence of the surface-
tension on the convective motion observed in a thin
horizontal fluid layer subject to heating (Marangoni
problem). Buoyancy forces are neglected, which is a
reasonable hypothesis in a microgravity environment
(107¢gto 1073 g).
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Our analysis departs from previous works in two
respects. First, it is out of question to treat the problem
within the linear normal mode technique. Second, the
classical Marangoni number which measures the
linear variation of the surface-tension with tempera-
ture is meaningless; it is replaced by a new dimen-
sionless quantity expressing the curvature of the
surface-tension-temperature curve.

The numerical treatment to be used is close to the
procedure proposed in earlier papers [3, 4]. It consists
of replacing the set of field equations by a variational
principle. Approximate solutions are then obtained by
appealing to Rayleigh-Ritz’s technique which involves
the construction of trial functions, selected as Tche-
byshev’s polynomials.

The mathematical model is presented in section 2,
with special emphasis on the boundary conditions.
In section 3, steady convective solutions are derived.
As it appears that the number of mathematical steady
solutions is infinite, it is necessary to determine which
ones are physically admissible. This is achieved by
examining the stability of the solutions with respect to
infinitesimally small superimposed perturbations (sec-
tion 4). Final comments are found in section 5.
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Fig. 1. — Variation of the surface-tension with temperature
for an aqueous solution of n-heptanol at various concen-
trations [9]. 1 :pure water; 2:8 x 10™* mol/kg; 3:
1 x 10”3 mol/kg;4:1.3 x 10”3 mol/kg; 5:2 x 1073 mol/
kg;6:5 x 1073 mol/kg; 7:7.6 x 1073 mol/kg.

2. The mathematical model.

The system consists of a thin horizontal fluid layer of
thickness d, extending laterally to infinity and subject
to a temperature gradient. The lower face is in contact
with a perfectly rigid heat conductor while the upper
surface is free, adiabatically insulated, flat and unde-
formable. The surface-tension ¢ exerted at the upper
boundary is supposed to be a quadratic function of the
temperature, with a minimum value ¢, at T = T, :

D) = by +5(T = T2, @1
¢, and b are given positive parameters. Law (2.1) is
well representative of aqueous alcohol solutions, as
observed in figure 1 which shows the &(T) curves for a
n-heptanol-water solution for various concentrations :
bis of the order of 10~% N/m.K? while ¢, ranges from
3x107%to7 x 1072 N/m.

It is also assumed that the fluid is Boussinesquian
with constant values of density p, heat diffusivity «,
kinematic viscosity v, and no viscous dissipation.

Let AT be the temperature drop between the lower
and upper boundaries of the layer. In absence of
gravity effects, the velocity u(x, v, w) and temperature 0
fields satisfy the following balance equations :

V-u=0 (balance of mass), 2.2
Pr-l@, +u-Viu= —Vp + V?u

(balance of momentum), (2.3)
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(0, +u-V)0 =V?9 +w (balance of energy), (2.4)
where
V=(,9,9), V,=0(7,),
V2=Vi+0, =02+ +02%.

Cartesian coordinates are selected with horizontal
axes located in the lower boundary and a vertical axis
pointing upwards ; equations (2.2) to (2.4) are written
in non-dimensional form with the space coordinates,
time, and temperature scaled by d, d*/x, AT respec-
tively, Pr is the usual Prandtl number given by

Pr =

Al=

The relevant boundary conditions are :

atz = 0 (lower rigid, heat conducting) :
w=0w=0=0, (2.5

atz = 1 (upper free, adiabatically insulated) :
w=20,0=0, (2.6

R2w=— M[(V,0? +0V26 + fV26], 2.7

where M and f stand respectively for

m = GOTHOTY 4, (M #0), (2.8
PVK
f =(T, - T,)/AT. 2.9

For positive values of AT, f is positive, zero or negative
according to whether the temperature T, at the upper
surface is larger, equal or smaller than T,, the tem-
perature at which ¢ is a minimum. The quantity M
is strictly positive and is called the Marangoni number
of second order : it is related to the inverse of the
radius of curvature of the ¢ — T curve, it takes values
between 100 and 1 000 for aqueous alcohols when AT
is of the order of a few degrees and d about one centi-
meter.

It is worth comparing (2.7) with the analogous
boundary condition formulated in the classical Maran-
goni problem and expressed by

2w = MaV?0, (2.10)
Ma is the Marangoni number defined by
Ma = — ©&[0T) ATd @.11)
pVK

In contrast with (2.10), expression (2.7) is no longer
linear; moreover, the central quantity ceases to be
the Marangoni number but rather M, a strictly
positive quantity whereas Ma may be either positive
or negative. When f > 1, it is a good approximation
to drop all the nonlinear terms in (2.7), which reduces
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then to (2.10) upon writing
— Mf = Ma. 2.12)

On the other hand, for small values of f, which means
that T, is close to T, the nonlinearity is dominant.

3. Search for steady-state solutions.

Our objective is to determine the steady solutions of the
eigenvalue problem set up by equations (2.2) to (2.7).
Since it is desired to focus on the boundary effects,
we shall here neglect the nonlinear terms u - Vu and
u - VO appearing in (2.3) and (2.4) : the validity of this
approximation will be discussed at the end of section 5.

5I(w,, 0,) = %5 J [(VZw,)? + (VO,)%] dV —
1 4
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After eliminating the pressure, expressions (2.3) and
(2.4) reduce to

Viw,=0 (0<z<]),
V3, +w,=0 (0<z<],

3.1
3.2

where the subscript ss refers to the steady solution.
The corresponding boundary conditions are still
given by (2.5)+2.7) where all the quantities are
affected by the subscript ss.

In view of the numerical solutions, it is convenient
to replace the relations (3.1), (3.2) and the associated
boundary conditions by the variational equation

— J w, 00, dV + Mj [(V,0,)% + 0, V30, + fV?0,]6(0,w,)dS, =0 (3.3)
14 S1

where ¢ is the usual variation symbol, and V and S,
represent the volume of the convective cell and the
area of its upper boundary respectively. It is directly
checked that the Euler-Lagrange equations corres-
ponding to arbitrary variations éw, and 660, are
relations (3.1) and (3.2); moreover the boundary
conditions (2.6b) and (2.7) are also recovered as
natural boundary conditions. It is worth noting that
(3.3) is not a classical variational principle in the sense
that some quantities like w,, in the second volume
integral and the quantities between brackets in the
surface integral are not submitted to variation. Such
a principle is generally classified as a quasi-variational
principle in the literature [11, 12].

It must be realized that an «exact » variational
principle cannot be formulated in relation with the
present problem because the particular boundary
condition (2.7) renders the problem not self-adjoint.
By the way, many principles pertain to the class of
quasi-variational principles [11, 12], a typical example

is Hamilton’s principle in classical mechanics when
friction is present. Despite its quasi-variational pro-
perty, one is however allowed to use the classical
Rayleigh-Ritz technique.

Assume that there exist steady solutions of the form

W = W(2) ¢(x,9), b, = O@) d(x,2), (3.4

with amplitudes W(z) and ©(z), and where ¢(x, y)
represents the planform in the horizontal plane;
¢ satisfies the relation

Vip +k*¢p =0, (3.5
and is normalized so that
(P> =1, (3.6)

k is the wavenumber in the horizontal plane and
{ -+ ) denotes the average over the horizontal plane.

Setting 0, = D and substituting (3.4) into (3.3)
leads to the following variational equation

1
oJ(W, @) = %5J [Elz—(D2 W — k* W) + (DO)* + k? @2] dz —
0

1
—J W60 dz — M[O(f + Q) (DW)],_., =0, (3.7
V]

where Q stands for [10]
1
=3< ). (3.9

It should be noticed that Q vanishes for cells taking the

shape of rolls, squares and rectangles while for hexa-
gons, one has

|'_‘

3.9

(=)}
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The Euler-Lagrange equations corresponding to (3.7)
are given by

(D2 — k)W =0 O0<z<1), (3.10)
D*—k)O +W=0 (0<z<1), (3.11)

while the natural boundary conditions are

DO =0 z=1, (3.12

D2W =k>MO(f +0Q) (z=1). (3.13)
It is easily checked that equations (3.10) to (3.13)
are obtained by replacing (3.4) in (3.1) and (3.2)
and the boundary conditions (2.6) and (2.7) and
making use of (3.5), (3.6) and (3. 8).

The set (3.10) to (3.13), together with the essential
boundary conditions

W=DW=0=0 (atz=0),
W=0 (atz=1),

(3.14)
(3.15)

is solved using the Rayleigh-Ritz method. It consists
of expanding the unknown amplitudes W(z) and
O(2) in terms of polynomial functions

N N
W = ;a,,f,,(z), 0= zl:b,,g,,(z), (3.16)

where f,(z) and g,(z) are a priori selected functions
verifying the essential boundary conditions; they
are chosen as

L@ =220 -2 T} ,(2),

m@ﬁ={1—§>Tﬁma,

3.17)

(3.18)

where T}¥(z) are the modified Tchebyshev polyno-
mials. The constant coefficients a, and b, in (3.16)
are unknown quantities derived from the stationary
conditions

o _g, W
Oa, > 0b;

13

0, (=1,2,.,N). (3.19

This numerical procedure predicts a steady solution
for each value of Q. This means that any particular
cellular pattern, like rolls, squares, hexagons,... is
mathematically admissible. However, observations
show a tendency toward a single well defined cellular
structure. In order to determine the preferred form of
convection, we shall examine the stability of the
various steady solutions by superimposing infini-
tesimally small disturbances. In the next section, the
stability of solutions consisting of rolls, rectangles
and hexagons is investigated; other planforms, like
pentagons, octogons, etc. are not considered because
no experimental evidence of their existence has ever
been displayed.

Ne 1
4. The preferred planform.
The perturbations are assumed to be given by
@ = u'(x, y, z) exp(ot), 4.1
0 = 0'(x, y,2) exp(ai), 4.2)

where w'(i/, v/, w') and @' are their amplitudes, ¢ is a
real parameter whose sign determines the stability
of the steady solutions.

The disturbances ¢ and w obey the linearized
equations

ot +u, VO +u -V, =w + V4@, 4.3

Proi[oViw + Vi, - VW +u' - Vw,)
— Z(u, - Vu' +u' - Vu)
— B,V + V)] = VW, (4.9)

plus two similar equations for the «/, v’ components,
which are of no use in the following. The boundary
condition at the upper boundary involving the second-

order Marangoni number is written
z=1:
W =—MV,.[6,+)V,0+0V,0.] @.5

To avoid costly and lengthy calculations, the
Prandtl number is assumed to be infinite. This is
certainly a good approximation for highly viscous
oils. Moreover from calculation and experimental
observations, it is expected that Pr = oo is a reasonable
hypothesis in the description of fluids with Pr > 5[13].

The variational equation giving back the set (4.3)
to (4.5) reads :

5J(, 0) = %a j [(V2W)? + (VO): + o@?]dV
1 4
—f W 86’ AV +J(u“-V0’ +u' - V0,)50 dV
1 4 1 24

+ Mf [f V30 + V3, 0)] 6(8,w)dS,. (4.6)
S

By analogy with the form (3.4) of the steady solu-
tions, it is assumed that w’ and ' are separable and
given by

v =[U'(2), V'(2), W(2)] ¢ (xy),
0 =0'027e¢xy),

4.7
4.9
with

Vf‘bl +k,2¢’=0,
where k' is the wavenumber of the superimposed

perturbation. The continuity equation V * u’ = 0 re-
quires that U’ and V' be expressed by

U = 0 W0, .9
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s 1 , , Substituting (4.7) to (4.10) into the variational
V¢ =m0 Wi 4.10) L rinciple (4.6), one obtains

1
oJ(W,0') = %5f I:kiz(D2 W — k*W')? + (DO + (k? + o) @2] dz
0

0o

1 2
+ f [Q’(@' Dw +%@DW’+2 W' D@ +2 WD@’)——W’] 00'dz

—M[(f0'+260' Q) 6(DW)],_, =0. (4.11)

This equation holds for the arbitrary variations of the amplitudes ® and W', compatible with the essential

boundary conditions

W =DW =0"=0

W =0

4.12)
4.13)

at z =0,

at z =1,

under the condition that the following Euler-Lagrange equations and natural boundary conditions are satisfied :

K?

(D -k — 0)@' + W' — Q’[@'DW +5_eDwW

k2

(DZ _ k2)2 W =0
D2 W' =k? M(fo' +2Q' 00" (z=1).

De’' =0,

The quantity Q' stands for

Q' =3¢47¢>, @.17)

and describes the correlations between the super-
imposed and the reference steady planforms; in
particular, Q' vanishes when the wavenumber k' of
the superimposed pattern differs from the basic
wavenumber k. Various values of Q' are reported in
table L.

As in section 3, the unknowns W’ and @' are deter-
mined via the Rayleigh-Ritz procedure. This results
in an eigenvalue problem for the parameters o, f, Q’,

Table I. — Values of the factor Q.

+2(W'D6O + WD@’):l =0 ((O<z<l]), “4.19

©0<z<1), @.15
(4.16)

M and k'. We fix two of them, namely f and Q’, and
calculate ¢ for various values of M and k'. Recalling
that ¢ > 0 means instability, we are able to divide
the plane M — k' into two regions : one corresponding
to stable solutions, the other to unstable ones. We
first examine the stability of the steady solutions when
the superimposed disturbance has a wavenumber k'
equal to the wavenumber k of the reference state.
Numerical results show that roll and rectangle patterns
are characterized by a positive growth rate of the
disturbance (see the last column of Table I) : these
configurations are clearly unstable. In contrast, hexa-
gons may be stable : in the M — k’plane one can find

Reference steady-state Superimposed disturbance
(k) (K" = k) Q’ o
Hexagon Roll 0 >0o0r <0
Hexagon Rectangle 1,/6 >0o0r <0
Hexagon Hexagon 1,/6 >0o0r <0
Roll Roll 0 >0
Roll Rectangle 1 /2\/5 >0
Roll Hexagon 1 /3\/5 >0
Rectangle Roll 0 >0
Rectangle Rectangle 0 >0
Rectangle Hexagon 1/3 >0
Any pattern (k) Any pattern with k' # k 0 >0o0r <0
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regions corresponding to negative values of the
growth parameter o. These regions are represented by
dashed areas in figures 2 to 4. The analysis must be
completed by examining the stability of hexagons with
respect of disturbances with a ditterent wavenumber
(k' # k), which will provide an upper limit to the
domain of stability in the form of a parallel to the k’
axis; this parallel is located at M, whose value is
derived from

Ma* = — M, 4.18)

Ma-* is the critical Marangoni number obtained from
the classical Marangoni problem : for an adiabatically
insulated upper surface and in the absence of buoyancy
effects, Ma® is equal to 79.6. The result (4.18) follows
directly from the boundary condition (4. 16b) : recall-
ing that k' # k implies Q' = 0, it is seen that (4.16b)
reduces to the classical Marangoni boundary condi-
tion under the condition to set — fM equal to Ma.

Determination of the stability domains is performed
for three different values of the parameter f namely
— 0.1, 0 and 0.1. These values describe situations for
which the temperature at the upper face is respectively
smaller, equal or larger than the temperature at which
the surface-tension reaches its minimum. The limiting
value M, has been drawn only for negative values
of f:when f vanishes, M), is infinite whereas for
positive values of f, M, should be negative but such
negative values are excluded by the very definition
(Eq. (2.8)) of M. The area of the domain of stability is
strongly affected by the sign of f : for a given value of f,
the area of the stability zone is the narrowest for
negative f’s. The minima of the M — k’ curves define a
critical value M° below which hexagonal steady
solutions are unconditionally stable whatever the
value of the wavenumber; the critical M° values are
listed in table II for three values of f.

im*

Table II. — Critical values of the second-order Maran-
goni number.

f - 01 0 0.1

Mc 405 550 800

It must be noticed that the above results remain
unchanged when the fluid layer is heated from above,
since the square of the temperature drop AT between
the boundary faces appears in the definition of the
governing second-order Marangoni number.

It is not significant to compare the present results
with a classical analysis based on the usual Marangoni
number as the latter is representative of fluid systems
which are not included in our model.

5. Conclusions.

The role of a nonlinear dependence of the surface-
tension with respect to temperature on the tension-
driven instability in a thin fluid layer is examined.
Steady solutions in the form of stable hexagonal cells
are predicted.
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The proposed model introduces several simpli-
fications : gravity and non-Boussinesquian effects are
ignored, the Prandtl number is taken to be infinite
and the momentum and energy equations are
linearized. The first approximation is reasonable in a
microgravity environment, the Boussinesq approxi-
mation provides a good description for a wide class
of fluids and mixtures. As discussed earlier, an infinite
Prandtl number hypothesis is also readily acceptable
for viscous fluids. The validity of the approximation
that consists of linearizing the field equations of
momentum and energy has been checked by calculat-
ing the ratio between w,, and the nonlinear term
u, - VO, for different values of k and M at z = 0.5
where the error is the most important. In table III,
we have reported the error percentage for f =0 :

Table III. — Error percentage in omitting the nonlinear
terms in the calculation of the steady solution.

M
100 | 200 | 500 | 600

k

2 6% | 17% | 5% | 6%

1.5 15% | 6% | 3% | —

1 18% | 5% | 10%4 | 8%

Similar orders of magnitude are obtained for non-zero
f values. Although the maximum error percentage
is 18 %, it falls around 5 9 in the vicinity of the curve
separating the stable from the unstable convective
cells, which is undoubtly the region of interest. It
is therefore reasonable to expect that our conclu-
sions should not be drastically modified by performing
a fully, but costly, nonlinear analysis.
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In contrast, the nonlinear contribution cannot be
neglected in the boundary condition (2.7). This
appears clearly from table IV, where the ratio of the
nonlinear terms (V,0)> + 6 V20 to the linear term
f V30 at z = 1 is represented, for various values of the
parameters.

Table IV. — Ratio between nonlinear and the linear

terms at the upper surface for f = — 0.1.
M
100 200 400
K
2 17 7 2.4
1.5 19 8 2.8
1 28 13 52

Of course, a decisive check of our model can only
be provided by experimental observations. To this
aim, in collaboration with the E.S.A. we plan to carry
out some Marangoni gxperiments in microgravity
environment using such mixtures, as aqueous alcohols,
whose surface-tension is a parabolic function of the
temperature.
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