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Résumé. 2014 Nous simulons la propagation d’un front 2014 en prenant l’exemple d’un feu de forêt 2014 dans un milieu
aléatoire bidimensionnel et introduisons plusieurs modèles d’interactions. Nous calculons les concentrations
critiques correspondantes, puis les exposants critiques à partir des lois d’echelles pour les systèmes finis. Ces
exposants sont exprimés en fonction de la dimension fractale de l’amas infini et de la dimension d’étalement.
Nous montrons enfin que la structure du front est autosimilaire (fractale) au voisinage du seuil de percolation et
calculons la dimension de Hausdorff associée.

Abstract 2014 The propagation of a front (we use the model of a forest fire) in a bidimensional random lattice is
studied for several different types of interactions. We obtain the corresponding critical concentrations and critical
exponents calculated by means of the finite size scaling conjecture. These exponents are expressed in terms of the
fractal dimension of the infinite cluster and of the spreading dimension. We show that the front structure is fractal
and we determine its Hausdorff dimension.

Tome 47 No 1 JANVIER 1986

J. Physique 47 (1986) 1-7 JANVIER

Classification

Physics Abstracts
05.40 - 47.70 - 64.90

LE JOURNAL DE PHYSIQUE

1. Introduction.

We study a dynamic percolative model for the nume-
rical simulation of the propagation of a wavefront
in a random bi-dimensional medium. This model

proposed by P. Clavin [1] is similar to Grassberger’s
General Epidemic Model [2] and is partly inspired by
the more phenomenological work of Rothermel [3]
and of Frandsen and Andrews [4]. It concerns the

general field of the propagation of fronts in random
media where one or more species, distributed randomly
in space, are transformed by a wave front that pro-
gresses by finite range contamination. In order to
provide a tangible image we will describe the model
in terms of a fire propagating through a forest consti-
tuted by different sorts of trees, but the model could be
applied to many other processes of front propagation
in random media including underground fires, defla-
gration of a suspension of inflammable dust particles,
epidemic spreading of a disease, etc. The medium is
created at random by populating a given fraction of
sites on a regular lattice. However, after ignition, the
front propagation is determined only by the configura-

tion of sites and is thus entirely deterministic. This con-
trasts with a different approach (see for example [5, 6])
in which all sites are equivalent, but where the propaga-
tion from site to site has a probability less than unity.
This is the difference between bond and site percolation,
however in our approach the site percolation model
offers a greater flexibility and is closer to physical
reality. The differences, however, are not great and
both models belong to the same class of universality.
The novel features of the model are the following :
The model is dynamic and its evolution can be

observed as a function of time.
The interaction between contaminated and non-

contaminated sites (heat transfer in the case of a fire) :
a) depends on the nature of each ’site (type of

« three »),
b) is not limited to first neighbour interactions,
c) takes into account latency (a « tree » will only

ignite when it has received enough « heat » ),
d) allows for cooperative contamination (a « tree »

may be  heated &#x3E;&#x3E; by several neighbours simulta-
neously), and,
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e) may be non-isotropic (effect of «wind» or

« slope » for example).
In this work the model is restricted to the simplest

case of a « forest » containing only two types of sites,
combustible sites (occupied by a « tree » ) and non-
combustible sites, distributed in a random fashion on a
regular lattice. The extension to the case of a random
medium of more complex structure is trivial but not
necessarily more instructive. The propagation of the
«fire » will depend on the variable parameters, which
are the percentage of combustible sites on the lattice,
the characteristics of these sites, the intensity and
range of the interaction between sites and also the
physical size of the lattice used in the simulation.
The active sites are characterized by the amount of

« heat » that the site must receive before the site

« lignites » and by the amount of « heat » released
whilst the site « burns ».
Two types of lattices have been used (square and

triangular) and several different types of interactions
have been studied ranging from first neighbour to fifth
neighbour. In this work we are mainly interested in
the propagation of the front close to the critical
concentration of active sites where the front is near
to extinction. The properties of the front have been
observed for different sized lattices ranging from
10 x 10 to 300 x 300 sites. At the critical concentration
the correlation lengths in an infinite lattice diverge and
the results obtained for a finite lattice are a function
of the lattice size (correlation lengths, critical concen-
tration, critical slowing down).

Particular attention is paid to the vicinity of the
critical concentration Pr since the divergence of the
correlation length should give rise to universal pro-
perties [7-8] which do not depend on the exact details
of the model. We use the law of similarity to obtain
critical exponents (which may be compared with those
of other models and in particular with the General
Epidemic Model of Grassberger [2]) by means of the
theory of finite size scaling proposed by Nightin-
gale [9-11].

In section 2 the model is described in detail, in
section 3 results are presented for quantities such as the
critical density (analogous to the critical temperature
for a second order phase transition), the time depen-
dence of the number of burned sites, the speed and
length of the front and the influence of the size of the
sample. It will be seen (section 4) that the length of the
front increases rapidly close to the propagation
threshold and has a fractal behaviour with a critical

exponent that has been calculated

2. The modeL

A random medium is created by placing combustible
sites on a two-dimensional lattice. A square lattice
has been used except, as noted, where a triangular
lattice was used The size of the square domain will be
denoted by L and of the L x L available sites a
fraction P are combustible and a fraction 1 - P are

non combustible. A spatially random distribution is
obtained by a Monte Carlo procedure. The combus-
tible sites are characterized by two parameters Ti, Lb
and by the type of interaction. Tb is the number of
machine time steps that an ignited site remains in the
burning state, and is thus a measure of the heat released
by a sites is a measure of the heat required to ignite
a site and corresponds to the number of machine time
steps needed to ignite a site if one site in interaction is
burning. In the example of an isotropic four-neighbour
interaction (see Fig. 1), if one neighbour is burning
then the site will ignite after Ti time steps, but if all four
neighbours are alight then only r;/4 time steps are
required. The different types of interaction studied
here are shown in figure 1. The centre site is ignited and
transfers one unit of heat to each neighbour at each
time step. At time t = 0 all the combustible sites in the
first two rows are ignited. At each successive time step
the heat transfer from each burning site to its neigh-
bours is calculated from the type of interaction (see
Fig. 1). A search is then made to see if new sites have
received enough heat to ignite and to see if burning
sites have burned long enough to extinguish. This
process is then repeated until either

a) a site on the last row is ignited (penetration) or
b) all sites are extinguished (exhaustion).
Periodic boundary conditions are implemented on

the lateral edges of the domain. The model is thus
deterministic and is related to the model of site

percolation with some complication due to the para-
meters Ti and ib and incorporating the possibility
of non-first neighbour interactions and also co-ope-
rative effects. In this work only two species (combus-
tible and non-combustible) are present. The genera-
lization to a mixture of several types of combustible
species is quite straightforward. Different types of
interaction have been studied ranging from 1 st

neighbour to 5th neighbour but only for the case of
uniform isotropic heat transfer. Again the generaliza-
tion to the case of more complicated heat transfer
patterns (e.g. anisotropic) is trivial. In some of the early
work a slightly different and less realistic algorithm
was used

Fig. 1. - a) Von Neumann neighbourhood (4 neighbours);
b) Moore neighbourhood (8 neighbours); c) 24 neighbours.
In these three interactions schemes, the central site (empty
circle) influences (or is influenced by) the neighbours
represented by a full circle. The equivalent of a triangular
array is easily obtained by the suppression of two diagonally
opposite sites. The full circles can be taken non equivalent
to represent anisotropic properties of the medium, slopes
etc...
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In this first (and fastest) algorithm the lattice was
scanned from left to right, row by row, and each time a
burning site was encountered, the heat transfert was
calculated and the affected sites were ignited and
extinguished as necessary. Each sweep through the
lattice constitutes one time step and in the limiting case
of a densely populated lattice with r; = ib =1 the front
traverses the lattice in one time step. This algorithm
was used to determine the critical densities presented
in figure 2. A number of calculations performed with
the second algorithm showed that within statistical
errors this apparent violation of left-right symmetry
did not influence the position of the threshold.
We must now define an order parameter. As in a

static percolation problem we have chosen the same as
Grassberger’s [2], that is to say in our language of
forest fire, the proportion of burned trees in a row
far from the initially ignited row (t and n » 1, where t
is the number of sweeps executed by the computer and
n the distance from the row ignited at t = 0). The
notation for the order parameter is

where B = (P - P,)IP,,:.
Our order parameter Z(n, t, s) is essentially the same

as the order parameter in static percolation theory,
defined by the proportion of sites belonging to the

Fig. 2. - Average termination time t3 (penetration or
exhaustion) of fire in square lattice (Sq), triangular lattice (tr),
square lattice with nearest and next-nearest neighbour
interaction (Sqn), and Sqn lattice with intermediate hot
stage (r, = 2 ih) before ignition (Sqn hot). A fraction P of
lattice sites is randomly occupied with trees. Each point is
based on at least three samples of size 300 x 300. The
arrows give the known percolation thresholds for Sqn,
tr and Sq infinite lattices. As expected these thresholds
coincide with ours for the case Ti = 2b. However it can be

seen that introducing cooperative effects drastically affects
the threshold. For the case Sqn with Ti = 2 Tb (two of the
8 neighbours must burn for the fire to propagate) the
threshold is raised from Pc = 0.407 to Pc = 0.67.

infinite cluster. Using the universality postulate [8], we
assume that Z is a generalized homogeneous function
near the threshold (8 « 1) and then, V À. :

If we define two quantities, a correlation length :
ç oc B - BI and a characteristic time : 0 oc E - t, the three
critical exponents an, at, at can be expressed as func-
tions of v, T and # with Z(oo, oo, s) oc 8° :

With these relations (2.2) takes the form of a finite
size scaling law [9-11] with the three variables n, t, 8 :

However, in our calculation, it is easier to calculate
the time dependency of the mean advance and of the
total number of burned trees. If we were exactly at the
critical density, we would have for the order parameter:

Consequently Z varies as n - fJ/v if n - r:/v t = constant,
i.e. n scales as tV/r:, this gives the mean propagation
speed. We can easily determine this exponent v/1: by
measuring the mean position of the front (mean
abscissa of the burning trees at a given time). It is also
possible to calculate accurately another critical expo-
nent, noticing that the total number of burned tree at
given t is obtained by

some straightforward algebra gives the result

We have obtained two expressions to calculate the
critical exponents from log-log curves :

It is possible to obtain a third relation to determine all
the critical exponents :

For large t, we again find the static problem (we are
looking at the forest after the exhaustion of the fire)
and (2. 8) gives :

Using the same argument as before, if we examine
the particular case of n = L, then z2 is independent of
L if Ls’ is constant. When L -+ oo, z2 - constant
because Z(oo, oo, e) oc 8°. So s must be equal to 0
and the threshold is exactly at P,. For finite L, we
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find the threshold for P # Pc with the law :

Figure 3 shows the evolution of the percentage of
penetrating fires versus P, for forests of different sizes,
and with ri = Lb = 1. The averages are taken over
200 trials and for networks up to 100 x 100. Larger
dimensions gave results too close to the discontinuity
associated with an infinite medium. This method

permits an exact calculation of Pc, associated with
an infinite system, from results given by finite systems
[14]. For P  Pc, the probability of penetration
increases for decreasing sizes and it becomes different
from 0 when the size of the system is of the order of the
correlation length. For P &#x3E; Pr we have a similar

phenomenon. But strictly at P = Pc the correlation
length is infinite and the size of the system is no longer
a relevant variable, so all the curves must intersect
at the critical density. The family of curves represented
on figure 3 gives a very good approximation for the
threshold (Von Neumann neighbourhood) : 0.593 
Pc  0.594 for sizes in the interval 20  L  100.
Near Pr it is possible to calculate the critical exponent v
from (2.10) : however the results are not very precise
and we find :

3. Results and discussion.

To calculate viz et (v - #)/,r, we have used a systematic
but empirical criterion : array 200 x 200 and 300 trials

Fig. 3. - Probability of penetration versus P for several
sizes of the network and for Ti = Tb = 1 : * (20 x 20),
A (40 x 40), * (80 x 80), · ( 100 x 100). All curves con-

verge near the point : probability = 66 %, P = 0.593.

(forests created randomly). Attempts with more trials
(up to 500) did not give significant differences for the
mean quantities calculated.
At s = 0 the n(t) curves (see Fig. 4) present three

typical regions labelled I, II, III. In region I, we are
in a transitory state where the ignition of the whole
of the first two rows gives a quick advance of the front
(the system o remembers » the initial conditions).
Region II is associated to a steady propagation where
the scaling laws work : this is the interesting region
for us. In zone III, the finite dimension of the system
is the prevailing factor : the propagation is restricted
by the border of the forest, giving a decrease of the
speed of the mean position of the front.
We have calculated the critical exponents T and

with the exact value of v given by the literature, our
value for this last parameter being not very precise.

Fig. 4. - Calculation for a forest (200 x 200) and with
Ti = ib = 1 : a) Mean position of the front; b) Total
number of burned trees versus time plotted in log-log coor-
dinates. Region I : region of high speed (transitory state)
where the ignition conditions are playing a noticeable role.
Region II : the universality hypothesis works. Region III :
the finite size of the system is experienced by the front.
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Table I.

This has been done for all the different interactions
that we have introduced in our model and our results
are summarized in table I.
The values found for i and fl are close to those

found by Grassberger (i = 1.494) or obtained theore-
tically (p = 5/36 ~ 0.14).
However, the error in our result for fl is nearly

of the order of magnitude of the parameter. It is inore
interesting to use the theoretical value of p, instead
of that of v [12]. We then obtain : L = 1.54 ± 0.03 and
v = 1.34 ± 0.03, this last result agrees with the
theoretical one (v = 4/3) [12], our errors being sta-
tistical only.
For the exponent v/i, we verified our calculation by

another method : for e &#x3E; 0, we plot the mean time
necessary for the fire to go through the forest, for
different forest sizes (L = 50 to 200) discarding the
trials giving an exhaustion. We then plot log t versus
log L (t = Ltlv) and we find a straight line with a slope
L/V = 1.15 : this is the same result as the one obtained
previously (see Fig. 5).
As expected, we found the same critical exponents

for all models (see Table I) and our results agree well
with those given in the literature [2, 12], in particular
the value of the exponent T is very close to the value
obtained by Grassberger [2] with his general epidemic
model. These exponents can be related to general

Fig. 5. - The penetration times (broken lines) are plotted
versus the forest dimensions (log-log diagram) for the Von
Neumann (a) and the Moore (b) neighbourhoods in the case
I; = ib = 1. We also represent the length of the frontier
versus the forest dimensions (full lines).

ones such as :

- d, the fractal dimension of the percolating cluster
of burned trees, defined such that the total « mass &#x3E;&#x3E;
of trees and the size of the array obeys :

- d, the spreading dimension [2, 15-17]. If 1.
is the mean number of steps required to cross the
forest, d is defined as :

By equating (3.1) and (3.2) :

where did is the 6 exponent of Vannimenus [15].
Now 1. is simply the mean time for penetration,
and so : t oc Ldl d oc Ltw. It is possible to calculate
d from [7, 20] :

where d is the dimensionality of the system (here
d = 2), giving :

These values are very close to those found in refe-
rences [16] (1.896 and 1.65-1.70 respectively) and [2]
where the very accurate value id= 1.675 is given.

In figure 6 we show typical « snapshots » of two
forests with differents types of interactions. In both
cases the population of active sites is close to the
critical concentration. It can be seen that in both
cases the number of trees actually burning at a given
time is small. This is a physical explanation of the
critical slowing down. In the case of the 4 neighbour
(Von Neumann) environment the front is extremely
rough and there are many pockets of unburned trees
left behind the front. In the case of the 24 neighbour
environment there are very few pockets (one on this
example, often there were no pockets left in a finite
size sample) and the front appears somewhat smoother.
In the case of the 8 neighbour (Moore) environment,
not shown, the results are intermediate between the
two types of behaviour shown here. The image for
24 neighbour interaction is closer to the observed
form of fronts such as in forest fires and we may
conclude that cooperative effects are important in
determining the form of such fronts.
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Fig. 6. - « Snapshots » of burning forests size 100 x 100 with populations close to the critical concentration. a) Von
Neumann environment (4 neighbours), Ti = Tbl P = 0.6,(Pc = 0.593); b) 24 neighbours environment, = 6rb (6 neighbours
must burn) P = 0.64 (P, = 0.63).
The direction of propagation of the fire is indicated by the arrows. At time t = 0 all trees in the two bottom rows are ignited.
The symbols used area : fresh tree; + : hot tree ;.. : burned tree ; I : burning tree. The frontier between burned and unbum-
ed trees is indicated by a continuous line.

For 8 and 24 neighbours we have also computed
the threshold evolution versus i;/zb. These results
are given in figure 7 where we have also plotted the
threshold given by a simple effective medium model
(EMM) : this simple model supposes that in an envi-
ronment of N neighbours, each site interacts with

exactly N x P surrounding sites. For the two types
of interactions, the curves obtained by EMM and by
simulation cross; at low density the simulation
threshold is higher : this is easy to understand because

some paths of propagation are cut by the random
process. We obtain the opposite situation at high
density.

Finally we introduce an algorithm to calculate the
length of the front or, more precisely, the number F
of burned sites which are in contact with unburned
sites when the fire has just penetrated the forest. For all
models we have plotted log F versus log L at the
threshold and we obtain straight lines (see Fig. 5) with
slopes f = 1.80 ± 0.03, value slightly greater than
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Fig. 7. - Evolution of the threshold versus r:¡/r:b calculated
for a forest 150 x 150, for two neighbourhoods : 8 neigh-
bours : 0 for EMM, A for our model; 24 neighbours :
0 for EMM, * for our model (EMM = Effective Medium
Model).

that obtained by Sapoval et al. [13] : f = 1.76. This
discrepancy probably originates from the fact that in
our model « pockets &#x3E;&#x3E; of unburned trees behind the
front are counted as belonging to the front, giving an
apparent increase in the length of the front. The
critical exponent f characterizes the self similar

(fractal) structure of the front and its large value

indicates a considerable « rugosity » of the fire border
at the threshold.

In summary, various models for propagation of
fronts in disordered media have been simulated

numerically. Different types of interactions can be
easily introduced : 4, 6, 8, ..., 24 neighbours, aniso-
tropy, slope of the ground in the forest fire example
(gradient of a relevant field), different sorts of active
sites. Here attention has been focussed on a simple
case in order to compare our calculations to known
results. We obtain critical exponents which are found
to verify the universality conjecture. However the
model is very flexible and can be generalized to other
problems such as : propagation of a flame, deflagration
of a dust suspension, spreading of a disease, etc. Some
extensions of the present work are planned.
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