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Upward creep of a wetting fluid : a scaling analysis

J. F. Joanny and P.-G. de Gennes

Laboratoire de Physique de la Matière Condensée, Collège de France, 75231 Paris Cedex 05, France

(Reçu le 25 fevrier 1985, accepte sous forme définitive le 16 septembre 1985)

Résumé. 2014 Un liquide de Van der Waals, montant depuis un réservoir le long d’une paroi verticale, doit montrer
toute une serie d’étapes : i) Un ménisque macroscopique se met en place à une échelle de temps t1 (s) et atteint
l’altitude classique hc~ 1 mm. ii) Un film précurseur dynamique apparaît à t2 ~ 10-2 s. L’extrémité de la « lan-
gue » avance vite jusqu’a un temps t3 ~ 1 s puis avance plus lentement. iii) Aux temps t &#x3E; t4 (t4 ~ 10 s) apparaît
une portion du film statique final, entre l’altitude hc et une altitude limite h1(t). iv) Après un intervalle t5 ~ 10 jours,
on arrive à un régime asymptotique, self-similaire, de croissance.

Abstract. 2014 A Van der Waals fluid, climbing from a reservoir along a vertical wall, should display a remarkable
cascade of events : i) A macroscopic meniscus is set up in a short time t1 and reaches the classical altitude hc~ 1 mm.
ii) A dynamic precursor film appears at a time t2 ~ 10-2 s. The tip of the « tongue» advances fast up to a time
t3 ~ 1 s and then more slowly. iii) A portion of static film builds up (from hc, up to a certain altitude h1(t)) at times
t &#x3E; t4 (t4~ 10 s). iv) A self-similar, slow, growth of both the « tongue» and the static portion is reached after
a time t = t5 ~ 10 days.
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1. General aims.

1.1 A REMINDER ON STATIC FILMS. - A wetting fluid
tends to climb along a vertical wall, and to build up a
film. This film is particularly conspicuous with super-
fluid helium (the Rollin film [1]) but is present for
many fluids [2]. The equilibrium film thickness eo(h),
as a function of altitude h, results from a balance
between the disjoining pressure II(e) (describing the
long range forces from the solid [3]) and the gravi-
tational pressure [4] :

p being the density of the liquid (the density of the
ambient gas phase is assumed to be negligible).
Ultimately at very high altitudes, the films is truncated :
it becomes more favourable to lose in wetting energy
and to avoid exceedingly high gravitational energies.
This is typical of a prewetting transition [5], and occurs
at an altitude hm such that [6]

where S is the spreading coefficient

Here the Yi/S are interfacial tensions between solid (s)
liquid (L) and gas (o) ; we use the shorthand yLo = Y
for the surface tension of the liquid
The thickness eo(h.) defined by equation (2) is

controlled by the spreading parameter S, and will be
called es. To make the discussion more concrete, let us
consider the simplest case of Van der Waals fluids,
attracted towards the wall by an unretarded inter-
action [7]. Then the disjoining pressure is

where A is called the Hamaker constant, and has the
dimensions of energy. The length a = (A/6 ny)112
is a molecular size. The static profile corresponding to
equations (1) and (4) is well known [8]

where k-1 is the capillary length, defined via K 2 = pg/y,
and is of order 1 mm. The essential feature of (5) is a
slow (h-1/3) decrease of thickness with altitude. This
is ultimately cut off at very high h(h = hm) by the
dewetting condition (2). But hm is very high (for S/y =
10-2 , hm = 10 meters).
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Two dimensionless parameters show up in these
discussions

We shall choose as typical values a = 1 A, ,,-1 =
1 mm giving 8 = 10 -’, and S/ y = 10-2, giving 0 =
0.1. The existence of these small parameters will

simplify the dicussion considerably. It will also turn
out in section 3 that the most interesting regimes
require a further inequality, namely

This is indeed well satisfied in all practical cases.

1.2 THE CREEP PROBLEM. - Our aim, in the present
paper, is to investigate the formation of a film, when a
vertical wall is put into contact with a bath of liquid
(Fig. 1). Questions of this type occur in the physics
of soils, which are partially moist and experience
various thermal cycles (days, seasons). Of course, the
soil problem is enormously more complex :

a) the water channels are geometrically irregular,
and the films are coupled to certain macroscopic
pockets of liquid (pendular droplets between two
grains,...). Some consequences of this coupling have
been discussed recently by one of us [9] ;

b) water itself is a complex fluid, for which the
disjoining pressure is poorly understood [10]. In what
follows we shall concentrate on the simpler case of
Van der Waals fluids;

c) the wettability of the soil (the S parameter) has
large fluctuations, which we ignore here, but which
can lead to strange effects [11].

In a previous note [12] one of us discussed a related
(but simpler) problem, where the solid plate is dipped,
at a constant speed U, downwards into the liquid
The main emphasis was set on two limiting cases :
fast dipping where we have no film left, and very slow
dipping where an interesting crossover existed between
a static film (at altitudes h  hl( U)) and a thinner,
dynamic film (at h &#x3E; hl). The intermediate regimes
were not discussed. It turns out that for the present
problem of transient climbing, the extreme regimes
have their exact counterpart. However, most of the
interest is in the intermediate regimes (typically for
times t between 10 seconds and 10 days). We cover
the fast regimes in section 2, and the longer time scales
in sections 3, 4. Because of the complexity of the time
sequence, our discussion will remain mostly qualita-
tive : we construct scaling laws for the various obser-
vables, but ignore all coefficients.
Our discussion is restricted to situations where all

inertial effects are negligible : this is correct for the
processes involved, except possibly for low viscosity
fluids at very early times.

2. Macroscopic contact line and contact angle.

Let us assume that we start with a strictly horizontal
surface. First a macroscopic meniscus builds up
(Fig. la). The size of the perturbed region (both hori-
zontally and vertically) is comparable to the capillary
length ,,-1 (~ 1 mm). The ultimate height hc of the
macroscopic contact line is derived from classical

capillary equilibria [13] hc = ,,-1 J2. Consider now
a situation where we have not quite reached this
altitude : the macroscopic contact line is at a level hr
slightly below h,. Most of the meniscus is now at rest,
and the shape can be derived from static considerations.

Fig. 1. - The sequence of events in vertical creep of a wetting fluid. At time 0 the fluid is assumed to be horizontal. (a) Up
to a time t2 a macroscopic profile sets up, but no precursor is present. (b) An « adiabatic » precursor appears. (c) The pre-
cursor has two parts - « adiabatic » and « diffusive ». (d) A portion of the final static film is realized. x = h - he is the distance
measured from the macroscopic limit.
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In particular the (slowly varying) contact angle 0
is given by the condition

Equation (6) can be derived from a balance of horizon-
tal forces, as explained in [13]. We may then find the
scaling law for 0(t) using the Hoffmann-Tanner
relation between 0 and the velocity of the contact line
[14-16]

where V* = y/ q (q being the fluid viscosity).
Equations (6) and (7) lead to

where T =- KV* t is a reduced time.

Equation (8) shows that there is a long « tail » in
the plot 0(t). The next question is to find when 0
reaches its ultimate value which is related to the final
film profile. The structure of the static film near
h = Ac has been studied by various authors [17-20].
The slope is of order

Equating (9) and (8) we obtain an estimate of the time
t5 at which the contact angle (measured at h = hc)
reaches its final value. In dimensionless units

This corresponds to times ts of order 10 days. We shall
see later that the properties of the films change quali-
tatively at times shorter than ts. But we do not expect
these changes to react significantly on the contact
angle law (Eq. (8)) : the macroscopic dynamics is

essentially decoupled from the film dynamics [16].
A remark on inertial effects : The characteristic

time displayed in equation (8) is

For high viscosity fluids, this is indeed the rise

time of the meniscus, resulting from a balance between
capillarity and viscosity. For low viscosities ’1, inertial
effects come into play (1). The inertial rise time ti may
be divided from the frequency of capillary waves
with a wave vector K

In all what follows, we shall be concerned only with
the high viscosity regime (ti  tl).

3. The dynamic creeping fIlm.

3.1 A REMINDER ON HORIZONTAL SPREADING. - When
a wetting fluid spreads over a horizontal solid, with
a fixed velocity U (Fig. 2) the macroscopic contact
line Co is preceded by a precursor film, first discovered
by Hardy [21]; the structure of this precursor has been
investigated experimentally [22] and theoretically
[23-25]. Many situations are possible : again it is

helpful to focus on the relatively simple case of a
Van der Waals fluid, where results can be written
down in simple terms [24-25]

a) a film, or « tongue », shows up when the dynamic
contact angle 0 has reached low values

b) when0  0 the thickness of the film at the cross-
over point is

c) the film is truncated at a thickness e = es where
eg has been defined in equation (2). For Van der Waals
fluids :

d) the extension of the tongue (from the point
e = ’0 to the tip e = es) is

(1) We are indebted to a referee for this observation.

Fig. 2. - The « adiabatic » precursor for a Van der Waals fluid spreading on a solid, with a fixed velocity U (after Refs. [16],
[24]). The film is truncated at a thickness eg (Eq. (14)).
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e) the velocity U of the whole pattern is related to
the angle 0 by the Hoffmann-Tanner law

A qualitative understanding of equation (15) can be
obtained in terms of a diffusion coefficients D(e) for
a flat film of thickness e [25]. Balancing disjoining
pressures against viscous forces, one finds that a small
perturbation of the thickness decays according to a
diffusion equation, with a coefficient

For Van der Waals fluids

An essential feature is that D(e) becomes large at small
thicknesses. The tongue size I of equation (15) can be
understood in terms of a competition between dif-
fusion at the tip (D(es)) and drift (velocity U)

3.2 FINE STRUCTURE OF THE «TONGUE». - The
above discussion assumed that the whole fluid pattern
was drifting with a constant velocity U with respect
to the solid This is strictly correct for the dipping
problem of reference [12]. But for transient problems,
such as the one considered here, the situation may be
more complex. It is described qualitatively on figure 3.
We have a nominal contact line Co moving at a
velocity U(t), and we use a reference frame where the
solid plate moves at the velocity - U.

a) Starting from Co (at x = 0) we find a film which
has reached a steady state in a certain interval

(0  x  X,). Here the current J vanishes, and this
gives

from which we can see that the scaling form of the
profile is given by the implicit equation

a generalization of (19). In particular, with VdW forces,
the result is e - x-1 as discussed in reference [16].
The film present in the interval (0  x  xl) will be
called the « adiabatic » film.

b) At larger distances (xl  x  o we have a
diffusive regime, where the drift term ( U) becomes
negligible, and where the transport equation reduces
mainly to

Here, the scaling law for the profile is

In particular, the tip of the tongue (thickness es) is
associated with the fastest diffusion coefficient D(es).

c) The crossover point (x = xi) between the adia-
batic film and the diffusive film, corresponds to

In equation (25) we have gone to Van der Waals
fluids and used equation (18) for D(e). Of course, (25)
will be meaningful when the thickness e 1 is in the

right interval

On the other hand, if el  es, the whole tongue is
adiabatic and equation (19) holds.

3. 3 APPARITION OF A DYNAMIC PRECURSOR IN VERTICAL
CREEP. - We now return to the climbing problem of
figure 1, and transpose the results :

a) A film shows up at a time t2 such that 0(t2) = 0
(Eq. (12)). Inserting the form (8) for O(T) we find

With our choice of values (S/y = 10-2) we arrive at
times t2 - 10-2 s.

b) At times t &#x3E; t2 (but below a certain limit t3
to be defined below) we expect a purely adiabatic
« tongue» with a crossover thickness derived from
equation (12).

Fig. 3. - A « mixed » precursor - in the region from x = 0 to x = x, the velocity U of the nominal contact line Co imposes
the average fluid velocity. Beyond x,, the flow is controlled by non linear diffusion.
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The length I of the tongue is given by equations (19)
and (7, 8)

c) At a certain time t3 the tongue becomes diffusive.
We may construct t3 through the crossover thickness
ei defined in equation (25). Inserting equations (7, 8)
into (25) we arrive at

The tip of the tongue becomes diffusive when ei
increases up to the tip thickness e. (Eq. (14)). Equating
(29) and (14) we find the corresponding crossover time

Note that’t3/,r:2 ’" (03 8)1/2 is larger than unity because
of our starting assumptions. For our numerical

example t3 ~ 1 s.

At times t &#x3E;&#x3E; t3 the tongue is mainly diffusive, and
has a length derived from equation (23), namely
l2 ~ D(es)t,or:

Our reader may check directly that the forms (28)
and (31) do crossover at i = r3.

d) Ultimately, at a certain time t4, two things will
happen to the « tongue » :

(i) the adiabatic portion fades out : the crossover
thickness ei becomes comparable to Co. Comparing
equations (25) and (27) this leads to

(ii) a piece of static film (described by Eq. (5))
appears. This corresponds to Co = eo(hc) and also
leads to equation (32). The build up of the static film
will be analysed in the next section.
A final remark concerning i4 : we can check that

with our assumptions on 0. Numerically, for our
particular choice of values, the time t4 is of order
10 seconds.

4. Development of the static film

4.1 THE DIFFUSION APPROXIMATION. - After time t4,
a static film begins to build up above the macroscopic
meniscus. The upper limit of this static portion is a
certain altitude hl(t) (Fig. 1). Diffusion signals spread
out from the meniscus (h = hc) and sweep all the region
up to hl. These signals are carried with the fastest
diffusion coefficient available, namely

since eo(hl) is the minimum thickness in this region.
This leads to a self-consistent formula for h, :

a) At times t  t. we have L1  hl and then the
argument in Di may be treated as constant

We then have a case of simple diffusion (d N t 111).
More precisely :

The time ts is typically of order 10 days !
b) If we insist on probing longer times (t &#x3E;&#x3E; ts)

then hc becomes negligible with respect to hi in equa-
tion (34). The self-consistent solution is then :

This scaling law is the exact analog of what we had
in dipping a plate at ultralow velocities [9]. Equation
(38) can in fact be derived by seeking suitable self-
similar solutions, as shown in the appendix.

c) To be sure that the diffusion approximation
(Eq. (34)) was the right starting point, we must check
that the film is diffusive rather than adiabatic. The
ratio d(t)/(Ut) (where U is the drift velocity defined
in equation (7)) must be larger than unity. Indeed, with
good use of equations (7, 8, 36) we find that

and thus, whenever r &#x3E; T4 . the regime is purely
diffusive.

d) Finally we should mention the tongue - here,
as soon as we passed the time t3, we expect the diffusion
law (31) to hold - the tip has always a thickness e.
and moves with the fastest available diffusion constant

D(es).
An attentive reader will note that the static portion,

described by h,(t) (Eq. (38)) ultimately grows faster
than the tongue, and must catch it up at some point !
this is no surprise - comparing (38) and (31) we find
that the two things merge when we have reached the
ultimate permissible size h., defined by the dewetting
effect of the gravitational potential (Eq. (2)). But the
time required to reach h. is astronomically large,
and not physically significant.

5. Conclusions.

Our scaling analysis does predict a remarkable cascade
of events for the wetting of a vertical wall by a non
volatile Van der Waals fluid The first stage (t ~ ti)
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depends on the exact initial conditions and is not

interesting. The birth of a precursor at time t2 is not
a great surprise - it is very similar to what we expect
for the horizontal spreading of a droplet The transition
between « adiabatic » and « diffusive » precursors,
occurring at a later time t3, is also expected for hori-
zontal spreading, but had not been discussed yet
(to our knowledge). The onset of a static film (at time
t4) is a specific feature of the vertical geometry, and
deserves experimental studies. The final growth (at
times t &#x3E; ts) is ruled by a nice self-similar type of
solution but experiments over such long times appear
difficult, because of various problems (contamination,
temperature stability,...). It is interesting to see,

however, that so many things should happen in the
interval from one second to one day, which is most
relevant for soil physics.

Various extensions of the present work are clearly
needed : 

a) toward mathematical rigor - many crossovers
are involved; fortunately they are rather well separated
in the time sequence and in space; thus they could
be studied separately by suitable matching of asymp-
totic expansions;

b) towards more practical fluids, such as water and
also towards two-fluid systems (water replacing oil);

c) possibly allowing for exchanges through the

vapour;

d) investigating the stability of the film fronts with
respect to small perturbations.

But, at this moment, a first experimental program on
simple Van der Waals fluids could be started with
some guidance from the scaling laws, using various
optical methods to monitor the films.

APPENDIX

Self-similar film profile.

In the late stages of the creep (t &#x3E; ts), the profile of
the ascending film can be described in more details
by looking for self-similar solutions to the dynamical
equations.

In the lubrication approximation, at a height h
over the reservoir level, the thickness of the film is
related to the local upward velocity U by

The first term on the right hand side represents the
gravity force, the second is the disjoining pressure
gradient for a Van der Waals fluid. For heights much
larger than the capillary length hc, the film is almost
flat parallel to the solid surface and it is legitimate to
neglect the Laplace pressure.

The other relation between velocity and thickness
is provided by the conservation equation

Combining these two equations we get the profile
equation

In the absence of gravity (g = 0) this is a non linear
diffusion equation with a thickness-dependent dif-
fusion coefficient

In the microscopic regime there is just one charac-
teristic height hl(t) for the film given by equation (38).
It is then reasonable to look for a self similar solution
to equation (A. 3) in the form

The function f satisfies then the dimensionless
differential equation

In order to discuss the solutions of this equation,
we distinguish 2 regions in the microscopic film :

i) at small heights, u = h/h1  1 (h being however
larger than hl) the static film is already established;
the viscous terms are then negligible in equation (A. 4),
which reads :

f is thus given by the usual static solution (Eq. (5))

ii) at larger heights the film is not established yet,
it is thus much thinner than its equilibrium value.
The gravity term is negligible compared to the Van
der Waals disjoining pressure

The film profile is thus

or in the original units
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In practice, the large height profile is valid over a
much larger time range than studied here. As soon as
t &#x3E; t3 when the dynamic precursor film appears,
there exists a region where the gravity force can be
neglected and where the profile can be approximated
by (A. 6). This film is cut at a thickness e(l, t) = es

leading back to the tongue length given by equa-
tion (24)
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