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Résumé. 2014 Nous avons réalisé un calcul ab initio pour le potentiel interionique du Li. A partir du potentiel calculé
nous avons obtenu la courbe de dispersion des phonons en utilisant l’approximation harmonique self-consistante,
et nous comparons les résultats avec l’expérience. Pour obtenir le potentiel interionique nous avons suivi une
méthode basée sur le formalisme de la fonctionnelle de densité, qui est une extension de l’approche perturbative
usuelle. Cette méthode a été appliquée auparavant seulement à l’hydrogène métallique. Les seuls paramètres
nécessaires pour le calcul sont la charge du noyau et la densité électronique moyenne.

Abstract. 2014 We have performed an ab initio calculation of the interionic potential of Li. From the calculated
potential we have obtained the phonon dispersion curve using the self-consistent harmonic approximation and
compared results with experiment. To obtain the interionic potential we have followed a method which is based
on the density functional formalism and is an extension of the usual perturbative approach. This method had been
applied previously only to metallic hydrogen. The only input parameters required to calculate the interionic poten-
tials are the charge of the nucleus in the metal and the average electron density.
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1. Introduction.

The knowledge of the interionic potential for solids is
a very important ingredient for the investigation of
their properties. Several methods have been used to
find the interionic potential of metals [1-10]. Some of
them are based on the use of empirical Morse or
Lennard-Jones potentials. These potentials show no
Friedel oscillations at all and decay very rapidly.
Another often used approach for finding the inter-
ionic potential is by pseudopotentials. For this case
the parameters used to define the pseudopotential are
usually determined by fitting some electronic proper-
ties, predicted with the pseudopotential, to experi-
mental information such as electrical resistivity of the
liquid metal, the shape of the Fermi surface or spectro-
scopic data. The pseudopotentials may also be found
from first principles. They show the presence of
Friedel oscillations and may be local, non-local or
energy dependent.

It is clear at present that a pseudopotential deter-
mined in an empirical way cannot always be regarded
as weak [11], so that its use in getting the interionic
potential is not justified

On the other hand, the interionic potential can be
constructed from first principles using the pseudo-
potential theory [7, 8, 9] for simple metals. This has
been done using a non-linear response calculation of
the induced charge density around an ion in an elec-
tron gas. A pseudopotential is chosen to reproduce the
induced charge density in linear response, except in a
region close to the ion. In this region a modelling of
the induced charge density has to be done. This

modelling is not unique. The non-linear effects are
partly included in the pseudopotential in this way.

In this work we have followed the method which

Magana et al. applied to metallic hydrogen [1] to

obtain the interionic potential.
This method is based on the Density Functional

Formalism [13, 14] for calculating the density around
an ion in an electron gas. The interionic potential is
given in terms of the density and the direct interaction
between two ions. There are no adjustable parame-
ters, and no modelling of the density in the region
close to the ion is needed
From the resulting potential the phonons are

obtained using the Self-Consistent Harmonic Approxi-
mation [ 15].

In section 2 we describe briefly the method for cons-
tructing the pair potential from the induced charge
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density around an ion in an electron gas. In section 3
we present the main results of the Hohenberg, Kohn
and Sham Formalism or Density Functional For-
malism for obtaining the induced charge densities.
Section 4 is used to present the set of equations to be
solved to obtain the phonon dispersion curve by the
Self-Consistent Harmonic Approximation. Results
and discussion are given in section 5.

2. The interatomic potential.

We have followed the method of Magana et al. which
is an extension of the usual perturbative approach for
calculating interatomic potentials in simple metals
and is based on the Density Functional Formalism
and which we explain briefly. For more details the
reader may see references [1, 12].
We start with an interacting and electrically neutral

electron gas, represented by a Hamiltonian H and an
average electronic density no. Two static charges of
magnitude Z are added to this system and to preserve
charge neutrality, 2 Z electrons are also added One
of the static charges is located at the origin and the
other at R. The average electron density is practically
unchanged by the inclusion of the 2 Z electrons. The
new total Hamiltonian for the electron gas HT, is
the sum H + H’, where

and a sum over electron spin is implied and ~(r) and
~ + (r) are field operators.
We are using atomic units, e = h = m = 1, where

e and m are the electron charge and mass, h is Planck’s
constant divided by 2 7r.
The total energy change including the direct inter-

action between the external static charges and
the differences between the ground state energies of
the electrons described by HT and H respectively can
be written as

where

and ~(~,) ~ is the state vector for the ground state of
the Hamiltonian = H + AH’, i.e.

and A is such that 0  A  1.
The pair potential, V(R), is given by the structure

dependent part of AET.
We need to calculate the electron density, p~(r),

for each value of A between zero and one.

Because of the numerical difficulty of performing
the two centres calculation for each R and guided by
the usual method, it is assumed that can be

reasonably approximated by

where Ani(r) is the displaced electron density around
the charge at the origin and R) is the dis-
placed electron density around the charge at R, no
is the unperturbed electron density.
Using equation (5) in equation (2), neglecting

additive constants and terms which are R independent
and using spherical symmetry, we get for the pair
potential

where

and

Equation (6) is the form for the pair potential we use.
We have to calculate Anz(r) in order to get R)

and F2 (A, R). For this we use the Density Functional
Formalism of Hohenberg, Kohn and Sham [13,14].

This formalism considers the problem of obtaining,
for the ground state, the density and the energy of an
electron gas under the influence of an external static
potential.

3. Electronic densities from non-linear screening.

The central result of the Hohenberg-Kohn-Sham
formalism [13, 14] states that there exists a one-body
local potential Veff(r) which, through the one-body
Schrodinger equation given by

generates the set of wave functions and the exact

ground state density of the system through the inde-
pendent particle density expression :

where the sum extends up to the Fermi energy.
The effective potential is given by

where is the total electrostatic potential of the
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system, and the exchange-correlation
energy of the system.
When we omit gradient corrections, we can write

where exc(n(r)) is the exchange-correlation energy per
particle in a homogeneous electron gas of density n.
Using spherical symmetry, we write the equations to

be solved for our case

where R’k(r) is a solution to the radial Schrodinger

equation of k2.

Notice that the potential of the impurity in the
electron gas is contained in 0(r) and that, in the
absence of the impurity, Rjk(r) is proportional to the
spherical Bessel function of the first kind, J~(kr).
From equation (10) we can obtain the electron

displaced density around an ion in the electron gas :

or

where 1/Ib(r) refers to the bound state wave functions.
For the exchange-correlation contribution to the

effective potential, equation (12), we use the expression
given by Hedin and Lundqvist [16], in atomic units :

u 
4 3 1where 4/3 nr; = 2013.3 s 

no
The electrostatic potential obeys Poisson’s equation

where

or

In order to have Veff(r) vanishing at large r, the

exchange-correlation part is rescaled to :

We solved equations (13), (15), (16), (19) and (20)
self-consistently. We carried out the calculation of the
density following the method of Manninen et al. [17]
to achieve automatic self-consistency. Notice that the
calculation has to be done for each value of a,, using
Z = ~Zo, where Zo is the charge of the nucleus of the
ion in the metal.
Once we had obtained the densities for the set of

values of A for the metal we used equations (6) to
obtain the interionic potential. From this potential
we obtained the phonon dispersion curve using the
Self-Consistent Harmonic Approximation.

4. The phonons

We followed the work of Boccara and Sarma [18]
with the extensions given by Gillis et al. [19] and
Cowley and Shukla [20].

This scheme contrasts with that of Born and Von
Karman [21, 22] by making no initial hypothesis of
smallness for the amplitude of atomic vibrations and
hence no truncated Taylor series expansion of the
interatomic potential energy.
A trial Harmonic Hamiltonian of the form

is adopted, where ui are the dynamical displacement
variables and the Oij are determined by minimizing
the free energy of the crystal and result given as a
thermal average of the second derivatives of the ion

pair potential.
The resulting set of self-consistent equations to

solve in order to obtain the phonon dispersion curve is

where sl(k) is the component of the polarization vector
8¡(k) and the dynamical matrix is :

with

where M is the ion mass, u, is the vector describing the
displacement of atom I from its equilibrium position
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R, and + u,) is the tensor derivative of the
interatomic potential evaluated at R, + ul.

Finally

- 

1 
1 - cos k · R E*" k 03B503B203BB( k x( g ) MN 03A3(1 cos(k - Rl)) x «g MN kA 

i i i

x coth (24)x (24)

where N is the number of ions. The sum is over the
first Brillouin zone, fl is Ilks T, kB being the Boltzmann
constant

Notice that  + u,) &#x3E; which plays the same
role as the in the Harmonic Approximation is the
tensor derivative of the potential averaged over the
phonon states generated by the potential.
To solve the set of self-consistent equations (21),

(22), (23) and (24) and get the phonon dispersion curve
we start with the frequencies generated by the Harmo-
nic Approximation as the first trial. Then the conver-
gence procedure is followed

5. Results and discussion.

We have applied the method to lithium.
First, we obtained the densities fully self-consistently.

The calculation of the densities were performed solving
the Schrodinger equation in steps of 0.01 ao, where ao
is the Bohr radius up to R = 0.5 ao. For 0.5 ao  R 
2.5 ao, it was solved in steps of 0.02 ao and in steps of
0.04 ao up to 22.5 ao, where the phase shifts were
evaluated
The sums over I in equation (15) were terminated

at lmaX = 4. The values of the phase shifts for A = 1
are given in table I. The density is shown in figure 1
for A = 1 too.
The step size in A for performing the integral of

equation (6) was 0.25/3.
Once we obtain the densities for the set of values

of ~,, we calculate the interionic potential using equa-
tion (6).
The interionic potential is shown in figure 2. After

getting the potential we find the first and second deri-
vatives as functions of R and use these derivatives to
start the self-consistent calculation of the phonons.
The phonon dispersion curve is shown in figure 3,

where comparison with experimental results [30] is
made. It is possible to see that predicted phonons have

Table I. - Values of the phase shifts, n~, for the metal
we studied. The Friedel Sum Rule, FSR, resulting from
the calculation and the value of rs are also given.

Fig. 1. - Displaced electron density around a lithium ion.

Fig. 2. - Calculated interionic potential for lithium in this
work : - ; From reference [23] : - - ; From reference [24] :
_8_; From reference [8] : .....

the same overall shape as experimental results. The
maximum frequency predicted is about 40 % bigger
than the experimental one. The maximum frequency
obtained with Harmonic Approximation was about
55 % that the corresponding experimental value.
The calculation of the phonons included 17 neigh-

bouring shells. The frequencies were converged with
respect to the number of shells to within one percent
except for the Kohn anomalies. The temperature was
taken with three different values : 0 K, 10 K and
300 K without any significant differences in the phonon
dispersion curve.
Because of the nature of integration of equation (6)

it is clear that the method is most easily applied to
nuclei of small charges. We had to obtain the density
numerically eleven times according of the step size
in A. But in this method we do not have any adjustable
parameter for the interionic potential so that it is a
very pure ab initio calculation. There is no ambiguity
in the procedure for obtaining the potential. This is
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Fig. 3. - Calculated phonon dispersion curve for lithium :
- ; Experimental phonon dispersion curve for lithium :
x~0~0,

why we think the resulting potential should be close
to the real one. The only input parameters we need to
perform the calculation of the interionic potential are
the nuclear charge and the average electronic density.
To get the phonons we need the type of structure of the
metal.
On the other hand, superposing the two displaced

charge densities, at the origin and at R (Eq. (5)), is a
major approximation but is common to the usual

perturbation theory approach. It is clear that there
was no guarantee that the method could work for
metals with ions heavier than hydrogen ion, but it
works reasonably well even with the assumption of

locality, and lithium is a material that presents the
problem of being extremely non-local [8].

There have been other calculations of phonons for
lithium (see, for example, Refs. [8] and [25]).
They have been performed within the pseudopotential
approach which has been discussed in the first part
of this work. The calculations of phonons for lithium
in references [8] and [25] were made using the Harmonic
Approximation and show a difference of about 10 %
with respect to the experimental results. In these
references the pseudopotentials were chosen in order
to fit a previously calculated non-linear response
electron density around an ion embedded in an elec-
tron gas, except for a region close to the ion.

In figure 2 we show the interionic potential for
lithium from reference [8] and from other calculations
including ours. The authors of reference [25] did not
give the interionic potential for lithium.

All the interionic potentials shown in figure 2,
except ours, were obtained using pseudopotential
theory. The authors of reference [23] reported force
constants which are 2 or 3 times larger than experi-
mental ones. They did not report phonon dispersion
curves and they made the calculation using an empi-
rical pseudopotential proposed by Heine-Abarenkov-
Animalu [26, 27], which had been evaluated by
Animalu [27] by fitting the shape of the Fermi surface.
The same authors calculated again the force constants
for lithium [28] using an Ashcroft pseudopotential [29]
and this time they obtained a good agreement with
the experimental results but they did not report
phonons for lithium. The calculation in reference [24]
was performed in an attempt by Torrens and Gerl
to reproduce the interionic potential for lithium

reported in reference [23] by taking the Fourier trans-
form of screened Heine-Abarenkov-Animalu ion form
factors. No force constants nor phonons were reported

Finally we strongly feel that the method we have
followed could be improved by taking a more realistic
interionic charge density instead of equation (5).
This could be done, perhaps, by finding the charge
for two centres of force. The method would not have

any adjustable parameter yet and should give an
interionic potential very close to the real one.
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