H2-NMR investigation of the two-dimensional smectic F and I phases
J.J. Benattar, B. Deloche, J. Charvolin

To cite this version:
J.J. Benattar, B. Deloche, J. Charvolin. H2-NMR investigation of the two-dimensional
<10.1051/jphys:0198500460120217900>. <jpa-00210166>

HAL Id: jpa-00210166
https://hal.archives-ouvertes.fr/jpa-00210166
Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
H$_2$-NMR investigation of the two-dimensional smectic F and I phases

J. J. Benattar (*), B. Deloche (**) and J. Charvolin (**)

(*) Service de Physique du Solide et de Résonance Magnétique, CEN Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France

(**) Laboratoire de Physique des Solides, Bât. 510 (CNRS-LA 2), Université Paris Sud, 91405 Orsay, France

(Reçu le 26 juillet 1985, accepté le 29 juillet 1985)

Résumé. — Les phases smectiques F et I sont connues comme étant des systèmes quasi bidimensionnels. La phase SF a été le premier exemple d'une phase hexatique inclinée, alors que la phase SI est apparue comme présentant un ordre de type « solide 2D ». Nous avons étudié le composé téréphtal-bis (4-n décylaniline) (TBBA), dans lequel la phase SF existe à des températures inférieures à celles de la phase SI, mais avec un plus grand degré d'ordre positionnel. Pour approfondir la compréhension de ce surprenant phénomène, nous avons entrepris l'étude du comportement moléculaire par des expériences de H$_2$-RNM. Deux échantillons deutérés de TBDA ont été synthétisés afin de séparer le comportement du coeur aromatique de celui des chaines. Les données se rapportant à la partie aromatique ont été interprétées dans le cadre d'un modèle simple, basé sur les réorientations des cycles phényl autour de leur axe para ; cette analyse permet de proposer un scénario pour l'apparition du désordre intramoléculaire et son influence sur l'ordre intermoléculaire à travers les phases smectiques F et I.

Abstract. — The smectic F and I phases have been reported to be quasi-two dimensional systems. The SF phase was shown to be the first tilted version of the hexatic phase whereas the SI phase was shown to exhibit a 2D solid-like order. We have studied the terephtal-bis (4-n decylaniline) (TBBA) in which the SF phase surprisingly occurs at lower temperatures than the SI phase with a higher degree of positional order. To further investigate this puzzling problem we have studied the molecular behaviour by means of H$_2$-NMR experiments. Two deuterated samples of TBDA have been prepared so as to allow separate investigations of the aromatic core and end-chain orderings. Concerning the aromatic part the data have been interpreted in a simple model based on the reorientations of the phenyl rings about their para-axis. This analysis suggests a possible scenario for the intramolecular disordering and its influence on the intermolecular ordering through the smectic F and I phases.

1. Introduction.

Most smectic phases are known to present either a para-crystalline order (S_p, S_{ph}, S_{ph} and S_{ph} phases) or a liquid-like order within the layers (S_A and S_C phases). Recently this polymorphism was shown to be even larger including intermediate structures with two-dimensional order within the layers, the smectic F and I (S_F and S_I) which occur in some compounds with long aliphatic end-chains. These mesophases have received increasing attention since they take place in the more general context of the two-dimensional melting. The structural investigations [1, 5] of these two phases in some homologues of the TBAA series have brought to light a surprising problem : the range of positional order is larger in the high temperature S_I phase than in the S_F phase which occurs at lower temperatures. Such an entropic loss at the level of the intermolecular organization is certainly to be compensated at another level. That of the intramolecular conformational states appears as the first possible candidate and the easiest to investigate with classical NMR experiments. This is the aim of the experiments reported in this work. Before describing them in detail let us first recall briefly the main structural features of these ordered smectic phases.

The S_{ph} phase is three dimensionally ordered and consists of strongly coupled layers; within the layers, the order is of the pseudo-hexagonal type [2, 3]. In the S_F phase, the layers are weakly coupled so that it can be regarded as a two-dimensional system in bulk [1]. Such a phase is the first example of a stacked tilted version of the hexatic phase predicted...
by the 2D-melting theory [4]: this phase both exhibits a short-range positional order and a long range bond orientational order within the smectic planes.

The \(S_p \) phase can be also considered as a two-dimensional system [5] but differs from the \(S_p \) phase by the direction of the molecular tilt relative to the rectangular lattice within the smectic planes [6]. Moreover the positional order is quasi-long ranged whereas it is short ranged in the hexatic \(S_h \) phase [1, 7]. At this level it should be also pointed out that another important distinctive feature exists; the molecular packing within a plane perpendicular to the long axis appears truly hexagonal whereas it is slightly distorted from this symmetry in the \(S_p \) and \(S_G \) phases [8].

We want to detect possible relationships between the structural order of the smectic F and I phases and the molecular behaviour. Among the various techniques which are sensitive to the molecular ordering, deuterium NMR (H\(^2\)-NMR) has proved to be a powerful tool for probing the local orientational anisotropy [9, 10]. We have therefore used this technique to investigate the behaviour of labelled double Schiff's bases in their smectic phases. The experimental data will be analysed in terms of a simple model which helps to provide information on an essential feature of the intramolecular motions.

2. Experimental

The main part of this work has been carried out on TBDA the homologuous compound \(\{n = 10\} \) of the well known terephthal-bis-[4-n-alkylaniline] series (TBAA) whose general formula is:

\[
\text{C}_6\text{H}_{12}\text{N}=\text{CH-CH}=\text{N-CH}_2\text{C}_6\text{H}_{12}.
\]

This compound previously investigated by X-ray scattering, exhibits the following phase sequence:

\[
\text{Cr} \quad \text{S}_G \quad 115^\circ \text{C} \quad \text{S}_F \quad 149^\circ \text{C} \quad \text{S}_I \quad 156^\circ \text{C} \quad \text{S}_C \quad 198^\circ \text{C} \quad \text{S}_A \quad 199^\circ \text{C} \quad \text{ISO}
\]

For the purpose of the present study we prepared two TBDA samples with differently deuterated groups, using the deuteration process reported in reference [11]. One is specifically deuterated on the terephthalidene central group (TBDA-\(d_6 \)):

\[
\text{C}_{10}\text{H}_{21}\text{N}=\text{CD-CD}=\text{N-CD}_2\text{C}_{10}\text{H}_{22}.
\]

The other is perdeuterated (TBDA-\(d_{56} \)). Note that the transition temperatures are not appreciably modified by the deuteration.

The two samples have been outgassed and then sealed under vacuum in glass ampoules. The temperature of the sample, controlled by heated air flow, as regulated to 0.15 \(^\circ \text{C} \) and thermal gradients were of the same order. The 10 MHz H\(^2\)-NMR spectra were obtained with a home-built pulsed spectrometer after Fourier transformation of the free precession with a boxcar integrator. As for the sample configuration in the magnetic field, we know from X-ray experiments that the molecules always remain in average aligned in the field direction whereas the layer normals tilt away from this direction [7].

Typical H\(^2\)-NMR spectra of TBDA-\(d_6 \) and TBDA-\(d_{56} \) are reported in figures 1a and 1b respectively. In both cases quadrupolar doublets are well apparent. The lack of a nematic phase prevents a good molecular alignment in the applied magnetic field so that the observed spectral resolution is weak and for instance lower than in case of the TBBA compound \(\{n = 4\} \) previously studied with the same NMR equipment [11-12] and elsewhere [13]. The pairs of doublets in figure 1a can be easily assigned from their relative intensities and so it has been found that the doublet with the smallest splitting corresponds to the phenyl deuterons and the other to the azomethine deuterons. As in the case of TBBA the reorientation of the central ring about its para axis makes the four phenyl deuterons equivalent [13]. Concerning the spectrum of the TBDA-\(d_{56} \) (Fig. 1b) the azomethine and the phenyl...
deuterons can be easily identified by comparison with the spectrum of the TBDA-d$_6$ at the same temperature. It appears that the splitting of the phenyl rings are equal within the experimental error and this means that the three phenyl rings are equivalent on the time scale of the H2-NMR. All the other doublets related to the end-chains; following the references [11] and [14] the assignment is obtained assuming a monotonic decrease of the doublet spacings along the chain form the first methylene groups towards the methyl end.

The general feature of the H2-NMR in liquid crystals have been discussed in detail in references [9, 10, 15]. Let us briefly recall that if rapid molecular anisotropic reorientations take place, the quadrupolar interaction is not averaged out and the residual coupling splits the NMR line into a doublet. In the following we shall assume that the averagings are caused by anisotropic rigid-body reorientations and by intramolecular motions and that these two types of motions are decoupled. Moreover we shall neglect the contribution to the splittings of all the other terms [16] of the order tensor S than $S = S_{z0}$, z_0 being the long molecular axis. This is a rather simplifying point of view but such an analysis is sufficient, in a first approximation, to discuss the essential features of the data. Under these conditions the doublet splitting of a deuteron on a chemical site (i) may be written in frequency units as:

$$\Delta v_i = \frac{3}{2} v_Q^* S \langle P_2(\cos(CD_\sigma, O_{z0})) \rangle$$

where v_Q^* is the quadrupolar coupling constant.

According to this approach the ratio $R = \frac{\Delta v_1}{\Delta v_2}$ of splittings relative to different molecular sites depends on conformational averagings only and so provides informations about the intramolecular structure.

3. Results.

The temperature dependences of the quadrupolar splittings are reported in figure 2 in case of the phenyl and azomethine deuterons and in figure 3 and 4 in case of methylene and methyl deuterons. In all phases, except the S_1 phase, the splittings decrease as the temperature increases. This is the behaviour observed classically. However a most unusual and striking feature is observed in the S_1 phase : the splittings relative to the aromatic part and most of those relative to the aliphatic chains remain constant in the whole corresponding temperature range. It should be pointed out that such a behaviour is very specific of the S_1 phase since weak variations of the splittings can be easily detected, for instance just above the S_1-S_2 transition in the phenyl curve (Fig. 2). The appearance of such plateaux in the $\Delta v_i(T)$ curves, particularly characteristic in the phenyl case, should not only correspond to a constant order parameter but also to an average molecular conformation which is quite independent of the temperature (a compensation effect is quite improbable considering the fact that most splittings have this behaviour).

4. Discussion.

Let us first briefly comment on the case of the end-chains. With the proposed assignment, the methylene doublets (2, 3), (3, 4) and (6, 7) remain paired and, at given temperatures in the S_0, S_F and S_1 phases, there is a decrease of the order all along the chain towards the methyl group. Although these features are usual, the observed pairing effect on the TBDA is somewhat particular since it occurs through the whole mesomorphic range. The observation of this pairing phenomenon in the S_1 phase, in addition to the presence of real plateaux in the splitting variations $\Delta v_i(T)$ suggests that for this compound the first five CD$_2$ groups should be more correlated than is usually
Fig. 3. Temperature dependence of the quadrupolar splittings of the various methylene deuterons in TBDA-d$_{56}$. The doublet of the terminal methylene group (9) cannot be resolved except in the S_c phase because of an overlap with the phenyl doublet.

Fig. 4. Temperature dependence of the quadrupolar splitting of the methyl deuterons of TBDA-d$_{56}$.

Fig. 5. Quadrupolar splittings of the azomethine and phenyl deuterons of TBMA-d$_{6}$ and their ratio as function of temperature.

The doublet of the terminal methylene group (9) cannot be resolved except in the S_c phase because of an overlap with the phenyl doublet. This effect also visible in the other phases, might be due to a long range anchoring of the chain on the aromatic core. On the other hand the last methylene groups, and above all the methyl end group, appear much more disordered ($\frac{\Delta v}{v} \sim 30\%$ for the CD$_3$ groups in the S_i range). Then the terminal part of these chains may be visualized in the S_i and S_F phase as a relative fluid interface which favours the sliding of the smectic layers on each others and therefore the existence of two dimensional order. We shall not discuss the chain behaviour further in the absence of any definite model. The discussion will now be focused on the behaviour of the aromatic core essentially.

Rather than discussing the variation of the phenyl and methine splittings, we propose to consider in the following their ratio $R(T)$ reported in the lower part of the figure 2. According to [1], this ratio is independent of the order parameter $S(T)$ in our first approximation.

In a first step it is useful to compare the results of the TBDA-d$_6$ (Fig. 2) with those analogous reported in figure 5 for the TBMA-d$_6$ i.e. the first member ($n = 1$) of the TBAA series [17]. The latter data are indeed characteristic of the sole aromatic core behaviour since they are devoid of any influence of the end-chains. Some strong analogies can be noticed on these two sets of curves:

(i) in the S_{cr} phase just below the transition to the next smectic phase, the respective ratios exhibit the
same order of magnitude (3.1 \(\leq R \leq 3.2 \)); moreover
the same is true for the splittings;
(ii) at higher temperatures, below the transition
to the isotropic phase (i.e. the nematic phase of
TBMA and the \(S_c \) phase of TBDA), the ratios have
a nearly constant value (\(R \approx 2.7 \)) over a large tem-
perature range \(\Delta T (\Delta T \approx 20 \, ^\circ C) \) [18].
The first point is particularly relevant since it
demonstrates that in the case of TBDA the presence
of end-chains does not affect strongly the orientation
of the long molecule axis relative to the para-axis
of the phenyl rings. In other words the direction of the
long axis, along which the chains are set, should be
mainly defined by the configuration of the core. This
remark will help us to analyse simply the variation
\(R(T) \) observed on figure 2 whereas the second point
quoted above will be examined further.

The interpretation of the observed variation \(R(T) \)
is based on the possibilities of intramolecular rota-
tions within the aromatic core [12-13]. We shall use
a model, initially introduced by Dianoux and Volino
[19], which has been applied to the fluid phases of
TBBA (\(S_A, S_c \) and nematic). The angular variables
which are used are defined in figure 6 and consist
mainly of two conformational parameters (\(\varepsilon \) and \(\phi \))
and one dynamical parameter \((\cos 2 \varphi) \).

(i) \(\varepsilon \) is the polar angle between the long molecular
axis (\(O_{Z_0} \)) and the para-axis of the central phenyl
ring.
(ii) \(\phi \) is the azimuthal angle of the long molecular
axis (\(O_{Z_0} \)) in a frame \((x_m, y_m, z_m)\) related to the most
probable orientation of the central phenyl ring.
Let us recall that the most probable molecular con-
figuration is such that all the dihedral angles between
the rigid molecular fragments correspond to minima
of the potential hindering the rotations around the
various bonds [20]. In figure 6, the angle \(\phi \) corre-
sponds to \((O_h, O_{x_m})\).
(iii) \(\varphi \) is the azimuthal angle \((O_x, O_{x_m})\) which de-
scribes the rotation of the central phenyl ring in the
frame related to the most probable conformation.
Then \(\langle \cos 2 \varphi \rangle \) is the dynamical parameter related
to the potential \(\left(V(\varphi) = -\frac{V}{2} \cos 2 \varphi \right) \) hindering
the rotation of the phenyl ring about its para-axis.
For example the case \(\langle \cos 2 \varphi \rangle = 1 \) corresponds
to \(H \)-flips of the phenyl rings about the para-axis
while \(\langle \cos 2 \varphi \rangle = 0 \) corresponds to isotropic re-
orientations.

According to the relation (1) the expression of the
splitting of the methine deuteron may be simply
written as :
\[
\Delta v_{\text{methyl}} = \frac{1}{2} v_Q^o S P_2(\cos v + \varepsilon) \quad \text{(2)}
\]

where \(v \) is the angle between the CD bond of the
azomethine group and the para-axis of the aromatic
ring; from the reference [19] \(v = 60^\circ \) and \(v_Q^o = 177 \, \text{kHz} \).
As for the phenyl deuterons the splittings is given by :
\[
\Delta v_{\text{ph}} = \frac{1}{2} v_Q^o S \left[P_2(\cos u) P_2(\cos \varepsilon) + + \frac{1}{4} \sin^2 u \sin^2 \varepsilon \langle \cos 2 \varphi \rangle \cos 2 \phi \right]. \quad \text{(3)}
\]

The angle between the CD bond of interest and the
para axis is \(u (59^\circ 20 \) and \(v_Q^o = 185 \, \text{MHz} \) [19]. Then
the ratio \(R \) of the splitting may be simply expressed
as :
\[
\frac{R}{\Delta v_{\text{ph}}} = \frac{2 v_Q^o (3 \cos^2(v + \varepsilon) - 1)}{(3 \cos^2 u - 1)(3 \cos^2 \varepsilon - 1) + 3 \sin^2 u \sin^2 \varepsilon \langle \cos 2 \varphi \rangle \cos 2 \phi}. \quad \text{(4)}
\]

Let us first consider the limit of planar molecular
configurations. For a « cis » configuration in which
the transverse components of the \(C = N \) dipoles are
parallel [12], the value of the angle \(\varepsilon \) is zero, so that
the expression (4) for \(R \) remains always lower than 2,
\(i.e. \), lower than the experimental value \((2.7 < R < 3.5) \).
On the other hand the « trans » configuration, in
which the transverse components of the \(C = N \)
dipoles are antiparallel [21], allows to obtain the
right order of magnitude for \(R \); it corresponds to
\(\varepsilon = 10^\circ \) which is approximately equal to that cal-
culated directly by using standard chemical angles
and bond lengths. However it should be noted that
it is impossible to fit the curve \(R(T) \) by introducing
in the expression (4) a value of \(\varepsilon \) which differs slightly
from 10^\circ (i.e. a « trans » configuration). These remarks
suggest that the resulting dipole moments of the
molecules remain weak so that the dipole-dipole
interaction [22] should not be the main intermolecular effect for the ordering potential in the S_0, S_F and S_I phases.

In order to give an account for the variation $R(T)$ through the S_0, S_F and S_I phases, it is necessary to specify the temperature dependent terms in the expression (4). Of course the angles ψ and ε are supposed to be constant; on the other hand, according to previous remarks, we consider that ε should not vary significantly and so remain equal to the value quoted above i.e. $\varepsilon \sim 10^\circ$ through the S_0, S_F and S_I range. This latter point seems realistic since recent dilatometric measurements [23] on the TBDA have shown that the mean molecular area varies weakly with the temperature [24] so that each molecule may be viewed as confined in a « cage » which size is almost invariant and in which the aromatic core configuration remains « trans ». Under these conditions the observed decrease of $R(T)$ implies that the product $\langle \cos 2 \phi \rangle \cos \phi$ decreases with the increasing temperatures. Specifically, as indicated in figure 7, in order to fit the variation $R(T)$ the product has to decrease from 0.7, at the Cr-S_G transition, to approximately 0 in the S_I phase. Now our second basic assumption is to consider that, contrary to Dianoux and Volino [19], the decrease of the product is dominated by the average $\langle \cos 2 \phi \rangle$. Indeed we recall that $\langle \cos 2 \phi \rangle$ is directly related to the energy hindering the motions of the rings whereas $\cos 2 \phi$ is only a conformational parameter. Therefore the variation reported in figure 7 requires that the average $\langle \cos 2 \phi \rangle$ decreases continuously from an undetermined value in S_G to zero in S_I. Concerning the average conformation of the aromatic core this means that the rotation of the phenyl rings about their para-axis appears to be more and more isotropic with increasing temperatures and becomes quasi-uniform in the S_I phase. Consequently the averaged symmetry of the aromatic core becomes higher as the temperature is increased from the S_G and finally reaches a quasi-cylindrical state in the S_I phase; under these conditions a true hexagonal packing, characteristic of this phase, may occur.

We may easily see that, when such a molecular state of high symmetry is reached, it persists at higher temperatures so that $R(T)$ remains constant as observed through the S_I phase ($R = 3.0$) and through the main range of the Sm C phase ($R = 2.75$). The change in the constant R at the S_I-S_F transition may be simply explained by a slight modification of the molecular conformation around the « trans » state affecting the orientation ε of the long molecular axis ($\varepsilon = 8.65^\circ$ in S_C phase). Finally let us notice that there is a small increase of $R(T)$ just before the transition to the isotropic liquid. This weak effect, also observed in TBMA and TBBA, has not yet been interpreted.

5. Concluding remarks.

These present results concern the first experimental investigation of molecular ordering in the 2D-smectic F and I phases. Our study shows that the molecular behaviour of the S_F phase is close to that of the S_G phase while in the S_I phase there is clearly a distinctive feature. Indeed, in this phase, the specific molecular state is such that the averaged conformation of the aromatic core is almost cylindrical and quite independent of temperature. Such a molecular symmetry appears to be strongly correlated to the structural properties, i.e. the true hexagonal packing and the great extension of the positional order. Finally we think interesting to quote that there might exist at least two different S_I structures, the one discussed above and an hexatic version of it recently discovered in 2M4P8BC [25]. It should be also pointed out that in the case of the S_F phase [26], of its tilted version S_{Ft} [11] and of the S_G phase [27] relationships between the core behaviour and the herring-bone packing have been already evidenced. These three examples illustrate that through the ordered smectic range a strong interplay occurs between the nature of the molecular conformation around the « trans » state of high symmetry and the herring-bone packing configuration of the phenyl rings.

A close comparison of NMR results on TBDA to those previously obtained on TBBA and TBMA suggests the following molecular « scenario ». At low temperatures, in S_F or in S_{Ft}, it has been established that the herring-bone packing characteristic of this phase is correlated to flip-flop reorientations of the phenyl rings about their para-axis. At increasing temperatures the aromatic core of homologs of the TBA series always remains close to the « trans » configuration but the reorientations of the three phenyl rings become more and more uniform. This continuous evolution is indicated by the weak decrease of the ratio $R(T)$. At higher temperatures the rotation of the rings becomes isotropic. This dynamical state in which the molecular symmetry is higher appears to be quite independent of temperature since the ratio $R(T)$ remains constant, it can be considered as the last step of the intramolecular disorder generated at the level of the phenyl rings. In the case of TBDA the ratio $R(T)$ decreases through

Fig. 7. — Calculated variation of the term $\langle \cos 2 \phi \rangle \cos 2 \phi$ as function of temperature.
the S\textsubscript{G} and S\textsubscript{F} phases and becomes constant when the S\textsubscript{I} phase with hexagonal packing occurs (the jump at the first order S\textsubscript{S}-S\textsubscript{C} transition corresponds only to a change of the mean orientation of the long axis). On the other hand, in the case of TBMA and TBBA, this molecular state, in which the rings are freely rotating, seems definitively reached for a more fluid mesophase since the corresponding ratio \(R(T) \) is observed to be constant in the nematic phase only.

Acknowledgments.

We thank F. Volino for fruitful discussions, C. Germain and L. Strzelecki for the synthesis and the preparation of the samples used in the work and J. A. Hodges for revising the english manuscript.

References

[8] Note that if \(a, b, c \) and \(\beta \) are the parameters of the c-centred monoclinic cell in S\textsubscript{G} and S\textsubscript{F} (\(c \) being the long molecular axis, \(\beta = \pi/2 \) the tilt angle, \(a \) and \(b \) the parameters of the rectangular basis) the ratio \(\frac{a \sin \beta}{b} \) differs by about 1 % from \(\sqrt{3} \) whereas in S\textsubscript{I} this ratio is exactly equal to \(\sqrt{3} \). See reference [7].

[17] DELOCHE, B., Thesis (=A-1975), University of Paris XI, Orsay (1978). The pure TBMA exhibits no smectic phases. Under these conditions we have studied the binary mixture of TBMA and TBBA. For a mixture containing 17 % molar of TBMA the polymorphism as detected under the polarizing microscopic by the contact method is indicated in figure 5.

[18] These two points ((i) and (ii)) are still valid when the data of TBBA, as reported in references [12] and [13], are considered.

[24] For instance the mean area \(s \) per molecule varies as follows : \(s = 25.2 \, \text{Å}^2 \) in \(S_0 \) \((T = 92 \, \text{°C}) \); \(s \approx 26.3 \, \text{Å}^2 \) in \(S_p \) \((T = 131 \, \text{°C}) \); \(s \approx 27.1 \, \text{Å}^2 \) in \(S_I \) \((T = 154 \, \text{°C}) \).

