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(Reçu le 7 mai 1985, accepte sous forme définitive le 4 juillet 1985 )

Résumé. 2014 L’élément de matrice de transition dipolaire électrique violant la parité pour la transition 6s ~ 7s de Cs
a été évalué en utilisant la théorie des perturbations pour le problème à plusieurs corps. Les diagrammes ne con-
tenant que des excitations à une particule, ont été évalués à tous les ordres par une procédure auto-cohérente,
qui donne une équivalence automatique entre les formes de longueur et de vélocité pour l’ opérateur dipolaire
électrique. Les effets de corrélation, qui exigent l’excitation simultanée de deux particules n’ont pas été inclus.
Le résultat final, 0,89 x 10-11 iea0 QW/(- N), est compatible avec le résultat expérimental du groupe de Paris
pour les valeurs attendues de la charge faible, QW.
Abstract 2014 The parity non-conserving electric dipole transition element for the 6s ~ 7s transition in Cs has been
evaluated using Many-Body Perturbation Theory. Diagrams containing only single excitations were evaluated
« to all orders » using a self-consistent procedure, which was found to give an automatic equivalence between the
length and velocity forms of the dipole operator. Correlation effects, which require simultaneous excitation of two
orbitals, have not been included. The final result, 0.89 x 10-11(iea0)QW/(- N), is consistent with the experimental
results from the Paris group for the expected values of the weak charge, Qw.
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1. Introduction.

More than a decade has now passed since the Bouchiats
pointed out [1] that parity non-conservation (PNC)
caused by a weak electron-nucleon interaction, as

predicted by the Weinberg-Salam theory [2] is strongly
enhanced for heavy atoms and might, in fact, be
observable. Following the first, sometimes discourag-
ing, experiments, parity non-conservation of the

expected magnitude has now been observed in Cs [3, 4],
Tl [5], Pb [6] and Bi [7], and the experiments have
reached an accuracy where, in some cases, quantitative
conclusions can be drawn concerning the weak

interaction, provided the atomic calculations are

sufficiently accurate and reliable [8]. Several review
articles have appeared recently, discussing the experi-
ments [9, 10], calculations [11] and the relation to
weak interaction theory [8].
Of the atoms studied so far, Cs is particularly

attractive for calculations, not only because it is the
lightest (Z = 55) but also because it is an alkali atom,
which has a single valence electron outside a relatively
inert core. A number of semi-empirical estimates of
the PNC transition element in Cs have been given
[1, 12-14]; the most accurate of them is presented by
Bouchiat and coworkers [14]. Recently, Dzuba et al.
[15] performed an extensive ab initio calculation using

Many-Body Perturbation Theory (MBPT). Following
Sandars’ suggestion [16] they included the PNC effect
on the orbitals in a self-consistent way, whereas the

shielding of the electric field was included only to
first order. In addition, certain correlation effects
were included directly in the orbitals by modifying
them to approximate Brueckner orbitals [17]. Although
this had a small effect on the PNC transition element
in the length form, it was found to reduce significantly
the discrepancy between the length and velocity forms
of the dipole operator.
The present work is similar to that of Dzuba

et al. [15] and the results agree where comparable,
but disagree with an earlier MBPT calculation [18].
Correlation effects were not included in the present
work but on the other hand the shielding of the electric
field has been treated self-consistently together with
the PNC interaction, leading to an automatic equi-
valence between the length and velocity forms. To
first order in the core-valence interaction, the treatment
is equivalent to the PNC-TDHF procedure [19].
The method used has been applied and described in
more detail in an earlier work on Bi [20], except for the
simultaneous self-consistent treatment of the PNC
interaction and the shielding of the electric field
The method is briefly summarized in section 2, where
also some results are presented as an illustration to
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the importance of the different effects. Section 3 gives
a comparison with experiment and a discussion of
the results.

2. Calculation of the parity non-conserving electric

dipole transition element.

The weak interaction, described below, between the
nucleons and electrons in an atom gives rise to a

parity admixture in the orbitals which makes possible
an electric dipole transition between states of the
same nominal parity. The experiments on heavy atoms
aim at determining the size of the transition element,
which is then compared to theoretical estimates.
This comparison can give information about the
interaction parameters within the Weinberg-Salam
theory and also impose constraints on alternative
models for the electro-weak interaction [10, 21].
2. 1 THE PARITY-VIOLATING INTERACTION. - In heavy
atoms the parity-violating effect is dominated by [1]
the nuclear spin-independent (o nuclear-vector elec-
tron-axial current ») part of the parity non-conserving
Hamiltonian, which can be written as

where GF=GJl(nc)3 = 89.6 eV/fm3 = 2.22 x 10-14 a.u.,
PN(r) is a normalized nuclear density, which has been
chosen as a Fermi distribution in the present work
(the numerical results are rather insensitive to the
choice), Y5 is the Dirac matrix, which interchanges
the upper and lower components of the electron

orbitals, thereby changing the parity without affecting
the total angular momentum. The « weak charge »,
QW, of the nucleus is related to the coupling constants,
Cl p of the proton and C1n of the neutron by QW =
2(ZClp + NCl n), where Z is the number of protons
and N is the number of neutrons in the nucleus. In the

Weinberg-Salam theory [2] these coupling constants
are given by C, p = 21-(l - 4 sin2 Ow) and Cln = - 2
leading to a nuclear weak charge of

At present, the best value for the weak interaction
mixing angle obtained from neutrino-hadron scat-

tering experiments.is 0.227 ± 0.015 [22] and the value
from electron deuteron scattering [23] as interpreted
by Kim et al. [24] gives sin 20 w = 0.223 + 0.015.
However, radiative corrections make these constants
dependent on the momentum transfer [8, 22, 25, 26]
leading to a corrected value of sin 20 w(Mw) =
0.215 ± 0.015 [22]. Using this value, Marciano and
Sirlin [25] obtain in the limit of zero-momentum

transfer, relevant for atomic physics, Cln = - 0.487
and Cl p = 0.487 - 1.954 sin2 0w(Mw). This leads to
ew(’"Cs)/(-N) = 0.91 ± 0.04.
The Weinberg angle, 0w, is related to the masses

of the Intermediate Vector Bosons, W± and Z°

recently observed at CERN [27-29] as cos 6W =
Mw/Mz. By using expressions for the muon decay
lifetime [30] it is possible to obtain relations con-
taining only one of the masses [8, 25]

or, equivalently

The direct measurement of the W boson mass,
Mw = (80.9 + 1.5) GeV [27] gives sin2 OW(MW) =
(0.226 ± 0.008 ± 0.143 (syst)) leading to a weak charge
of QW(133CS)/(- N) = 0.91 + 0.022 + 0.038, whereas
the range 90 GeV  MZ _ 98 GeV [29] from the
direct observation of the Z boson leads to QW(133CS)/
( - N) = - 0.88 ± 0.08 [8].
The atomic physics experiments can give a compe-

titive indirect determination of the boson masses

provided the combined error of theory and experiment
is sufficiently small. With the increasing accuracy of
the experimental results [9], it seems worthwhile to

pursue the atomic physics calculations of the PNC,
which is also in itself an interesting and challenging
problem.

All values in the present work are given in terms of
the ratio 6w/( " N). As Lynn has pointed out, this ratio
is very close to a constant I = - 2 (Cl n + 2 C, P/3)
for all the heavy atoms studied, since Z/N N 2/3 and
C1P is very small. Atomic units (e = m,, = h = 4 n go = D
are used throughout the paper unless otherwise

specified.
2.2 THE ZEROTH-ORDER PARITY NON-CONSERVING

ELECTRIC DIPOLE ELEMENT. - The presence of the
PNC interaction (1) leads to admixtures to’ opposite
parity into all orbitals. In this way electric dipole
transitions may occur between states of the same
nominal parity, such as the 6s - 7s transition in Cs,
studied by Bouchiat and coworkers [3, 4], who observe
the presence of the PNC electric dipole element,
E PNC through its interference with the parity allowed
Stark induced electric dipole transitions in an electric
field.

In zeroth order, the PNC transition element between
two states, i and f, is given by

where the sum runs over all orbitals j, excited as well
as occupied. In this way the two diagrams in figure 1 a
and c (b and d) are automatically included in the first
(second) term. We observe that in (3) the energy
denominator is evaluated towards the dipole operator.
The terms j = i or j = f, which would lead to zero
energy denominators, are automatically excluded
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Fig. 1. - Graphical illustration of the zeroth-order EpNC
given by equation (3). Lines with double arrows represent
a valence orbital and lines with a single arrow pointing up
(down) represent excited (core) orbitals. A cross represents
hPNC and a wavy line the electric dipole operator.

since both the dipole operator, d, and the parity
violating operator, hPNC, have odd parity.
To avoid the explicit summation in (3) over an

infinite number of states, we use the inhomogeneous
differential equation technique, first introduced by
Stemheimer for hyperfine structure calculations [31].
It can be applied to the evaluation of the transition
element (3) in two different ways. Let us first consider
the parity admixture I a PNC &#x3E; into the orbital I a &#x3E;.
This is given to lowest order by

The closure relation is used to remove the infinite
summation over j. (This means that also states in the
negative energy continuum are included, although
the large energy denominators reduce the importance
of these contributions.) The transition element is
evaluated using these functions as

The second possibility is to consider first the effect
of the applied electric field on the orbitals

and the transition element is then evaluated as

To obtain the same element as in (3), the approxi-
mation m = Ef - 6i is used for the transition frequency.
We have then neglected correlation effects on the

binding energies, which enter in second order of the
electrostatic interaction.
The result for ErNC depends on the choice of single-

electron Hamiltonian, ho* The present work uses the
Dirac-Hartree-Fock potential from the Cs+ core,

given by

This potential was used also in the earlier MBPT
calculations on the PNC in Cs [ 15,18]. As a non-local
potential, it has the disadvantage that it depends on
the orbital it operates on through the o exchange »
term on the right-hand side of (8) and iterative solu-
tions are necessary. However, it also has the advantage
of reducing the number of diagrams in higher orders
of perturbation theory. Omitting the valence electrons
from the potential in (8) makes the summation run
over closed shells only. An additional advantage is
that the same potential describes both the initial
and final states. Since the valence electron is excluded
from the summation in (8) over occupied orbitals,
the core orbitals are not aware of the presence of the
valence electron. The correction of the core orbitals

(as well as the subsequent correction of the valence
orbitals) is taken into account together with cor-
relation effects in higher orders of perturbation theory,
but the effects due to the correction of the central one-
electron potential for the core orbitals are usually
quite small for the alkalis.

Sucher has pointed out [32] that in a proper treat-
ment the electrostatic interaction, l/r12’ should be
surrounded by projection operators for positive energy
states to avoid the so-called Brown-Ravenhall disease

[33]. (A state consisting of two bound electrons is

degenerate with an infinite number of states consisting
of one electron in the positive and one in the negative
energy continuum. If the electrostatic interaction is
allowed to couple positive and negative energy states,
all bound states will« dissolve into the continuum » [32]
and no lower bound can be obtained for the energy.)
However, Mittlemann has demonstrated [34] that the
proper projection operators are implicitly included
through the boundary conditions used in the nume-
rical solution of the relativistic HF equations. All

equations used in the present work can be considered
as generalizations of the HF equation (8) and we will
not consider this problem any further.

Table I shows the zeroth-order results using the
local Optimized Hartree-Fock-Slater (OHFS) poten-
tial [35] as well as for the Dirac-Hartree-Fock potential
(8) together with corresponding results obtained in
other work. The results given are the transition ele-
ments between m = 1/2 states. Both the length form,
dL = - r = - rC 1, and the velocity form, dv =
icalco = [H, dj/6!) of the dipole operator have been
used The two forms always give the same results in a
local potential (if co = gf - Bi is used) whereas the
equivalence does not hold in the non-local Hartree-
Fock potential, as seen from the second and third
lines of table I. The discrepancy is removed when the
effect of the electric dipole field on the core orbitals
is treated in a self-consistent way, as discussed below.
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Table I. - Comparison between the results for EtNC in the length and velocity form obtained with different PNC

(") Result obtained using the local OHFS potential defined in [32].
(b) Bouchiat and Bouchiat [1].
(C) Loving and Sandars [ 13].
(d) Bouchiat et al. [14]. Their final result, 0.972, was obtained using and effective dipole operator, thereby including some

of the shielding effects discussed in section 2.3.
(e) Das et al. [18].
(f ) Dzuba et al. [15]. Their values for the velocity form were obtained using the experimental transition energies whereas

our values were obtained with the Hartree-Fock values. The values in brackets have been renormalized by the corresponding
ratio.

(g) Schafer et al. [35].
(h) Johnson et al. [36].

2. 3 PARITY ADMIXTURES IN THE CORE ORBITALS. -
The parity non-conserving interaction (1) between
the nucleus and the core electrons causes also the
core orbitals to have a PNC part given to lowest order
by (4). However, a PNC admixture in one core orbital
aRects all other core orbitals through the Hartree-
Fock potential (8) [16]. The correction to the potential
due to PNC is obtained by inserting the parity-mixed
orbital IbPm&#x3E; = lb&#x3E; + I bPNC ) in the expression for
the HF potential and keeping terms to first order in
hPNC . This leads to

The corresponding corrections to the direct potential
cancel each other due to sign inversion associated
with the conjugation of the imaginary correction,
I bPNC ). In addition, the direct terms are individually
zero when summed over closed shells due to angular-
momentum restrictions.

Inclusion of VPNC in the equation (4) for the parity admixture in the orbitals leads to a system of coupled
equations
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which can be illustrated by the diagrams in figure 2.
This approach has now been used by several groups
[15,19, 20, 36-38]. Inserting the core orbital admixtures
from (4) on the right-hand side of (10) for 16sPNC)
and I 7SPNC) leads to the results shown in the fourth
and fifth line of table I. Of course, also the core orbitals

will be affected by the presence of vllc in (10) and
those new core orbital admixtures are then in turn
inserted on the right-hand side of (10) and the pro-
cedure is repeated until a self-consistent solution is

obtained, leading to the results shown in the last two
lines of table I.

2.4 SHIELDING OF THE ELECTRIC FIELD. - The appli-
cation of an oscillating electric field affects the .core
electrons as well as the valence electrons. Taking

illustrated diagrammatically in figure 3. Explicit
expressions for the additional diagrams have been
given in the case of hyperfine interactions [40] and
hold here, as well. The first two terms in the sum, the
« direct » terms, can be transformed to a screening
function which changes the dipole operator in the
length form from - rC 1 to - (r + f (r)) Ct, as
demonstrated by Sandars and coworkers [39, 41].
In the calculations for bismuth [20], it was found that
the direct shielding was responsible for the dominant
contributions. In the present work, the relative impor-
tance of the direct and exchange terms was not inves-
tigated and only the complete set of equations (11)
was solved, although this is a rather (computer-) time
consuming procedure, since already for Cs there are
84 different core excitations of the type a - lj +,
which all have to be coupled
The PNC transition element can then be evaluated

as

If the « uncoupled » PNC functions from (4) are used
in (12b) the same result as in (12a) is obtained,
(1.023 - 0.316) x 10-11 ieao Qw/(- N) for the
6s -+ 7s transition in Cs, both in the length and velocity
forms. We note that although the effect of the shielding
is rather small, the discrepancy between the length
and velocity forms for the zeroth order Hartree-Fock
result is removed when the coupled equations (11)
are used to obtain p; and Pc. By using the relation,
dy = [hHF, dj - [vHF, dj and the fact that dL com-

JOURNAL DE PHYSIQUE. - T. 46, N° 11, NOVEMBRE 1985

Fig. 2. - Graphical illustration of the coupled equation (10)
for the parity admixtures into the orbitals. The dotted line
is the electrostatic interaction. The first-order admixture is

represented by the first diagram on the right-hand side.

these orbital modifications into account in the Hartree-
Fock potential (8) leads to a set of coupled equations
for the electric dipole perturbed functions

Fig. 3. - The coupled equation (11) for the electric-dipole
excitation of the core orbitals.

mutes with r-’ one finds

This relation holds irrespective of co. Since dL com-
mutes also with JfNC, (I 2a) leads to the same value for
E PNC if the approximation w = sf - ei is used
The approach (11) above differs from the time-

dependent Hartree-Fock (TDHF) method [42] through
the presence of the inhomogeneous term d I a &#x3E; in

equation (11). However, it leads to the same result if
terms beyond first order in the core-valence interaction
(such as normalization and energy corrections) are
neglected in the TDHF approach. It is then not so
surprising that it gives the same result both in the
length and velocity forms. However, dL does not
commute with the non-local potential tlNC and the
expression (12b) leads to different results in the length
and velocity forms, (1.279 - 0.391) and (1.363 -

120
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0. 311 ) x 10 - " ieao Qw/(- N), respectively, if the

coupled PNC-functions from (10) are used in the eva-
luation. To restore the length-velocity equivalence,
it is necessary to treat both the dipole and the PNC
perturbation at the same time, as described below.

2.5 THE PNC SHIELDING. - A natural extension of
the treatment described in the two previous sub-
sections is to allow parity admixtures also in the
electric dipole excitations. This leads to a new set of
coupled equations

where VZ and pa are defined in equation (11), tfNC and aPNC ) are defined in equations (9) and (10) and i
is given by

Equations (13) are illustrated in figure 4. Only the
exchange terms enter due to angular-momentum
restrictions when summing over closed shells. This set
of coupled equations must be solved iteratively. The
first time the equations are solved, the last two terms
in V:i:PNC are omitted since they depend on p b I PNC
whereas all other terms can be evaluated using the
PNC and electric-dipole functions already obtained
as solutions to equations (10) and (11), respectively.
When approximate functions p::I-PNc have been
obtained in this way, they are used to evaluate the last
two, previously omitted, terms in v t PNC. The equations
are then solved again to obtain better functions

Pb ± PNC and the procedure is continued until a self-
consistent solution is obtained

2.5.1 Orthogonalization to occupied orbitals. - The
equations for I aPNC X ! I p± &#x3E; and I p"fPNC ) all contain
an implicit summation on the right-hand side over
excited as well as occupied orbitals. In applying
perturbation theory it is customary to exclude exci-
tations to the core orbitals. This exclusion can be
achieved by orthogonalizing either the right-hand side
or the functions obtained to all core orbitals. E.g.,
the orthogonalized electric-dipole function pa &#x3E;or,

Fig. 4. - The coupled equation (13) for pe PNC, which
includes both the PNC interaction and the interaction with
the electric field. The last two diagrams enter through the
orthogonalization procedure as discussed in section 2.5.

(without excitations into the core orbitals) can be
obtained from the non-orthogonalized function I p’ &#x3E;
as

However, by using the hermiticity of the dipole
operator and the relation  a I v I I c &#x3E; =  c v: I a &#x3E;,
it is easy to see from equation (11) that  c p ’ &#x3E;
-  a I p¿ ). One then finds that the contribution to
v t from the admixture of orbital c into pa is exactly
cancelled by the contribution from the admixture of
orbital a into p:F. Thus, v t is independent of the
orthogonalization. The choice of orthogonalization
in (13) is not quite so arbitrary since (13) must be
considered as an extension of (11). In order to treat
the orthogonalities in a consistent way the parity-
mixed dipole excitations I p a 111 &#x3E; = p a I &#x3E; + I p a ±PNC &#x3E;
are orthogonalized to the parity-mixed core orbitals,
I cpm &#x3E; = Ie) + I ëNC). Keeping terms to lowest
order in the weak interaction gives

to be used together with (14a)
Since the formula (3) for Ei Nc must contain a

summation over all orbitals in order to include auto-

matically all diagrams in figure 1, we have found it
convenient to leave all functions non-orthogonalized
as far as possible. This caused no problem for
the PNC functions or the electric-dipole functions,
whereas the self-consistent procedure encountered
severe convergence problems when applied to equa-
tion (13). These problems are caused by a strong
divergence of the 5p,/2 -+ P3/2 and P3/2 -+ Pl/2
excitations, since ’65pl/2 

- 

BSPl12 is close to w, leading
to very small energy denominators for excitations
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within the 5p shell. Although these contributions
should cancel, this cancellation is not very helpful
after the convergence is destroyed and we should
thus like to enforce orthogonality to the core orbitals.
This can be done without affecting the solution for
p’ &#x3E; by observing that in the summations in (14),
above, b runs over all core orbitals with the same
nominal parity as a, whereas c runs over orbitals with
opposite nominal parity. This makes it possible to
perform a partial orthogonalization leaving I p’ &#x3E;
non-orthogonalized while omitting also the last term
in (14b) and we have chosen to orthogonalize in this
way. The third term on the right-hand side of (14b)
must still be included and leads to two extra terms in
v±PNC illustrated by the diagrams 4g and 4h.

2.5.2 Evaluation of E PNC l from the coupled equa-
tions. - Since only the core orbitals are used in

v±PNC, there is no need to obtain p6 PNC of p 1 PNc
However, the transition element is evaluated either as
the overlap between ( 7s and the right-hand side of
the equation for I plINC &#x3E; i.e.

or as the overlap between I 6s ) and the right-hand side

By expanding the diagrams for v+ and V+PNC it is easy
to see that the two expressions are equivalent. This
provides a consistency check in addition to the equi-
valence between the length and velocity forms which
holds for the procedure described here, since it is a .

generalization of (11).
All matrix elements needed for the evaluation of

ErNc, , in addition to those presented in table I, are
given in tables II and III for the length and velocity
forms, respectively. The sum of all these matrix ele-
ments can be added directly to the zeroth-order result,
except for the fourth column where both the electric
dipole functions and the PNC functions are coupled.
In this case the terms

have been counted twice and must be subtracted as
indicated in the tables. The results will be discussed
in the next section.

Table II. - Summary of contributions to Elc for the length form of the dipole operator (in units of 10- 11 (ieao)
Qw/(- N)).

(a) When both the PNC and El-functions are coupled, certain diagrams are counted twice, as discussed in section 2.5.
The correction for this is obtained as :

The subscripts denote zeroth
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Table III. - Summary of contributions to ErNC for the velocity form of the dipole operator (in units of 10-11 (ieao)
Qw/(- N)).

(a) See footnote to table II.
(b) Dzuba et al. [15]. The value in brackets has been renormalized to the use of the Hartree-Fock value for w in the dipole

operator.

3. Discussion

3.1 COMPARISON WITH OTHER CALCULATIONS. - The

j = 1/2 states of the alkalis can often be quite well
described by a central-field model using a well-chosen
local potential, as demonstrated e.g. by Bouchiat
and coworkers [14] in their extensive semi-empirical
study of Cs. It is also possible to obtain quite accurate
results by starting from the non-local Hartree-Fock
potential and applying perturbation theory [15]. We
will here discuss the relations between the different

types of approach.
The discrepancy between zeroth-order results ob-

tained in different potentials should, of course, be
taken into account in higher orders of perturbation
theory. An important term is the potential correction,
described by single-particle excitations from the wave
functions obtained in the local potential, as seen e.g.
from the calculations for Bi [20, 39, 41]. However,
semi-empirical orbitals may also include some corre-
lation effects, which would require double excitations
in the HF wave function. Lindgren et al. [17] have
demonstrated that important correlation effects can
be included in the orbitals by modifying them to
approximate « Brueckner » or « natural » orbitals.
These effects may of course be included also in semi-

empirical orbitals, whereas other correlation effects
are not so easily included In the related case of

hyperfine structure of the s states of the alkali atoms

[ 15, 43, 44] and alkali-like systems [45, 46] it has been
found that this is, indeed the dominating part of the
correlation effects and increases significantly the

density at the nucleus for the valence electron compar-
ed to the HF value. For the 6s - 7s transition in Cs,
Dzuba et al. [15] find a surprisingly small effect of this
modification, a reduction of about 3 %. Possibly, the
contraction of the orbitals in the « Brueckner poten-
tial » leads to a reduction in the dipole matrix element
which compensates the increase in the PNC matrix
element.
The picture of an inert core whose only function is to

provide a potential for the valence electron responsible
for all interactions with additional perturbations is,
however, not entirely correct - not even for such a
« text-book » one-electron system as the alkali s-states.
The corrections shown in tables II and III to the

zeroth-order results are all effects which cannot be
included in a central-field model although their size
would depend on the orbital basis used (Nevertheless,
the procedure described in section 2 is still within the
Independent-Particle Model, with orbitals of the
form

As discussed in section 2.4, the (parity-conserving)
shielding of the electric field can be approximated by
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including a screening correction in the dipole length
operator. Bouchiat et al. [14] use the form dL =
- r(I - oed/r’) C1, where oed is the dipole polarizabi-
lity, and find that this form reduces the transition
element by about 6 %, which is in reasonable agreement
with our reduction, 4 %, but an order of magnitude
larger than the result given in [18]. Bouchiat et al.

suggest that the neglect of excitations from orbitals
with n  5 may be the cause of the under-estimate,
but we have found that excitations from these orbitals
account for only 1 % of the total shielding. (In the more
sensitive velocity form, they contribute about 3 % of
the parity-conserving shielding).
The PNC correction to the potential, eNC has not

been included in the semi-empirical calculation [14].
As seen from table II, this effect increases the transition
element by 24 % compared to the zeroth-order HF
result. The situation is quite similar for the hyperfine
structure where the polarization of the core due to the
exchange interaction with the valence electron is not
included. This has been found to increase the hfs for

ground state in Cs by a slightly smaller amount, about
17 % [41] compared to the HF value. Bouchiat find
that their potential gives a 5 % overestimate of the
hfs, which is thus of about the right size to compensate
for the neglect of core-polarization terms both for the
PNC and hyperfine interactions. Probably, there is
also a large cancellation between these terms and the
potential correction terms in a local potential, as

observed for Bi [20, 39, 41 ].
The difference between the columns in table II is due

to contributions of second and higher order in the
electrostatic interaction - all columns include the

complete first-order correction. Thus, the difference
may give an indication of the importance of omitted
terms. For the length form, the completely coupled
results, which correspond to the solution of (9), (11)
and (13), is only 5 % larger than the first-order result,
whereas for the velocity form the difference is nearly
15 %. However, one might also argue that the effect
of higher orders will be somewhat overestimated by this
comparison. The use of the Hartree-Fock potential for
excited states is known to lead to unphysical results,
since these states still interact with the orbital excited

[47]. In the HF potential (8) the valence orbital is not
included, so there is no problem with the zeroth-order
result whereas the first-order corrections involve
excitations from core-orbitals. The corrections for
the self-interaction is taken into account by the terms
b = a in the coupled equations (10), (11) and (13) as
discussed e.g. in [47, 48]. The idea behind Kelly’s
IIN- Ipotential is to include these terms directly in the
potential for the excited states, since these are not
defined by the energy-minimization criterion leading
to the HF equations. (In the more recent literature, the
term « VN- 1potential &#x3E;&#x3E; has sometimes been used also
for the HF potential defined by (8)). There is thus a
certain degree of arbitrariness in the first-order result,
due to the choice of potential. This ambiguity is

removed when the complete set of coupled equations
are used.
We turn now to the calculation of Dzuba et al. [15].

Their final results, both for the HF and Brueckner
orbitals are given in tables II and III for the length and
velocity forms, respectively. (Their intermediate results
without shielding were given in table I). They include
the PNC correction to the potential to all orders and
the shielding (both the parity conserving and the
parity non-conserving shielding) to first order only.
Thus, their results are comparable to our results in the
third column of tables II and III, respectively. The
results in the length form agree very well, whereas there
is a large discrepancy in the velocity case. This is due to
their use of the experimental value for co, whereas we
have used the HF value. For comparison their « renor-
malized » value, which agrees well with our result,
is also given in table III.
As expected from the discussion in section 2.4, the

length and velocity forms give the same results when
the shielding is included to all orders, although, as seen
from tables II and III, the equivalence is not at all
trivial. This provides a useful check of the compu-
tational procedure. As seen from the tables, the

length formula is much less sensitive than the velocity
formula to higher-order corrections. In addition,
there are more fundamental reasons, based on gauge
invariance, to prefer the length formula [49]. Never-
theless, the use of both formulae can give an estimate
of the theoretical uncertainty [15, 50] (if the equiva-
lence is not built into the procedure).
The small contributions from the Brueckner-orbital

modifications [15] as well as from higher-order correc-
tions to VPNC to the shielding and PNC-shielding
reflects the fact that the core of an alkali atom is

relatively inert and gives reason to believe that the
neglected correlation effects will not contribute more
than a few percent

3.2 COMPARISON WITH EXPERIMENT. - The Paris
group has now observed PNC in two hyperfine
components of the 6s - 7s transition in Cs; from
F = 4 to F’ = 4 [3] and from F = 4 to F’ = 3 [4],
with the result

where 9 is the vector polarizability. In order to com-
pare the experimental and theoretical results, we
assume the value p = 27 ao, which is consistent both
with the result of a calculation using a semi-empirical
potential [14] and with a determination based on a
parametric analysis of experimental data [51, 52]. This
leads to an experimental value
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which, together with our calculated value, EPNC =
0.886 x 10-11(ieao) (Qw/- N), gives a weak charge of

if we omit the uncertainty in the theoretical value
which is not expected to be larger than a few percent.
This result for Qw is consistent with the values deduced
from the direct measurements of the boson masses
[26-28] and from neutrino-hadron scattering [21, 23]
and from electron-deuteron scattering [22, 23] as

discussed in section 2.1.

4. Conclusion.

The calculation presented here of the parity non-
conserving electric-dipole element for the 6s - 7s
transition in Cs includes to all orders the terms which
contain only single excitations. Correlation effects,
which require double excitations, have not been

included, but the calculation is complete to first order
in the electrostatic interaction. The self-consistent
method used to sum certain classes of diagrams to all
orders is an attractive alternative to the strict order-by-
order approach and has been found to lead to an
automatic, non-trivial equivalence between the results

for the length and velocity forms of the electric dipole
operator.
Whereas a large number of calculations complete to

second order in the electrostatic interaction have been

performed for the hyperfine structure, no such calcu-
lation has yet been attempted for the PNC problem,
which is more complicated than the hyperfine structure
due to the presence of two perturbations in addition
to the electrostatic interaction. The study of PNC is
still a relatively young branch of atomic many-body
theory and a complete second-order calculation would
require a considerable amount of work, although
Dzuba et al. [14] have included in an elegant way the
second-order correlation diagrams that are expected
to dominate.

In view of the smallness of the second- and higher-
order effects so far obtained for the 6s - 7s transition
in Cs, there is reason to believe that the omitted terms
will not give any drastic contribution and that the final
result, E’ NC = 0.89 x 10-11 (ieao) QW/(- N) will not
change by more than a few percent Many-Body
Perturbation Theory is a powerful tool in atomic

physics and the need for atomic calculations in order
to interprete the result of the PNC experiments on
heavy atoms does not necessarily exclude quantitative
conclusions.
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