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Résumé. 2014 Une conception nouvelle des transitions de phase dans les systèmes avec désordre figé est introduite
en vue de tenir compte des propriétés expérimentales des modèles d’Ising en champ aléatoire. Selon cette concep-
tion, la mise en équilibre nécessite, près de Tc, des sauts activés entre des puits d’énergie libre dont la distance dans
l’espace des phases est grande. Ces sauts impliquent une dynamique très lente, avec un temps de relaxation donné
par une loi de Vogel-Fulcher modifiée, 03C4 ~ 03C40 exp[Cte/(T - Tc)Z]. La théorie dépend de 3 exposants critiques. Le
nouvel exposant correspond, comme l’a remarqué Krey, à la renormalisation du champ aléatoire. Les exposants
fondamentaux doivent vérifier certaines inégalités. On indique les formules qui donnent les autres exposants. On
critique les idées habituelles comme la réduction dimensionnelle. L’exposant ~’ correspond, si notre description est
correcte, à des fluctuations thermiques (inobservables !) entre des puits éloignés, un phénomène particulier à ce
type de problème, qui est à notre avis incompatible avec la réduction dimensionnelle.

Abstract 2014 In order to account for experimentally observed qualitative properties of random field Ising systems,
a new picture of transitions in systems with frozen disorder is suggested. According to this picture, equilibration
processes near Tc require activated jumps between remote free energy wells in the phase space. These jumps involve
very slow dynamics, described by a modified Vogel-Fulcher law for the relaxation time 03C4 ~ exp[Const./(T - Tc)Z].
The theory depends upon 3 critical exponents. The new exponent corresponds, as remarked by Krey, to random
field renormalization. The inequalities satisfied by the exponents are investigated, as well as the equalities which
give the other exponents. Classical concepts, such as dimensional reduction, are criticized. The exponent ~’ corres-
ponds, if our picture is correct, to thermal fluctuations between remote wells, a novel effect which seems to be
incompatible with dimensional reduction.
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1. Introduction.

It is generally believed [1-4] that the long-range order
of the ferromagnetic or antiferromagnetic Ising model
is not destroyed by weak random, frozen fields at
low temperature if the space dimension D is larger
than 2.

However, the behaviour at the transition at ther-
mal equilibrium is not well understood Metasta-

bility effects hinder experimental investigation, com-
puter simulations and also theoretical research, as
will be seen.

There are arguments [5-7] which indicate that the
critical exponents are given by the same s-expansions
in D dimensions as for the zero field Ising model in
(D - 2) dimensions. However, the lower critical
dimensions with and without random field are 2 and

1, respectively. The difference is 1, not 2. The reason
may be that the c-expansion is valid only, down to
some particular dimension, or that some non-ana-
lytic terms should be added to the exponents, or that
the expansion is wrong (see Sect 4.1).

In order to obtain the correct lower critical dimen-

sions, it has been suggested that the so-called « dimen-
sional reduction » occurs, i.e., the critical exponents
are the same with a random field in D dimensions as
without field in d dimensions, where the relation
d = D - 2 is replaced, according to Aharony et al.
[5] and Schwartz [8] by

and, according to Shapir [9] by

On the other hand, high temperature expansions [10]
yield a critical exponent y = 1.4 (1) and Young [11] ]
has suggested the transition is first order.

(1) The prime indicates critical exponents of the random
field Ising model. Exponents without prime correspond to
zero field
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The present paper is intended to contribute to the
confusion which normally precedes the clarification
of difficult problems. We propose new ideas, the main
consequence of which is a modified Vogel-Fulcher
law for the relaxation time of physical quantities near
the transition. The modified law involves a new cri-
tical exponent which is related, as noticed by Krey
[12], to the random field renormalization.
The basic hypotheses will be stated without justi-

fications in section 2, and the consequences will be
derived in section 3. The hypotheses made in sec-
tion 2 will be justified (as well as possible) in sec-
tion 4. This unnatural procedure is intended to make
reading easier, since the reader may be more motivat-
ed to learn the argument once he knows the conclu-
sion.

2. Basic assumptions.

At low temperatures, the ferromagnetic Ising model
in a weak random field has many metastable states
which may be described [13] in terms of domains.
However, only the two ferromagnetically ordered
states, with respectively + and - magnetization,
have an appreciable Boltzmann factor for D &#x3E; 2.
In fact, one may even be tempted to consider only
one state, since the energy difference between both
states is of order HLD/2 and goes to infinity with the
size L of the sample. However, it is necessary to consi-
der both + and - states because the energy diffe-
rence may be overcompensated by a weak uniform
field, or by an exchange field if the sample is « glued »
together with another one. Our first assumption is
that the situation is similar at Tr.
Assumption A. At T c’ at thermal equilibrium, a

given sample of a random field Ising model may have
either one of two domain configurations (or o states »),
which have respectively positive and negative order
parameter. Other possible metastable states have

negligible Boltzmann factor for a big sample. The
system is normally in its state of lower free energy, but
the other state may become accessible when the

sample is glued together with other ones and becomes
a member of a bigger system.

Assumption B. Just above Tc, a random field Ising
model is made of blocks of size

which have one of the two structures (+ or - ) rele-
vant at T,,. The decomposition into blocks is unique
for a given sample.

Assumption C. When T goes to Tc’ ç increases by
uncorrelated flipping of these blocks. At a given tem-
perature T, only blocks of size given by (2.1) are
allowed to flip.

Assumption D. When flipping, a block of size R

must jump over a free energy barrier of height

and J is an exponent

Assumption E. The free energy difference between
the + and - states of a block of size R is normally
also of order (2. 2) in the critical region (but, of course,
vanishes at the temperature T at which the block
flips).

Assumption A has the merit of simplicity, and
therefore it is the hypothesis which should be consi-
dered first. Assumptions B and C are natural scaling
hypotheses. Assumptions D and E are extensions of
low temperature properties [1, 13], completed by the
natural scaling assumption (2.3).
The concept of « blocks » and « domains », which

was introduced in this section, is different In the
critical region, domains have a fairly well-defined
size ’0’ while the block size, depends on T. Domains
have a fractal structure (tentatively described in
section 6, Fig. 2), while blocks are compact objects.
Domains can in principle be seen by an appropriate
instrument, if their size is large enough. Blocks are
not geometrically defined, and cannot be seen, they
are just the volume units which become unstable
at a given temperature. They contain a large number
interpenetrating domain tubes, so that their average
magnetization ,-D MR (see formula (3.4) below) is
much less than the domain magnetization mo.
More detailed explanations and justifications will

be given in sections 4 and 6.

3. Critical behaviour of the random field Ising model
at equilibrium.

3.1 RELAXATION TIME ABOVE Tc. - At a given tem-
perature T &#x3E; Tc, the relaxation time of most of the
characteristic quantities is the time necessary to

flip the blocks of size j mentioned in assumption B.
According to (2.2) and (2.3), this implies jumping
over a free energy barrier of height

According to the Arrhenius law, the relaxation
time is

where the constants K and To depend on H. Equa-
tion (3.1) is a generalized Vogel-Fulcher law. The
ordinary Vogel-Fulcher law [14-21] corresponds to
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3. 2 ORDER-PARAMETER SUSCEPTIBILITY. - The idea
is that some regions, of size about ç given by (2. 1),
have almost the same free energy in the + and in the -

state, and can be flipped by a very weak field h. In
the ferromagnetic case (J &#x3E; 0), h is a uniform field,
while in the antiferromagnetic case h is a staggered
field The calculation requires the introduction of an
exponent p which describes the correlations of the
order parameters m(r) at Tc

 m(O) &#x3E;  m(r) ) 1’-1 M2 r-(D- 2 +p) . (3.3)

The brackets denote thermal averages and the bar
denotes an average over the random field The avera-

ge total magnetization (or staggered magnetization)
MR in a volume of linear size R is given by

and the corresponding Zeeman energy in a field h is

Assumption E of section 2 yields an evaluation of
probability, for a given block of size ç, that the energy
difference, between its + and - states, is less than 6 W.
This probability should approximately be

or, inserting (3. 5) with R = ç,

The magnetization m in a field h is obtained by
multiplying by Mç I çD, where Mç is given by (3.5).
One obtains

The divergence of the susceptibility is probably
very difficult to observe, since the field produces a
complete reorganization of the domain wall array.
In other words, the system should go from one « val-
ley » of the phase space to another one which is

very distant near Tc. This requires a huge time, given
by (3.1).
3. 3 THERMAL FLUCTUATIONS. - Strictly speaking,
the thermal fluctuations bm(r) = m(r) - ( m(r) )
should satisfy the fluctuation-dissipation theorem :

X = P fit dDr  6m(0) bm(r) &#x3E; - (3 . 7)

Introducing the critical exponent 17’ defined by

 bm(O) bm(r) &#x3E; _ I IrD - 2 +,7’ (T = rj, (3. 8)

relation (3. 7) yields y’ = (2 - 1) v’, hence, accord-
ing to (3.6),

However, the « thermal fluctuations » which appear
in (3.7) and (3. 8) are not of the usual type. The
divergence of (3. 8) indicates that the system hesitates
between various « valleys » of the phase space which,
again, are very distant Strictly speaking, the system
does fluctuate between those valleys, but the life
time of each valley is so long that we do not see any
way to check the divergence of (3. 8). Neutron scatter-
ing can see no divergence because, near Tc, a neutron
has enough time to cross the sample many times before
the system moves to another valley. Of course, neu-
tron scattering should be sensitive to the divergence
of (3.3), provided the system is at equilibrium.

In our picture, thermal fluctuations within a val-
ley are not divergent at T c.

3.4 SPECIFIC HEAT. - As usual, it will be assumed
that all typical free energies near T c have the same
order. Then, the singular par Nfing of the free energy
(where N is the number of sites) is obtained, in order
of magnitude, by multiplying co() (given by (2.2)) by
the number N / çD of the blocks considered in assump-
tion B of section 2. The singular part of the free energy
per site is, according to assumption E,

The singular part of the specific heat

corresponds to a critical exponent

3. 5 MAGNETIZATION IN EXTERNAL FIELD AT Tc. -
It is now assumed that the temperature is T = Tc,
and that the field h associated to the order parameter
is not zero. As in subsection 3.2, the field is able to
reverse blocks of sufficiently large size R. This can
occur if the energy gain hMR given by (3.4) is larger
than the typical energy difference (2.2). Thus, the
reversed blocks have a size

The corresponding magnetization per site is
. I- .1
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3. 6 REMANENT MAGNETIZATION OF A RANDOM FIELD
ISING ANTIFERROMAGNET AT T C. - If a random field
Ising antiferromagnet is cooled down to Tc in a
uniform external field, it is not in one of the two
states allowed at equilibrium when the field is switched
off. However, after a waiting time t, the system should
be made of blocks, each of which is at equilibrium.
The average block size R(t) is such that the typical
free energy barrier (2. 2) can be jumped over in a
time t. The Arrhenius law yields

What kind of function of R should the remanent

magnetization be ? This is not quite clear, but we
make the following speculation. At the beginning,
blocks of size Ço flip, where Ço is an elementary
length to be defined in the next section. Then, blocks
of size 2 jo flip, then blocks of size 4 jo, etc., so that
after a time t, each spin has flipped a number of times
proportional to nR(t). It is reasonable to believe
that each flip reduces the magnetization by a constant
factor, so that the remanent magnetization is an
exponential of In R(t), i.e. a power of R(t). From
(3.12) one deduces

where F is some constant. For T &#x3E; Tc, the remanent
magnetization is given by (3.13) for short times,
then crosses over to an exponential behaviour with
a relaxation time given by (3. 1).

3.7 INEQUALITIES. - There is no obvious equality
relating v’, p, 6, but certain inequalities should be
fulfilled Schwartz and Soffer [22] derived the follow-
ing exact inequality

In terms of the exponents I’ and p defined by (2. 7)
and (2. 12), this inequality implies

or q’ &#x3E; 1 + p/2. According to (3.9), this implies

The behaviour of energy differences at Tr is des-
cribed by (2.2) and (2. 3). This behaviour is expected
to be intermediate between low temperatures ( Q = 0)
and high temperatures ( Q = D/2). Thus, we assume

In relation (3 . 3), the exponent (D - 2 + p) should
obviously be positive, as well as (D - 2 + q’) in

(3.8). On the other hand, the Fourier transforms

are normally expected to diverge at q = 0. This

implies

Using (3.9), the latter relation reads

The exponent (3. 11) should be positive. Combining
with (3.14), one finds

The law (3.12) is to be compared with that obtained
below Tc [13], namely

This relation implies that, for a given, long time t,
R(t) decreases when approaching T, from below,
because g decreases (as seen below, formula (4.12)).
Equation (3.12) is then expected to be smaller than
(3.19) for any long time. This implies

In 3 dimensions, the point (p, Q) should lie within
a quadrangle (Fig. 1). In two dimensions, conditions
(3.20) and (3.15) imply Q = 0.

3.8 CRITICAL PROPERTIES BELOW T, AND ORDER PARA-
METER. - The situation below Tr is similar. Note

that ç represents the order of magnitude of the domain
size and of the distance between domains (see section 6
and Fig. 3). The exponents y’, a’, p, il’ which describe
the susceptibility are easily seen to be the same
above and below Tc.
The zero-field value of the order parameter, me

is easily found from (3. 3), which should hold for
r  ç, while the left-hand side is equal to m2 for

Fig. 1. - Domain of the (a, p) plane allowed by the inequa-
lities of subsection 3.7 in 3 dimensions.
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r &#x3E; j. The matching condition is

Relations (3.21), (3.10) and (3.16) yield the usual
relation

3.9 CONCLUSION OF THIS SECTION. - The picture
presented here is an alternative to the suggestion of
a first-order transition made by Young [11] and by
Andelman [23]. The dynamics implied by domain
reorganization is slow enough to explain the hysteresis
observed experimentally and in computer simulations,
and referred to in the next section.
The present description depends on 3 critical

exponents v’, p, 6 instead of 2. This is in agreement
with the well-known fact that the random-field

Ising model violates hyperscaling (i.e., the scaling
relations which contain the dimension D). Introducing
the parameter J= a - D/2, relations (3. 10) and
(3.11) read

and this is not in contradiction with the « dimensional
reduction » hypothesis, according to which the new
critical exponent is defined by ?1’ = tl(d), the usual
critical exponent in d dimension. However, this idea
may be misleading. For instance, the dynamical
behaviour described by (3. 1) is unusual.

According to Belanger et al. [24], the measured
critical exponents for D = 3 are a’ = 0 and v’ = 1.
Relation (3 .10) then implies

i.e. the upper edge of the quadrangle (Fig. 1) is allowed
Insertion of these values into (3.1) yield a proper
Vogel-Fulcher law

On the other hand, according to Schwartz [8] the
system should be represented by a point on the
left-hand edge of the quadrangle (Fig. 1).

4. Discussion.

The results of section 3 are based on the assumptions
made in section 2, which will now be discussed.

4.1 GENERAL CONSIDERATIONS (WEAK RANDOM FIELD
CASE). - The program one would like to carry out

is the determination of all the minima a of the Landau
free energy functional F with their Boltzmann weight

where m(r) is the magnetization at site r, B, JR and
(- A) are positive coefficients.
The minima of(4. 1) are given by the Euler-Lagrange

equation

As usual [6, 7] we do not worry about the thermal
fluctuations around the solutions of (4.2), which
are believed to be less important than fluctuations
induced by random fields. In the perturbation expan-
sion, this implies [6, 7] that only tree-diagrams are
retained Although this is a kind of mean-field approxi-
mation, A, B and JR are expressed by the correct
scaling relations (derived below) appropriate for
the zero field system, provided m(r) has non-vanishing
Fourier components mq only if q ;5 l/ço. Here,

is the correlation length of the zero-field system at
the transition temperature Te(H) of the random
field system, while TeO = Te(H = 0). Another quan-
tity of interest is the spontaneous magnetization mo
of the zero field at T e’

as well as its differential susceptibility

mo, C;o, the domain wall thickness A and the domain
wall surface tension g are related to A, B, JR by the
mean field relations

Relations (4.3) to (4.7), together with the scaling
relations Dv = 2 - (X = 2 P + ’Y and y/ v = 2- q,
imply for small H,
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and therefore, according to (4 . 8),

Consistently with the assumption of an upper
limit q  l/ço, the following condition should be
imposed to h(r) in (4.1)

Finally, the relation between C;o and H [25, 13]
is obtained if one writes that for a « domain of
size C;o, the surface energy gC;g-l  J has the same
magnitude as the volume random field energy

Hmo C;g/2

A more detailed derivation of this relation will
be found in reference [ 13].
4.2 METASTABILITY. - The concept of domain is

questionable at Tc, since the domain size Ro and
the domain wall thickness A are of the same order of

magnitude. However, this does not exclude the

possibility of having Rol À.  5 or 10, etc. The concept
of domain is useful because it provides an explanation
of metastability [13], and metastability does exist
at Tr. This results from the experimental observation
[26-29] confirmed by computer simulations, [30-33]
that three-dimensional Ising ferromagnets do not
order when cooled down in constant random field
A possibility would be of course that the equilibrium
state is not ordered, but this would be in contra-
diction with the present theoretical understanding
[1-4], which is in agreement with the experimental
fact that zero-field cooled samples remain ordered
when a random field is switched on [27].

Mathematically, the existence of metastable states
means that equation (4.2) may have several solutions
for A  0. This is readily seen in the non-interacting
case JR = 0, where at each site r the magnetization
m satisfies

This equation has 3 solutions for A  0 and

I h I  2.4/3 I A [/3 B. In the case of an infinite
system, equation (4.2) is believed to have an infinite
number of solutions (o metastable states ») at low

temperatures, corresponding to bumps on the domain
walls [13]. It is reasonable to assume that this is
also true at T c’ since A is negative.
Now, the assignment of the correct Boltzmann

factor to all solutions of (4.15) is a difficult, and
unsolved, problem. If there is a single solution, one
can eliminate the field h(r), and express the correlation
functions as functional integrals over m(r) as shown
by Parisi and Sourlas [7]. The resulting equation
(No 4 in Ref. [7]) is wrong for A  0 [34]. This can
easily be seen in the simple case of equation (4.15).

One can easily show (for A &#x3E; 0) that

where h(p) = Ap + Btt3 and P(h) is the probability
density. Equation (4.16) is a special case of formula (4)
of reference [7], which is the basis of the s-expansion.
Equation (4. 16) is exact for A &#x3E; 0, and wrong for
A  0. Indeed, the 3 solutions of (4. 15) should be
given the respective weight 1, -1 and 1 in order to
obtain (4.16). A weight cannot be negative. All
three weights might be made equal to +1 by replacing
the last factor of (4. 16) by its absolute value, but it
is no good solution either because the sum of the
weights should be 1, not 3 !

Since the correct weighting of all solutions appears
to be so difficult, the simplest attitude is therefore
to assume that only a small number of states are
important, and this is the assumption A of section 2.
This assumption, as well as the next ones, is probably
too clear cut. For instance, more than two states
may be available, but it is important that their energy
is, so to speak, quantized, and that they are far away
in the phase space.
The alternative to assumptions B and C would be

the usual conception of critical phenomena : weak
local fluctuations with long range correlations. In
this case, one might even assume that one state only
(with essentially zero order parameter) is important
at Tc. However, the assumption of weak local cor-
relation is inconsistent with the experimental fact
that the equilibrium, ordered state is not reached
when cooling in constant random field This effect
can only be understood if the system has to go a
long way in the phase space to equilibrate. This
occurs in a first order transition, but also in the type
of second order transition described here.

Assumptions D and E are natural consequences of
scaling ideas. As noticed by Krey [12], random field
renormalization can roughly be described as an

effect of small domains within big domains : small
domains appear at places where random field fluc-
tuations are strong. Thus, domains erase the strongest
fluctuations.

4. 3 UPPER CRITICAL DIMENSION. - It is of interest
to know for which space dimensions D the present
picture is acceptable. In this subsection we assume
D &#x3E; 4, so that the linear response to random field is

where Ço is the correlation length of the zero-field
model and Heff -: HçõD/2. On the other hand the
non-linear response at T, is m (HeffIJ)1/3. Linear
response is acceptable if
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or

For D = 4, this condition crosses over to (4.14).
For D  6, condition (4.17) is always satisfied near
T c’ linear response applies and assumptions of
section 2 are not acceptable.

5. A renormalization group approach.
In this section, the transition of the random field Ising
model is interpreted as due to a vanishing surface
tension of domain walls. An approximate recursion
formula for the size-dependent surface tension g(R)
is derived. A single recursion formula is of course
not sufficient to find the 3 exponents v’, p, Q, but the
present treatment sheds some light on the mechanism
of a possible second order transition.
A domain wall tends to decrease its free energy W

by forming bumps [4]. The typical energy gain for
a bump of radius r and height (

where H = H(R) mo. The energy loss due to the
surface tension g is

Minimization of (ðW 1 + ðW 2) with respect to ,
yields [13]

and the resulting energy gain per unit area is

This should be considered as a modification g
of the surface tension, corresponding to the elimina-
tion of degrees of freedom of wavelength about r

(say, between r and 2 r). In differential form one finds

where K is a constant &#x3E;

This is the required recursion formula. Neglecting
the renormalization of H, integration yields

For a given value of r, the left-hand side is a local
quantity which should have no singularity at Tc.
Thus, f(H, T ) is analytic in T. On the other hand, Tc
should be defined by f(H, Tc) = 0, since in this case
(5.4) yields the scale-invariant behaviour

If T is slightly different from T c’ (5.5) is satisfied
for r smaller than some value j, while for larger values
g is constant (below Tc) or meaningless (above Tc).
Equation (5.4) is therefore consistent with a conti-
nuous transition.

According to (5.4), ç should satisfy the condition

and insertion of (5. 5) yields

This value is probably not correct since 6 was
assumed to vanish.

Insertion of (5. 5) into (5.1) yields, "-I r. This means
that a domain wall at T c is fractal. The well-known
Koch curve gives a two-dimensional idea of what
it may look like.

6. Fractal aspects.

It may be helpful to show an explicit picture of the
domain structure, although no new result will be
deduced Figure 2’ is intended to give an idea of what
the domain structure may look like at Tc. It may
represent a section of a 3-dimensional random field
Ising model. It can also correspond to a two-dimen-
sional Ising model with « anticorrelated » random
frozen fields, such that

with p &#x3E; 0.
The fractal nature of domain walls at Tc has not

been represented Moreover, domain wall inter-
sections are supposed to be forbidden. This property
has no reason to be satisfied by the random field
Ising model, but makes the hierarchy of domains
more intuitive. Each domain is within another bigger
domain. The recipe according to which figure 2 was
fabricated is not interesting enough to be revealed
here. It is convenient to classify domain sizes as being
of order of magnitude C;o, QC;ô, Q2 C;o, ..., Q’ C;o, ..., ,
where Q is an appropriate number (Q = 5 in the
case of Fig. 1).

Let r be a given domain of size R = QC;o. On the
average, a proportion a of its volume RD is occupied
by domains of size Q 1- 1 C; 0 (in Fig. 2, a lies between
4/25 and 1 /5). A proportion a of the remaining volume
is occupied by domains of size Q’-2 C;o, etc. After
subtraction of all these domains of the « first genera-
tion », the total remaining volume is a fraction (I - a)’
of the initial volume R’ and has magnetization (or
staggered magnetization) mo. Similarly, after domains
of the second generation have been subtracted, the
remaining volume of the domains of the first genera-
tion is 1(X(1 - oc)l - I and has magnetization - mo.
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Fig. 2. - An example of what the domain structure at Tr may be. Full lines represent domain walls. Dotted lines are new
domain walls which may appear slightly above Tc, implying the disappearance of some inner walls (thinner lines).

Finally, the total value of the order parameter is

Comparison with (3.4) shows that the critical

exponent p is related to the purely geometrical quan-
tities a, Q by the relation

Similarly, the exponent 6 might be calculated from
the assumption that each generation of inner domains
of size Q"’ jo cut random field fluctuations by a cer-
tain factor. This factor is a dynamic property which
we do not believe to be related to geometrical ones.
Below Tc’ the situation is similar, but the number

of domain walls decreases instead of increasing
(Fig. 3).

7. Conclusion.

We have described a speculative model of a phase
transition in disordered systems, which proceeds
through a complete reorganization of the structure,
characterized here by the domain wall array. Our

description is phenomenological. It has been pre-
ferred to the standard description of critical pheno-

Fig. 3. - The upper right-hand side of figure 2. Below T,,,
the block limited by the dashed line flips. This implies the
appearance of new walls (dotted lines) and disappearance
of certain inner walls (thin lines).

mena (which involves weak fluctuations) because, in
the random field Ising model, this description is not
consistent with the experimentally observed metas-
tability. The reorganization of the domain structure is
a slow process which can account for this effect.
Another possible scheme is a first-order transition [11,
22] but we wished to point out here that it is not the
only possibility. The Vogel-Fulcher law (3.1) implies
a very steep increase of the relaxation time which
may be difficult to distinguish from a first-order
transition.
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Since the equilibration of the system is so slow,
some of the properties are just unobservable. For
instance, we do not believe that the exponent q’
can be experimentally determined. Exponents v’
and p should be measurable by elastic neutron scatter-
ing. 6 might be obtained from the relaxation time
(3.1), or from d.c. susceptibility measurements in the
case of a ferromagnet

Belanger et al. [24] have published a set of critical
exponents which are in agreement with a theory of
Shapir [9], but which violate an exact inequality [22].
Thus, their result cannot describe the critical beha-
viour, but might be appropriate for some intermediate
range. On the other hand, their values a = 0 and
v’ = 1 are consistent with our figure 1. Insertion
into (3.13) yields a logarithmic increase of the domain
size with time. This law, already predicted at low
temperatures [13, 35], failed to be observed by Cow-
ley et al. [27] at a temperature which they believe to be
below Tr ,, but agrees with observations of Belanger
et al. [29]. The question is certainly not settled, and
even theoretically the derivation of (3.13) is too crude.

Finally, we wish to say a few words about dimen-
sional reduction. The parameters p and 6 may be
replaced by 2 parameters il’ and d, and then one
obtains relations (3.23) and (3.24), which look like
hyperscaling. This is however not sufficient to prove
that q’ is the exponent corresponding to the d-di-tnen-

sional, zero-field Ising model. If our picture is cor-

rect, il’ is related to jumps from a « valley » of the
phase space to a remote one, and this mechanism
has no counterpart in the zero-field Ising model. Thus,
we are rather inclined to follow Krey’s idea [12]
that there are just 3 independent exponents v’, p, a

(or v’, q’, d) not related by any straightforward rela-
tion. On the other hand, in contrast with Krey, we
believe that the lower critical dimension is 2, and that
the exponents have to comply with this requirement
(Fig, I b).
Note added in proof. - Three recent preprints by

Bray and Moore (BM), D. Fisher (F) and Nattermann
(N) should be compared with this work. BM and F
find the same relations (3.22), (3.23), (3.24), (3.21),
(3.9) which give the exponents as functions of three
independent ones. F also finds the Vogel-Fulcher law
(3. 1). Nattermann gives a calculation analogous to
that of our section 5, bus instead of neglecting the
renormalization of H(r) in (5.3), he assumes

H(r) - HMrl,D, where Mr is given by (3.4). This
assumption implies 2 6 = D - 2 + p. Then, N finds
v’ = 4(D - 2 + p/2)/3, which reduces to (5.6) if

p = 0. BM present an expansion in powers of e = D - 2,
according to which J = 0. However, they do not
obtain our formula (5.6) because they do not use
formula (5.2) valid for broad domain walls, but the
analogous formula for narrow domain walls.
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