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Résumé. 2014 Dans le cadre d’une approche de basses températures, on étudie la dynamique des modèles de spin
discrets sur les structures fractales et de percolation. On montre, à l’aide d’un argument d’échelle, que la barrière
d’énergie pour retourner un amas de s spins croit comme In s. On propose la loi des valeurs extremes comme distri-
bution de probabilité de la barrière d’énergie associée à un amas de percolation. La loi de relaxation trouvée est
du type exponentielle étirée, avec un exposant qui dépend de la température. Nos résultats donnent lieu à une formu-
lation naturelle d’une nouvelle hypothèse d’échelle dynamique et sont discutés en relation avec les relaxations
dites vitreuses.

Abstract. 2014 Single-spin-flip dynamics of discrete spin models on fractals and percolation structures is studied
within the framework of a low temperature approach. Using a scaling theory we show that, in general, the energy
barrier for overturning a finite cluster of s spins scales as In s. The probability distribution of the energy barriers
for percolation clusters is argued to be given by the extreme-value distribution. The resulting long time relaxational
dynamics so obtained is a stretched exponential with a temperature dependent exponent. Our results lead to
a natural formulation of a new dynamic scaling hypothesis and are discussed in relation with the so-called glassy
dynamics.
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1. Introductioa

In a previous paper [1], a numerical study of the spin
dynamics of discrete spin models on diluted lattice
has been presented Within the framework of a low
temperature approach, we have argued that single-
spin-flip dynamics on finite percolation clusters can
be described with thermal energy barriers. In parti-
cular, it has been shown that the energy barrier Vs
to overturn a finite cluster of ferromagnetic Ising
spins scales logarithmically with the cluster size s.

More precisely, for percolation clusters at threshold
(p = Pc)’ the following result has been obtained :

with A = 1.058 ± 0.05, B = 0.024 at two dimen-
sions and A = 0.97 ± 0.03, B = 0.065 at three dimen-
sions. Here J refers to the coupling constant between
nearest neighbour sites on the cluster. This result
is the counterpart of the known power law behaviour
on Euclidean lattices of dimension d : VS/2 J - s (d - 1)ld
and leads to a relaxation rate rs = Fo exp(- Vs/T)
which is a power of the cluster size. Some direct

implications of equation (1) on the single-spin-flip
dynamics of individual clusters have been described

elsewhere [2]. In this paper we address the questions
of the origin, the generality and the practical implica-
tions of equation (1). More precisely, we shall show
that : i) using renormalization group ideas, equation (1)
is actually a natural consequence of the scale inva-
riance of percolation clusters, ii) logarithmic size

dependence can be derived directly on fractal lattices,
due to some elementary rules for the calculation of
the energy barriers, iii) the energy barriers distribu-
tion, for percolation clusters of fixed size, is given by
the extreme-value distribution, iv) the long-time re-
laxational dynamics assumes a stretched exponential
form with a temperature dependent exponent, v)
the standard dynamic scaling hypothesis (T(T) -
z ) is violated and a scaling law (In T(T) vs. In çr)
emerges naturally from equation (1).
Our results are used to illustrate some basic mecha-

nisms leading to non exponential relaxation beha-
viours and this in relation with the recent increasing
interest for the glassy dynamics.

2. Phenomenological scaling theory.

The renormalization group (RG) picture provides
an useful framework and a natural language to dis-
cuss equilibrium as well as relaxation phenomena
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occurring on many length scales. Following the ideas
of reference [3], we assume an RG procedure which
forms a block spin from ?l spins with a length scale
change of a factor A. Here d refers to the fractal dimen-
sion of the lattice where a set of discrete spins is placed.
Let us denote by J - Jo the ferromagnetic interaction
scale at the lowest length scale. We assume that the
energy scale changes under the action of the RG but
the shape of the interaction distribution (if any)
is assumed to be invariant. The RG recursion relation
for the dimensionless coupling constant : K = JIT
(kB = 1) can be written in general in the form [3] :

In the strong-coupling limit F(K) approach a cons-
tant and we assume a power law expansion : F(K) =
À. a - J-l. K - 1 + ..., where A, p and a denote constant
numbers. An estimation of the energy barrier, for
overturning a block of spins, can be obtained from
the energy of the domain wall passing across the
block. The scale Vn of energy barriers at step n can
then be written as [3] :

where vn = V.IT and vo = 0.
Equations (2) and (3) are the basic iteration equations.
The iteration of equation (2) leads to the following
expression for the coupling constant Kj, at length
scale I = X :

Depending ori the value of the exponent a, three gene-
ric cases are possible.

i) case a  0 : equation (4) iterates until Ki = 0,
defining the correlation length ÇT ’" (Jo/T)B where
v = 111 a I. In the critical regime where Kl la Ko,
the energy barrier is given by Vi _ jo(I _ la)l(l _ A,).
The largest barrier occurs at 1 N ÇT’ giving V(T) -
JO(I - C.’, T ’/v) where C denotes a numerical factor;

ii) case a - 0 : in this case, K, = Ko - M. (In 1/ln A)
and the correlation length is given by ÇT ’"

iii) case a &#x3E; 0 : there is a phase transition at finite
T, r -- Jo(Aa _1) and the correlation length assumes
a power law behaviour T - ( T - T,,) - v with v = I Ia.
In the critical regime, the energy barrier at length

This general analysis is based mainly on equations
(2, 3). The validity of equation (2), for all n, is actually
supported by the self-similarity of the underlying
structure. The size dependence of the energy barriers
is therefore controlled by the sign of the exponent a.
Among the three possible cases, only case ii) is consis-
tent with the static critical behaviour [4] of discrete
spin models on the infinite percolation cluster :

energy barrier for a cluster ’of s £ ld spins scales as
V,, - (Jo In s)/dvp. More generally, case ii) corresponds
to barriers of the form given by equation (1) and this
can be checked directly on regular fractals. For

instance, it is easy to derive equation (2) for linear
fractals (e.a. branching or non branching von Koch
curves, ...) for both Ising and Potts spins models [5].
In this case a = 0 but A = 0 in equation (1) (see
below). Note that in the case of the Sierpinski gasket,
the corresponding iteration relation : K’ = K

(1 2013 e-4KIK + ...) does not fit the above assumption
for the function F(K). However a careful analysis
(see below) leads to equation (1) as expected

It should be noticed that case iii) may occurs on
fractal lattices, where a finite T c exist This is actually
the case of the Sierpinski carpets [6] of fractal dimen-
sion d = 1 + s for which Tc "-I 8 and v = Ils at

small c 0. The free energy barrier scales logarith-
mically with size in the critical regime. However,
according to the analysis of case iii), the standard

dynamic scaling hypothesis [7] :

with a constant value for z, holds in this case. A crude
estimation of the exponent z can be obtained as
follows. For small e and close to Tc, the spin dyna-
mics will be dominated by the 1 D diffusion of domain
walls [7]. This is actually the extrapolation from the
1 D case where instead of a single kink, we have here
a wall. This picture leads to z = 2 + 8 = 3 + 1.
This prediction for z fits the known result (z = 2) at
one dimension, but call for a numerical check at

8 Z 0. Furthermore, as will be shown below, this

scaling breaks down on a large number of fractal
lattices, of finite ramification number where Tc = 0.

3. Direct calculation of the energy barriers,

Because of dilation invariance, fractals lend them-
selves particularly conveniently to scaling approaches.
Thanks to some simple composition rules, the size
dependence of the energy barriers can be extracted
in some cases. In the following, we shall list some of
these rules for two-terminal basic units (Fig. la)
viewed as blobs. For the sake of simplicity, we limit
our discussion to Ising spins. The energy barrier V
and the domain wall energy barrier W are measured
in units 2 J.
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Fig. 1. - Schematic illustration of the composition rules
for the calculation of the energy barriers of structures made
of blobs. (a) : typical basic unit (two-terminal), (b) and (c) :
series, (d) : parallel, (e) : star.

i) Series rule : for n blobs (Fig. 1 b) of individual
barriers V, (resp. Wi), the global barriers read
V = Max { Vi} and W = Max { Wi } respectively.

i i

For a closed ring geometry (Fig. 1 c), one gests
V’=V+l and W’=W+I.

ii) Parallel rule (Fig. l d) : similarly, V =:; Max (V l’
V 2 + 1, ..., Vn + n - 1) for V1 &#x3E; y2 &#x3E; ... Vnand
the same result holds for W.

Here n’ refers to the integer part of (n + 1)/2.
Using these rules and their straightforward exten-

sion to more complicated blobs (e.a. multi-terminal),
one can extract the size dependence of barriers on
regular fractal lattices. For instance, the energy barrier
for a linear arrangement of identical blobs (Fig. 1 b)
is independent of the number n of blobs. However,
for the regular simplex, shown on figure 2, the series
rule in closed ring geometry, leads to the following
recursion relation : V(3 s) = 2 + V(s) for the energy
barrier. Thus V(s) = 2 In s/ln 3. Such a logarithmic
dependence in size holds more generally on regular
fractals, obeying a recursion relation V(A. s) = p + V(s),

which leads to V(s) In sln A

Fig. 2. - Schematic picture of the 2D simplex (modified
Sierpinski gasket) at the second state of iteration.

It is important to notice that such a result origi-
nates from the exact recursion relation obeyed by
V(s). For random fractal lattices, there is no such

simple relation and the origin of the result of equa-
tion (1) on percolation clusters must be found else-
where.

4. Energy barriers distribution for percolation cluster

The result of equation (1) refers actually to the energy
barrier for a typical cluster of size s. A more precise
analysis would take into account the fact that V
and then the relaxation rate depend on the shape of
the cluster also. Therefore, for a given size s, there
is a probability distribution for the energy barriers
and for the sake of clarity we limit our discussion
to clusters at threshold (p = Pc). The structure of a
given cluster is well described by the links-nodes-
blobs picture [4, 8] and can be viewed as a network
of quasi-one-dimensional string segments (« links »),
tying together a set of « nodes ». Each string consists
of several sequences of singly-connected bonds, in
series with thicker multiply connected regions, or

«blobs. Between two randomly chosen sites, at

an Euclidean distance I, on a given cluster, the back-
bone connecting these two points can be consi-
dered as a randomly constructed necklace [8] whose
building blocks are blobs of size larger than one
(blobs of size one are the singly connected bonds).
This picture of topologically linear necklace of

strings of blobs, of all possible sizes and shapes,
assembled in completely random order, will be used
here to calculate the probability distribution of
barriers.
Assume that the energy barrier V for a blob of

arbitrary size s, 1  s  oo is distributed according
to an unknown probability density p(V), associated
to the probability distribution P(Y). It is clear from
the series rule that the global barrier V for a cluster
of s - 12’ sites is actually given by the maximum
over n - 11/vp independent identically distributed
random variables { Vi 1, 1  I  n, corresponding
to n blobs in a box of size ld containing s - {if spins.
We shall argue that the most probable value of V as
well as its average scale as Inn for large n. This leads
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with the result of the scaling theory.
To see this, assume that for large n, V = Max { Vi }

possess a limiting distribution. We know from the
asymptotic theory of extreme order statistics [9],
that this limiting distribution, after suitable standardi-
zation, must be one of just three types, namely :
Fi(x) = exp(- x-a) for x &#x3E; 0 (a &#x3E; 0), F2 (X)
exp(-(- x)a) for x  0 (a &#x3E; 0) and F2(X) =
exp( - e - x), - oo  x oo. Formally, the class of
limiting distributions of P"(An x + Bn), where An &#x3E; 0

and Bn are suitably chosen constants contains only
laws of the type Fk(x), k = 1, 2, 3. The limiting
distributions Fk(x) are the solutions of the functional
equation : Fn(An x + Bn) = F(x), n a 1. That is
the largest in a sample of n drawn from a distribution
with distribution function F(x) must, upon the same
standardization as above, itself have the distribution
function F(x) : stability under Max. The only solu-
tions of the functional equation are respectively of
the form Fl(x) to F3(x) and are associated to An &#x3E; 1,
An  1 and An = 1 respectively. F3(x), called also
the extreme-value distribution is the only one with
an unbounded support. Clearly, (F3 (X))" = exp( - n e - x )
is nothing else than F3(x-In n). Therefore, the distri-
bution function P,(V) for the properly normalized
energy barriers for clusters of size s is given by

Note that the argument leading to equation (5) is

mainly based on just two specific ideas : i) the stabi-
lity of the distribution of V under the action of the
operation Max. Such a stability condition is implied
by the self-similarity of the blobs structure. ii) The
linear topology of necklaces.

Global distribution of barriers is simply deduced
from the cluster-sizes distribution ns. At threshold

[10], n., - s-r for large s and using equation (1), this
leads to

where we have used i = 1 + d/d and neglected B
in equation (1). The same result for a(V) can be
obtained from Ps(V) = dPs(V)/dV.
The exponential distribution 7c(tQ holds also at

p :A Pc’ up to V  V * where V* corresponds to the
cutoff s* - a- in the size distribution ns.
A straightforward algebra leads to the following

power law distribution for the relaxation times

which exhibits a long-time tail and this particularly
at very low temperatures.

5. Relaxational dynamics.
At low temperature the spin dynamics will be domi-
nated by thermally activated process, associated to
jump rate scale rs = To exp(- Vs/T) where r 0-1
denotes an elementary time scale and Vs given by
equation (1). F, depends on s at very low T : T  T*(s)

2 J -
where T * s 2 J dv is the crossover temperature( ) In s P

towards a singular behaviour of TS corresponding to

is independent of s and assumes the following form :

instead of the usual form of the dynamic scaling [7] :
T(T) ’" çj.. In the following we shall denote by

(1) == 2: d the « dynamic exponent » » describing

the size dependence of the relaxation time

Note that this form for Ts contrasts sharply with the
corresponding expression : T, = ’to.S.ÇT in the case
of ID chain [11].
Among different relaxational dynamics, let us

consider the expressions of the time-dependent cor-
relation function in equilibrium, and the time-depen-
dent magnetization starting from a uniformly magne-
tized initial state :

Here ns(p) refers to the probability distribution of
clusters size [10] and r = Fo exp( - V/7J is the
relaxation rate for a cluster of size s. The functions

g,v ,(t) and gM(t) are decay functions normalized to
unity at t = 0. The characteristic decay times Tc

Below threshold ( p  Pc)’ ns(p) is known to assume
the scaling_ form [10L: ns(p) = s-f(gsff) where
T = 1 + d/d, Q = I/vp d and 8 = Pc - p. Close to Pc’
In f(u) - - -1 u 1’1’, u - oo and similar behaviour
occurs at p Z Pc. The expressions of Tc and TM are
therefore :
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As expected both Tc and Tm diverge at p -+ pc . More
interesting is the following form for the scaling of it
as implied by equation (12) :

to be contrasted with the ID result [11] : In i; =

calculate. For instance, at C;T  C;p’ In g,(t) and
In gM(t) fall of linearly in time : - tIT(T). In the oppo-
site limit, C;T &#x3E;&#x3E; C;p the calculation of gM(t) and gc(t)
can be carried out without difficulties. For instance,
gc(t) is actually a function of the scaling variable
t/Tc. Using a saddlepoint method, the integrals can
be developed as an asymptotic expression in t/,rc,
corresponding to the asymptotic regime t &#x3E;&#x3E; Tc. Then

stretched exponential decay function is actually
a function of temperature. More precisely, n = n(T) =
1/(1 + T/2J) decreases from n = 1 at T  2 J to
n = 0 at T &#x3E;&#x3E; 2 J. This non exponential regime domi-
nates, at t » T,,,, the linear behaviour In gc(t) ’"
-’ t/i(T ) described above. Explicitly, for T &#x3E; çp,
two time regimes take place.

a) For t &#x3E;&#x3E; T*, g,,(t) is dominated by the purely
exponential term :

Here i* = 1:(T) [T(T)/1:c]d/C(T) denotes the crossover
time between the two limiting behaviours. Fur-

thermore, it is easy to see that 1 D results [I I I are
recovered by replacing C(T) = 1 and 3 = 1 in the
above expressions : 1:c = ç T çp, 1:* = ç1 çp. These
results hold also for gM(t), which drops out rapidly :
In gM(t) N - TIT(T) up to t - Tc and then crossovers
to a non exponential regime, described by the analo-
gue of equation (14). Moreover, equation (14) holds
also at p Z p,,, T  T,(p) where ns(p) assumes a
similar form [10] as above. The crossover fractal-to-
Euclidean will be discussed elsewhere.

It should be noticed however that in the previous
analysis we have neglected the contribution, to g,, and
gM, of exceptional very large compact (Euclidean)
clusters. For these compact clusters Vs _ fd-l)/d
and using a Lifshitz-like argument, one gets [12]

This regime is more slowly than an exponential but
JOURNAL DE PHYSIQUE. - T. 46, N° 11, NOVEMBRE 1985

faster than a power law and represents the dynamical
counterpart of Griffiths singularities. However, we
believe that the observation of this regime in real or
computer experiments is actually doubtful and calls
for a careful analysis [13].

6. Glassy dynamics and concluding remarks.

Our main results were summarized in the introduc-
tion. Let us conclude with three comments.

i) The power law expression (Eq. (9)) of the relaxa-
tion rate r s’ which is implied by the dilation-symme-
try, appears as the basic element in our analysis. The
first consequence of this result is the formulation of
a new dynamic scaling hypothesis : In T(T) = cp(ln ÇT).
Standard hypothesis appears as a special case :

cp(u) = zu. In the model investigated here, g(u)
is a quadratic function (Eq. (8)). Note that such an
extension of the dynamic scaling has been suggested
[14] previously but without justification. In this res-
pect, it is interesting to notice that relaxation time
such as r(r) given here : In i(T) - T-2 has been
observed in a large number of situations [15] (ionic
conductors, short range spin glass models, ...). In this
line of ideas, it would be very interesting to compare
the temperature dependence of TS obtained here
with the similar behaviour observed on kinetic coef-
ficients and relaxation times near the glass tempera-
ture of glasses. Actually, the plot of In i vs. 1 / T has
a very surprising form [16] : straight line below Tg
and a convex curve (parabola ?) at T &#x3E;&#x3E; Tg. Is Tg
a simple crossover temperature between two relaxa-
tion regimes ?

ii) The relaxation time distribution (Eq. (7)) as

well as the exponential distribution of barriers (Eq. (6))
are the consequences of dilation symmetry. Because
of the generic features of both ns and TS, we believe
that such results are very general and not specific
to percolation clusters. Note that equation (7) leads
to a « noise spectrum » I /(Ol -IT which is a kind of
« Ilf &#x3E;&#x3E; noise but with a temperature dependent
spectral exponent.

iii) Our derivation of the stretched exponential
law (Eq. (14)), which appears in a large number of
glassy materials [17] does not involve any ad hoc
hypothesis on the dynamics mechanism and this
contrasts with all previous attempts [18]. The results
reported here show clearly, that non exponential or
glassy relaxation can be obtained in at least two ways :
i) from a power law expression of relaxation rates rs
in addition to a power law distribution ns of clusters
size, ii) from rare « events » which are the non equi-
librium counterpart of Griffiths singularities. The
mechanism of rare « events » is the analogue of that
giving the survival probability of a random walk
in the presence of traps [19]. An important difference
between i) and ii) comes from the temperature depen-
dence of the exponent n : n is a constant number for
ii) whereas n = n(T) in the first case. In this respect,

113
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it is interesting to compare our prediction for n(T)
with the available data. Actually, the linear behaviour
1 - n(T) - T at low T, seems to be observed (see
Fig. 3 of Ref. [17]). Such a result is in fact a very general
one, resulting from the scaling in T In t of thermally
activated processes.

Note added in proof. - After this manuscript was
submitted, two papers related to this work have been
published [20, 21]. Though using a completely diffe-

rent argument, the result of reference [20] fully con-
firms our results for the percolation clusters. Regard-
ing reference [21], there is an agreement with our results
for linear fractals. However, the claimed result z =
d + 1 (Sierpinski gasket), which seems to coincide
with our prediction for the carpets, must be consider-
ed carefully. In fact, real space renormalization group
does not provide a reliable method for the study of
kinetic Ising models [22] and particularly for the
calculation of the exponent z.
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