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Selection rules for electron transfer to the continuum in ion-atom collision
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Résumé. 2014 Nous considérons le processus de transfert d’un électron à un état du continuum au premier ordre de
l’approximation de Born. Nous étudions le développement de la section efficace doublement différentielle en
puissances de la vitesse et de l’angle d’éjection de l’électron. Les coefficients de ce développement obéissent à des
règles de sélection. Nous comparons ces règles de sélection, qui prédisent une forme asymétrique pour le pic de
transfert électronique vers le continuum, aux résultats expérimentaux récents.

Abstract 2014 We consider the process of electron transfer to the continuum in first order Born approximation.
We analyse the expansion of the double-differential cross section in series of electron velocity and ejection angle.
We found that the coefficients obey precise selection rules. We discuss the relation of these rules, which predict
an asymmetric shape for the electron loss to the continuum cusp, with the interpretation of recent experimental
results.

J. Physique 46 (1985),1671-1674 ocToBRE 1985, :

Classification

Physics Abstracts
34.70

The distribution of electrons emitted in an ion-atom
collision exhibits a cusp-shaped peak centred at

ve = vp, where v, and vp are the electron and incident
projectile velocities respectively [1]. This effect is
attributed to the final state interaction between the
electron and the projectile of charge Zp, and has been
called electron transfer to continuum (ETC). Actually,
in a first perturbative order treatment, the electron
is dragged along in a Coulomb wave centred at the
projectile [2]. The normalization of this state introduces
in the electronic double-differential cross section

(DDCS) da/dve a factor (we shall use atomic units)

with v = ve - vp, the electron-projectile relative velo-
city. This factor leads to a spherically symmetric
peak around ve = vp [3]. However, a more complicated
structure in the DDCS has been experimentally
found in ion-gas target collisions [4]. In fact, recent
experiments on ETC clearly show the presence of an
anisotropic structure which has been investigated
with considerable interest during the past few years.
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This activity has been triggered by recent detailed
measurements of the three-dimensional distributions

[5].
The nonisotropic structure of the cusp shape can

be conveniently described by the parametric double
expansion of the DDCS [4, 6] :

with cos 0 = vp V/vp . v. This expansion in powers of
the velocity includes physically significant terms that
are eliminated when the electron energy E = v2/2
is introduced as a variable [7]. Naturally the contri-
bution of each of the expansion coefficients in equa-
tion (2) depends on the features of the ETC process
which is under analysis. For ion-gas target collisions,
under single collision conditions, there are two ETC
processes for the production of the so called « convoy
electrons » : electron capture (ECC) and electron loss
(ELC) to the continuum. If the impinging projectile
is a stripped ion, ECC is the only possible transfer
process. In this case a violent collision with a large
momentum transfer determined by the ion velocity vp
is required in order to eject a target electron into a ’
low lying continuum state of the projectile. On the
other hand, if the initial charge of the projectile is
lesser than its atomic number, a weak momentum
transfer of the order silvp is enough to produce the loss
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into the continuum of a projectile electron. Here gi
is the binding energy. In fact both ECC and ELC
processes contribute. However, a neutral projectile
has not a pure Coulomb interaction with a target
electron and the ELC process dominates.

Theoretical and experimental evaluation of the
coefficients Bjln) enable a precise description of the
nonisotropic structure of the DDCS due to both ETC
mechanisms, and a clear comparison between theory
and experiment [8]. In view of the divergence of the
DDCS, such a comparison strongly depends on the
detector resolution, and equation (2) must be inte-
grated over the resolution volume [4] in the velocity
space. This volume is defined by the velocity reso-
lution (R) and the angular acceptance (00) of the
spectrometer. The electronic distribution results :

with

Near the peak top the main contribution to Q(ve)
arises from terms with n = 0. In particular the term
B(O) U(O) gives the usual divergence of the Coulomb
factor £ in v. = vp. Terms with n =A 0 correspond to
non-singular contributions to the cross section and
dominate at the tails of the peak.
The theoretical contribution of each term in equa-

tion (2) depends on the features of the active ETC
mechanism, and also on the perturbative approach
under consideration. In the present paper we will
show that certain selection rules are obtained in the
first Born approximation, which reduces the number
of contributing coefficients Bj("). These selection rules
are very important since they may be confronted with
the experimental electronic distribution, thus probing
the first Born approximation in the convoy electron
production mechanism.
The ELC process results from a weak collision

which suffices to excite a projectile electron into a low
lying continuum state. Consequently, the first Bom
approximation should be valid for large projectile
velocities [9]. Let us consider a hydrogenic ion of
nuclear charge Zp which collides with a neutral atom
of nuclear charge ZT. In first Born approximation the
DDCS for electron loss is given by

N 2
where ( a Y- e- iq.rf _ZT 0 is the target atomic form factor for the transition from its ground state

B J /
[ 0 ) to an arbitrary excited state a &#x3E;, with a change As,, in electronic energy. On the other hand the ionic form
factor is known analytically

This expression may be expanded in powers of v
and Q - v

with adequate coefficients alm(Q, Zp).
We express the momentum transfer Q in spherical

polar coordinates Q, 6 and 0, with z = vp, and
execute the integration with respect to the polar
angle :

We replace equations (7) and (8) in the DDCS

(Eq. (5)) and note that the energy-conserving Dirac 6
only contributes with even powers of the electron
projectile velocity v. Finally we obtain the parametric
expansion (2), with the following selection rules :
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Restricting ourselves to the zero-velocity limit,
these selection rules lead to the following expression
for the ELC distribution

This equation is generally believed to be valid close
to the peak top [9] and has been employed for the
interpretation of experimental data [10]. However its
validity seems to be doubtful farther from of the ECC
peak. The next terms of the parametric expansion
tend to predominate when the electron-projectile
velocity is not so small. Thus a four term genera-
lization of the previous expression, compatible with
the selection rules, is more adequate.

The relative importance of the anisotropic terms
Bll) and B(l) by comparing with the singular terms
B(O) and B(’), calculated in the closure approximation
[9], is shown in figure 1 for the collision Ho + He.
As a matter of fact these additional terms do not appear
when the ELC mechanism is interpreted as the ioni-
zation limit of Rydberg states excitation [11].

In figure 1 we see that B(l) is positive, and conse-
quently it produces a weak skewness towards high
electron velocities as it is shown in figure 2. On the
other hand the anisotropic terms B(o) and B(l) become
negative for vp Z Zp. This change of sign is related
to the zeros of the Legendre function P,(o - fp) which
is included in BJ").

Finally it is possible that the first Born approxi-

Fig. 1. - Anisotropy coefficients B,(n)IB,(O) of ELC of H°
on He as function of projectile velocity vp.

Fig. 2. - Electron loss to the continuum cusp at 0° for the
collision H° + He, vp = 10 a.u. It is assumed that the
detector has an acceptance angle 00 = 1 ° and an energy
resolution R = 0.002. (---), theory of Briggs and Day,
equation (11). (-), present result, equation (12).

mation oversimplifies the anisotropic structure of the
electron loss DDCS, particularly at intermediate

projectile velocities. Very recent experimental data
for H° + He collisions seem to confirm this conjecture
[5, 10]. However a similar highly complicated structure
is observed in ECC experiments, but not in beam foil
convoy electron distributions [10]. This feature may
indicate the presence of a systematic error in the
experimental device [5, 12]. Actually much care must
be taken with respect to a possible variation of the
experimental effective beam-gas interaction volume
with the ejection angle. Anyhow a more careful

comparison between the experimental evidence and
the previous selection rules would provide a conclusive
proof for the validity of the first order Born approxi-
mation in the electron loss to the continuum process.

In ECC processes a noticeable skewness of the

peak towards low electron velocities is experimentally
found in stripped ion-gas target collisions [4]. This
feature clearly suggests the presence of an asymmetric
singular term with B(o) =,4 0 in the parametric expan-
sion of the DDCS. Recently this term BiO) UfO) has
been fitted to experimental data [4, 8] and its relevance
to the peak position as a function of the electron
ejection angle has been considered [13]. However
the first order Born approximation for charge exchange
to the continuum from a 1 s hydrogenic target state
gives the following selection rules for the coefficients
of the parametric expansion :
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These selection rules clearly exclude the asymmetric
singular term Ul°).

In order to prove equations (13) and (14) let us
consider the collision of a stripped ion of charge Zp
with a hydrogenic atom of effective charge ZT. The
first order approximation for charge exchange to a
continuum state centred at the projectile gives the
following expression for the DDCS :

,

with Jl the reduced mass of the ion-atom system.
Expanding in powers of v and Q v we obtain

Once more the transfer moment Q is expressed in
spherical polar coordinates, with i = vp, and the
integration with respect to the polar angle is executed
We replace equations (8) and (16) in the DDCS, and
equations (13) and (14) follow.
As the first Born approximation does not explain the

observed asymmetry, higher orders of perturbation
are required. In this context, the second Born approxi-
mation [14], the continuum distorted wave approxi-
mation [15] and a multiple scattering theory [6] have
to be mentioned. In the latter approach the first four
coefficients BO(o), B1°), Bol and B1I) were calculated,
giving reasonable agreement with a fit to experimental
H + + He data [8].
The singular terms U(O) and U(O) give the main

contribution to the ECC peak. However the remaining
two terms 1, 0 and Ul’), which account for the non-
singular part of the scattering amplitude, tend to
predominate at the tails of the peak, and cannot be
excluded in an analysis of the electron capture to
the continuum process.
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