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Résumé. 2014 La transition entre phases liquide-cristallines columnaires hexagonale/rectangulaire désordonnées
(Dhd-Drd) dans la série HAT est analysée en appliquant les techniques de la théorie des groupes. La théorie de
Landau prédit que la transition doit être du deuxième ordre. L’hamiltonien de Ginzburg-Landau-Wilson corres-
pond à une classe d’universalité ayant un paramètre d’ordre de composante n = 3 et une anisotropie cubique.
Le comportement critique près de la transition Dhd-Drd est étudié à partir des résultats de Aharony et d’autres
auteurs sur le groupe de renormalisation et il apparaît qu’une valeur critique de n, nc, supérieure à 3, est possible.
Une transition du deuxième ordre entre la phase Dhd et une phase pas encore mise en évidence expérimentalement
est prédite.

Abstract. 2014 Group theoretical techniques are used to discuss the disordered hexagonal columnar-disordered
rectangular columnar (Dhd-Drd) liquid crystal phase transition in HAT series. On the basis of Landau theory the
transition is predicted to be second order. The Ginzburg-Landau-Wilson Hamiltonian corresponds to a univer-
sality class with an n = 3 component order parameter and with cubic anisotropy. The critical behaviour near the
Dhd-Drd transition is discussed by referring to the renormalization group results of Aharony and other authors
and we present evidence in favour of the critical value of n, nc, being greater than 3. It is also predicted that a second
order transition from the Dhd phase to an as yet experimentally undiscovered phase is possible.
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1. Introduction.

Since the first discovery of a new type of mesophase in
liquid-crystals composed of disc-like molecules [1],
at least five homologous series of disc-like mesogens
have been reported. A classification of these mesogens
was suggested by Destrade et al. [2]. According to
their notation, the mesogens are called HAB, HET,
HAT, HBT and HATX, and the corresponding
compounds and molecular structures are presented
in figure 1 of reference [2]. A rich polymorphism has
been found in these homologous series. At least five
different mesophases have been discovered, referred
to as Dhd (disordered hexagonal), Drd (disordered
rectangular), Dha (ordered hexagonal), Dt (tilted)
and ND (nematic disc-like). The Do phase in HAT
series has not been definitely identified yet [2, 3] and
other mesophases are also possible; e.g. the Dr phase,
which is suggested to have a pmg symmetry in the
hexa-n-octanoate of rufigallol (RHO) [4], and the

Dob,a (disordered oblique) phase in the n-hexalkanoyl-
oxybenzo trisbenzofurans [5] were reported recently.
For some homologous series, e.g. HAT, HBT, and

HATX (see Table IX of Ref. [2]), the polymorphism in
a given series and the possible phase transitions in the
same series were also investigated by several authors

[2]-[5]. Usually the following sequence of phase tran-
sitions is observed as temperature is increased :

HAT(C-Do-Drd-Dhd-I), HBT(C-Dt-Dr-ND-I) ; where C
represents the crystal phase, and I the isotropic phase.
But for the HATX series, the order is reversed; i.e.

HATX(C-ND-D,-Dh-1). This was reported as the first
example of a reentrant nematic phase in disc-like
mesogens [6]. On the other hand, few theoretical dis-
cussions have been published in this area.
Some phase transitions in a given series are second

order (or nearly so) according to the experimentally
measured latent-heat [2], [4]. Because the phase tran-
sitions among the different mesophases in a given series
just correspond to changes of symmetries, one then
can expect that in some cases (second order transi-
tions), Landau’s theory [7] may be employed to cons-
truct a suitable Ginzburg-Landau-Wilson Hamilto-
nian. The critical behaviour can then be analysed by
means of the renormalization group theory [8].
Such a discussion may be used to : a) compare with
the experimental results ; b) predict the critical beha-
viour where there is a lack of experimental reports so
far; c) predict new possible mesophases which have
not been found yet

In this paper, we will study the Dhd-Drd phase tran-
sition in HAT series [2] as our model system. The ana-
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lysis of symmetries shows that the irreducible repre-
sentation of the space group of the high temperature
phase, which is associated with Dhd-Dra transition,
can be identified by a wave vector star { k* } = -L bl,
t b2, - t b1 + 2 b 2 } and an irreducible representa-
tion A2 of the C2v point group (see section 3 for nota-
tion). If the coefficient v (see Eq. (3)) is negative, the
symmetry of the low temperature phase in the plane
perpendicular to the column axes corresponds to the
two dimensional space group p2gg which has been
observed experimentally. If v is positive, the symmetry
of the low temperature phase corresponds to the two
dimensional space group p6; such a phase has not yet
been found experimentally.

In section 2 we will discuss a possible mechanism
which leads to the Dhd-Drd phase transition; in sec-
tion 3 we use Landau’s theory and group theoretic
techniques to obtain the relevant Ginzburg-Landau-
Wilson Hamiltonian and the possible symmetries of
the low temperature phases; in section 4 we give the
symmetry elements and pattern of the as yet undis-
covered mesophase; in section 5 critical behaviour
near the transition will be discussed by referring to
Aharony’s and others’ work.

2. Mechanism of Dhd-Drd transition in HAT series.

The molecular structure of HAT derivatives consists of
a hard triphenylene core, attached to which are six n-
alcanoyloxy chains R( =OCOCllH21l+1). The molecu-
lar core has a threefold axis perpendicular to the plane
of the core. In the Dhd phase, the molecular planes are
irregularly spaced with respect to each other to form
disordered columns. In the plane perpendicular to
the columns, they form a two-dimensional hexagonal
lattice. The symmetry of the Dhd phase requires the
column axes to be sixfold-axes (C6). As a simple way
to realize such an arrangement, one can imagine that
along the column axes both the triphenylene core and
the flexible chains are randomly oriented with equal
probabilities in any direction in the plane perpendi-
cular to the columns. In other words, the orientations
of the molecules in the plane do not exhibit long-range
correlations along the C6 axes. Only in this sense can
the molecules be considered as disc-like circles from
which are constructed a Dhd phase at high temperature.
Below and close to T = T c the molecular chains start
to orient with larger probability along some easy
directions than along other directions in order that
the minimum free energy be reached. No matter how
small such an effect is, once it appears the molecules
can no longer be considered as circle-like and the
symmetry is changed. In the process, the state of the
system has changed continuously. This gives a possi-
ble mechanism for a phase change from Dhd to a lower
symmetry phase by a second order phase transition.
Two points need to be added.

2.1 For HAT derivatives with short chain length,
the orientations of the chains are mainly dominated

by triphenylene cores, so the orientational arrangement
of the chains along some easy directions may be hinder-
ed by the random orientations of the cores. On the
contrary, for long length chains which are more flexi-
ble than the short ones, we can suppose that the outer

parts of the chains are free from the core influences so
that the orientational arrangements along the easy
directions can be realized. This qualitative argument
may be used to explain table III of reference [2] which
shows the polymorphism only appears when the chain
length is greater than ten in HAT series.

2.2 We suppose that the position of the lattice sites
are unchanged through the transition. The X-ray
experiments measured in different homologous series
do show the changes of the lattice site positions [2];
however, the measured change in HAT system is

tiny. We ignore this small change in our model.

3. Analysis of symmetries.

The method we employ here is one which has been
widely used to discuss structural phase transitions
in crystals. We give a brief description of the theore-
tical framework based on references [7], and [9-12]. The
application of this theory to out model system with
a few special considerations will be given later on.

According to Landau’s theory of second order phase
transitions, different phases before and after a transi-
tion can be described by a density functional p(r).
The symmetry of a given system and its Hamiltonian
in either phase can be characterized by the respective
symmetry group; say, Go for the high temperature
phase, and G for low temperature phase, G c Go.
Such a symmetry should be reflected by p(r). In the
equilibrium state p(r) takes the form peq(r) which
minimizes the Hamiltonian, and peq(r) is invariant
under all of the operations in the symmetry group of
the given phase. In the terminology of group theory,
Peq(r) is the base-function of the unit representation
of the symmetry group. Based on the arguments given
in reference [7], for ordinary second order phase tran-
sitions (excluding multi-critical points), near the
transition point, p can be written as

and

Here po is supposed to be invariant under Go (i.e.
po is the base-function of the unit representation of
Go), the Oi’s are the base-functions of one of the m-
dimensional irreducible representations of Go, which
is relevant to the phase transition under considera-
tion. Obviously, in the high temperature phase
Peq = PO; i.e., minimizing the Hamiltonian requires
all ili to be zero. In the low temperature phase the
li’s are non-zero, but they continuously approach
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zero when the system is close to its transition point.
The symmetry at low temperature is therefore deter-
mined by bpeq.
Near the transition, the Hamiltonian HL can be

expanded as a power series in the ili. Since HL is a
scalar, such an expansion should consist of various
invariants; i.e.

where fa(3)( rii) and fa(4)( tli) are the ath third order and
fourth order invariants of rii respectively, the summa-
tion index a is over all possible invariants. The coef-
ficients r, C(3), C,,(4) are functions of temperature and
other state parameters. If the phase transition is second
order, there must be no fa(3)( tli) terms (Landau condi-
tion).
To determine the form of HL, ailed the symmetry of G,

we need the representation theory of groups. The
symmetry group of Dhd has been classified as H =
R x Z2 A D6h [13], i.e., a semi-direct product of a
translational sub-group TH = R x Z2 and a point
group D6h, and will be taken as the symmetry group Go
of the high temperature phase. By using the Sietz
notation [10], for g E Go, we have g = (h; ) tQ. The
hi (i = 1 through 24) on the left-hand side in the paren-
thesis represents a symmetric operation of D6h,
which has the same meaning as in Kovalev’s book [14].
The tH on the right-hand side represents a simulta-
neous translational operation applied after the hi
on the left side, and tH = mal + na3 + Jlâ3 E TH,
where al and a2 are the basis vectors of the two dimen-
sional lattice in the plane perpendicular to the C6
axis, i3 is a unit vector along the C6 axis, m, n are
integers and p is an arbitrary real number. The mul-
tiplication rules are

Now, we consider two subgroups of Go(=- H), G1
and G2. For gl E G1 and g2 E G2, we have

Obviously

According to the multiplication table of D6h [14]
it is clear that ha ho = hp ha for the given values of a
and fl as in equations (5) and (6). Also, h,,,(urt3) = ,ua3,
h,(ma, + na2) = mal + na2, it is easy to prove that

91 92 92 91- All the symmetric operations g E Go
can be expressed as g = 91 g2 E Go. So, Go is a direct
product of G1 and G2,

The irreducible representations of Go(r(Go)) are

totally determined by that ofG 1 (r(G 1)) and G2(r(G2))
[10],and

In this paper, our interests will focus on the irreducible

representation of Go which is relevant to the Dhd-
Drd transition. Through the transition all the sym-
metric operations in G2 should be preserved in the low
temperature phase. This requires that F(G 2) = 1

(the unit representation of G2). The required irredu-
cible representation of Go which describes the phase
transition will then be determined by that of G l’
From the definition of equation (5), one can identify
that Gi is isomorphic to the two dimensional sym-
morphic space group P6mm. The suitable irreducible
representations of such a space group can be found in
reference [11]. A difference from the real two dimen-
sional systems discussed in reference [11] is that the
Landau condition of the second order transition
should still be satisfied. This is because our model

system has three spatial dimensions and only in the
sense of symmetry changes through the Dhd-Drd
transition can we consider the system to be two
dimensional.
The irreducible representations of a space group

are classified by two indices, k and i, and are denoted
by rk. Here k is a wave vector in the first Brillouin
zone in reciprocal space. For a chosen k, a proper
symmetry group of k, Gk, can be defined. For a sym-
morphic space group, Gk is a point group and is

composed of all those rotational operations under
which k is unchanged or changed into an equivalent
wave vector k’ = k + Kn (Kn is a reciprocal lattice
vector). We will not discuss the irreducible represen-
tations of a non-symmorphic space group here. Also,
i is an irreducible representation of Gk. Further, we
can define a set of non-equivalent wave vectors { k* },
called the star of k, which are produced by the action
of all of the rotational operations of the space group
on k. So long as k and i are determined, the irreducible
representation of the symmorphic space group F’
can be loaded by choosing a set of base-functions
? given by

where ki E { k* }, i = 1, 2,... s. (According to Ref [7],
instead of e"i-’ the linear combinations of the expres-
sions eiki.r (with equivalent ki) which are invariant
with respect to the transformations in the group of ki
are used. So, in equations (4), (11) and (18), eiki.r and
ei(ki + K,,).r should be considered to be the same; in
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other words, the k;’s are defined up to Kn [14].) The k,x’s
are the base-functions of the irreducible representa-
tion T of Gk, a = 1, 2, ... m, m is the dimension of T
and the prefactor of i in the argument of the exponen-
tial is the square root of minus one. So, the dimension
of F’ is sm. Here, k,, r and kn are all two dimensional
vectors.

An oblique coordinate system in the plane perpen-
dicular to C6 axis will be used [14]. The basis-vectors
a1 and a2, the basis vectors of the reciprocal lattice b1
and b2, and the first Brillouin zone in the plane are
chosen as in figure 1. We take our wave vector star

{ k* } to be

The proper symmetry group of k1 includes four rota-
tional operations hl, h4, hlg, h22, and can be iden-
tified as the C2, point group. This group can only
have four one-dimensional irreducible representations
(see Table I). We pick A2 in table I to be our T. Having
the wave vector star { k }, and the irreducible repre-
sentation T of Gkl’ we use equation (10) and obtain
the base-functions of Tk :

where 0", is the base-function of T.

Fig. 1. - The dotted hexagon represents the Bravais cell
of the two-dimensional hexagonal structure with the basis-
vectors, al and a2, in the plane perpendicular to the C6 axis;
the bold hexagon represents the first Brillouin zone in the
reciprocal space with the basis-vectors, b, and b2 ; k1, k2,
and k3 are the wave vectors from which the star of ki is

constructed.

Table I. - The irreducible representation i of Gkl

We have dropped the index a, because ourr is one-
dimensional. Thus we have given a three-dimensional
irreducible representation of F’, k of G 1. The Landau
Hamiltonian, HL, can then be found from table II
of reference [11].

If we allow for a spatial dependence of ’1i’ the Ginzburg-
I,andau-Wilson Hamiltonian, H, can be written down
immediately as

where d is the spatial dimension (d = 3) and u, v,
and c are constants.

Finally, we determine the possible low temperature
phases. Rewriting equation (12) by changing varia-
bles [7], we have

where

with

The minimum value of HL can be obtained from

in HL should
-1

be substituted from Eq. (15b)) with the conditions

and
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We obtain two possible solutions :

and

if

So, if v  0, we substitute equation (16) into equa-
tion (2) and have

where neq is a constant under symmetric transforma-
èH 

tions and is obtained from 
On . 

= 0. One can easily
q

check that

and

where m and n are integers. We can further define

Then

or

where a = 1, 4, 19, 22 and

Equation (24) means that in the low temperature phase
a new Bravais lattice appears, in which the lattice
constant in the al direction is doubled and that in
the a2 direction remains the same. The meanings of
the four rotational operations in G1 are [14]

unit operation
1800 rotation about (0, 0, 1) axis

I reflection in (0, 1, 0) plane followed by a

translation aotranslation 
2

1 reflection in (2, 1, 0) plane followed by a

translation aotranslation 2 *

The pattern of the molecular arrangement in the plane
perpendicular to C6 axis at low temperature phase is
shown in figure 2, which has exactly the same pattern
as p2gg observed experimentally. The full symmetry
of the low temperature phase then corresponds to
G = G 0 G2, or for g E G, we have

Fig. 2. - a) The Dhd phase. a, and a2 are the basis-vectors of the two-dimensional hexagonal lattice.
b) The Drd phase. a, and a2 are the basis-vectors of the two-dimensional rectangular lattice. ai =
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where

G is the symmetry group of the Drd phase.
So far, we have worked with an oblique coordinate

system. Now, we choose a Bravais lattice with a’
and a2 as its basis-vectors (Fig. 2). Then the rotational
operations should be renamed in the rectangular
coordinate system [ 14]. The relations are as the follow-
ing :

The half-integer translations after h2, h3, h26, h27 will
_, I ,

we use the solutions of

equation (17) instead of equation (16) and follow the
similar discussions after equation (17). We obtain a
new phase in which Gi is classified by the p6 space
group, with doubled lattice spacing in both a1 and a2
directions. Such a phase has not yet been observed
experimentally. In section 4 we will discuss the pattern
of such a phase.

4. Pattern of phase with p6 symmetry in the plane
perpendicular to C6 axis.

In this section, we give the pattern of the as yet unob-
served low temperature mesophase with p6 symmetry
and doubled spacing in both the al and a2 directions.
The p6 symmetry requires the column axes to be a C6
axis. Its symmetric elements within a Bravais cell
in the plane perpendicular to the C6 axes are shown
as figure 3. (Note : inversion, reflection in the plane
perpendicular to the C6 axis, and mirror rotations
about C6 axis are not included.) It belongs to the p6
pattern [15]. Two possible orientational arrangements
of the molecular plane along particular easy directions
are shown in figures 4a) and b). Such arrangements

Fig. 3. - The symmetric elements of the p6 pattern. The
hexagons, the triangles and the ellipses represent six, three,
and twofold axes respectively.

Flg. 4. - Two possible orientational arrangements which
give a p6 pattern. The star-like symbols indicate the easy-
directions in the sites; the circles represent random orien-
tational arrangements.

may be formed by the molecular core or by flexible
chains depending on the properties of the mesogens.
On the basis of group theory arguments we can give
the patterns; of course these arguments can not predict
for which mesogens and temperatures, etc., this phase
can be found

5. Critical behaviour.

The Ginzburg-Landau-Wilson Hamiltonian (13) has
a typical hypercubic symmetric form in order para-
meter space (i.e. in spin-space for magnetic systems)
and has been discussed by several authors [16]-[21].
The recursion relations for u and v (Eqs. (5) and (6)
of Ref. [16]), as determined by the B expansion method
of renormalization group theory [8], give four fixed
points : Gaussian, Ising, Heisenberg (or isotropic),
and cubic [16]. For s = 1 (d = 3), the Gaussian and
Ising fixed points are unstable, but the stability of the
Heisenberg and cubic fixed points depend on n, the
number of components of the order parameter. There
exists a critical value n such that for n  nc, the

Heisenberg fixed point is stable, but the cubic fixed
point is unstable. The exponents VH and ’1" can then
be determined by equations (7) and (13) of Ref. [16].
For n &#x3E; nc, the stable fixed point will be the cubic
one, and the Heisenberg point becomes unstable,
so the exponents cross over to VC and ’1c (see Eqs. (14)
and (15) of Ref. [16]). Of course, whether the stable
fixed point in either case can be approached or not
depends on the initial values of u and v (the physical
values near the transition temperature). All these
conclusions can be clearly seen from the schematic
flow diagram of figure 3 of reference [17]. Now, the
key problem is to determine nc.

In his review [17], Aharony states that, although it
is probable that n &#x3E; 3, it is important to study both
the Heisenbeg and cubic fixed points and let other
techniques determine which one wins at n = 3.

In fact, if we note that the initial value of v is nega-
tive for the Dhd-Drd transition in HAT series as we
discussed in section 3, and that the phase transition
is experimentally [2] found to be second order, our
work, together with the report from Ref. [2b], can be
considered as evidence in support of nc being greater
than 3. The arguments are as following.
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First, examine the schematic flow diagram in figure 3
of reference [17] (p. 397). Cases a) and b) in the picture
give two different situations for n  nc and n &#x3E; nc res-

pectively. According to equation (16) of section 3, for
the Dhd-Drd transition, v is negative and u is positive;
this corresponds to the lower-right quadrant in case a)
or case b). One can then clearly see that, starting from
the initial value v  0 and u &#x3E; 0, the only choice
which leads to a second order phase transition is case

the phase transition will be first order) ’where uc and’vc
are cubic fixed point values in the u-v plane [17].
The stable fixed point is then the Heisenberg fixed
point. Since for the Dhd-Drd transition n is equal to 3,
we have nc &#x3E; 3. Therefore, at order e2, we expect the
critical exponents v and tj to be [16], [22]

For the phase transition from Dhd to another possi-
ble low temperature phase with p6 symmetry discussed
in sections 3 and 4, v is greater than zero. If we assume
u &#x3E; 0, the stable fixed point will again be the Heisen-
berg fixed point. Therefore, for this phase transition
we again predict the critical exponents to be those
corresponding to the Heisenberg fixed point, i.e.,
vH and qH. If 0 &#x3E; u &#x3E; - i v, although the positivity
conditions (see Eq. (17)) are satisfied, no stable fixed
points can be approached, and the phase transition
will be first order.
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