Intracavity single resonance optical parametric oscillator (I.S.R.O.)
Tran-Ba-Chu, M. Broyer

To cite this version:
Tran-Ba-Chu, M. Broyer. Intracavity single resonance optical parametric oscillator (I.S.R.O.).
Journal de Physique, 1984, 45 (10), pp.1599-1606. <10.1051/jphys:0198400450100159900>.
<jpa-00209901>

HAL Id: jpa-00209901
https://hal.archives-ouvertes.fr/jpa-00209901
Submitted on 1 Jan 1984
Intracavity single resonance optical parametric oscillator (I.S.R.O.)

Tran-Ba-Chu (*) and M. Broyer

Laboratoire de Spectrométrie Ionique et Moléculaire (†), Université Lyon I, 43, bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

(Reçu le 23 janvier 1984, accepté le 1er juin 1984)

Résumé. — La théorie de l'oscillateur intracavité des ondes optiques paramétriques ayant une seule onde résonnante est étudiée en supposant que l'onde pompée et l'onde paramétrique résonnante sont des modes gaussiens monomodes des résonateurs du laser et de l'oscillateur. L'onde paramétrique non résonnante est trouvée par résolution de l'équation parabolique. Les équations de mouvement obtenues sont illustrées par des nouveaux termes intégrés que nous avons mis en évidence. Nous avons montré que pour un laser et un cristal donnés deux valeurs optimales du paramètre de focalisation existent : la première détermine le seuil de puissance du laser pompé pour avoir la génération paramétrique, et la deuxième détermine la puissance de sortie maximale de l'onde paramétrique non résonnante. Nous avons montré qu'en régime dégénéré cette puissance maximale était égale à celle du laser de pompe, dans le cas où ce laser fonctionne tout seul (en l'absence de l'oscillateur paramétrique) avec des miroirs ayant un coefficient de transmission maximal (\(\eta = 100\%\)), la puissance du laser de pompe doit être deux fois plus grande que celle du seuil. Les résultats numériques sont calculés pour un oscillateur optique paramétrique comprenant un cristal non linéaire de \(\text{Ba}_2\text{NaNb}_5\text{O}_{15}\) et de longueur \(l = 4\) mm, placé dans la cavité d'un laser à YAG continu. En régime dégénéré, la puissance de l'onde non résonnante est de 0,35 W si la puissance totale dans la cavité est de 35 W en l'absence du cristal paramétrique.

Abstract. — The theory of the intracavity single resonance optical parametric oscillator has been studied assuming that the pump- and resonant parametric waves were Gaussian eigenmodes of laser and parametric oscillator resonators. The non-resonant parametric wave has been found by solving a parabolic equation. The resulting equations of motion are parametrized in new terms of integrals that we have discovered. With a given laser and a non-linear crystal, two optimal values for the focusing parameter can be found : the first defines the threshold operation regime of the intracavity single resonance optical parametric oscillator, the other defines the maximum output power of the non-resonant parametric wave. In the latter case, we have demonstrated that in the degeneracy operation regime, this maximum output power of non-resonant wave is equal to the maximum pump laser power when the pump laser works alone (that is without the optical parametric oscillator) with mirrors having optimal transmission coefficients and that the laser power is twice the threshold value of the pump power. Numerical results have been obtained for an intracavity single resonance oscillator based on a c.w.-YAG-Nd\(^{3+}\)-laser and a non-linear \(\text{Ba}_2\text{NaNb}_5\text{O}_{15}\) crystal of length 4 mm. In the degeneracy operation regime, the power of the non-resonant wave is 0.35 W when the total laser power in the laser cavity is 35 W, in the absence of the optical parametric oscillator.

1. Introduction.

Optical parametric oscillators (O.P.O.) \([1, 2]\) are coherent light sources, operating in the near to middle I.R. region. Having high efficiency, high output power and yielding high quality spectra, O.P.O. are applied in various fields of research, for example, in the study of the structure of atoms and molecules, biochemistry, isotope separation, etc.

(*) Permanent address : Institut de Physique Appliquée, Hanoi, Viet-Nam.
(†) Associé au C.N.R.S. n° 171.

In the Double Resonance optical parametric Oscillator (D.R.O.) \([1]\) the two parametric waves are resonant in the same resonator. For this process, the required pump power is relatively low, but the quality of the spectra is poor as a result of « cluster » effects and mode competition \([3]\). Furthermore as a consequence of the back coupling process \([4]\) the efficiency cannot be more than 50%.

To overcome these drawbacks, Single-Resonance optical parametric Oscillators (S.R.O.) \([2]\) have been developed. In these devices only one of two parametric waves is at resonance, and the other propagates freely through the crystal, so that the wavelength can be
tuned continuously and the converting efficiency can be 100% [5]. However a high threshold is necessary.

In a previous paper [6] we have shown that the threshold power of S.R.O. can be reduced by the optimal focusing method, so that there is a possibility of operating extracavity c.w.-S.R.O.

To achieve a pump power many times that of the threshold power needed to reach the stable operation regime, Intracavity Double Resonance optical parametric oscillator (I.D.R.O.) have been developed [7, 8, 9]. Oshman and Harris [7] studied the operation regime of I.D.R.O. and assumed that the laser medium has a homogeneous gain transition and the interacting waves are plane uniform waves. Experiments on I.D.R.O. have been done by Amann and Yarborough [8] and recently by Volosov [9].

Taking into account the advantages of both mentioned methods (S.R.O., I.D.R.O.), we propose, in this paper, to study the Intracavity Single Resonance optical parametric Oscillator (I.S.R.O.) pumped by a Gaussian laser beam and to treat the focusing condition for which the output power of Non-Resonant Parametric Wave (N.R.P.W.) is maximized.

Figure 1 shows the structure of the I.S.R.O. in the case of three waves mixing collinearly. The pump laser resonator M1 M2 is of length \(L_p\), the O.P.O.’s crystal length is equal to the length of O.P.O.’s resonator. The centre of minimum cross-section of the laser beam is made to coincide with the centre of crystal. The two mirrors \(M_3, M_4\) are transparent for the non-resonant wave (idler) and they reflect the resonant parametric wave (signal) 100%.

![Fig. 1. — Internal optical parametric oscillator.](image)

2. Equation of motion.

2.1 Spatial mode of the interacting waves. — We shall label all quantities referring to the pump mode, signal and idler with the subscripts \(p, s, i\) respectively. The frequencies of these modes are \(\omega_p, \omega_s, \omega_i\) satisfying the relation \(\omega_p = \omega_i + \omega_s\) for energy conservation. The total electric field may be expressed as

\[
E(r, t) = \sum_{j=1,p} E_j(t) e^{i(\omega_j t + \phi_j)} U_j(r)
\]

where \(e_j\) is the polarization unit vector, \(U_j(r)\) is the spatial mode and \(E_j(t)\) is the amplitude of the electric field. All our calculations are made with the assumption that \(E_i \ll E_s\) and \(E_i \ll E_p\) in the non-linear medium.

In S.R.O. devices, only the pump- and signal waves are at resonance, and if their TEM00 modes alone are at resonance, we can write \(U_j(r)\) as a sum of right and left travelling Gaussian beams, i.e.

\[
U_j(r) = u_j(r) + u_j^*(r)
\]

with \(j = s, p\).

We shall consider the case of the interaction type I where the walk-off angle is \(\rho\). Boyd and Kleinman [12] have shown that this is equivalent to type II interaction. If the parametric crystal is centred at the origin of a Cartesian system \((X, Y, Z)\) centred in the laser cavity with the Z-axis along the longitudinal cavity axis then, since the signal is at resonance, the one-way travelling signal beam wave is given by [12, 13]

\[
u_s(r) = \frac{\exp(jk_s Z)}{1 + j\tau_s} \exp \left\{ - \frac{X^2 + Y^2}{W_{0s}^2(1 + j\tau_s)} \right\}
\]

(4)

\[
\tau_s = \frac{Z}{b_s}.
\]

(5)

Here \(W_{0s}\) is the Gaussian beam waist of the signal and \(b_s = k_s W_{0s}^2\) is the confocal parameter.

As the pump wave is at resonance in the laser cavity, the one-way travelling resonance pump wave has the form [12, 13]

\[
u_p(r) = \frac{\exp(jk_p Z)}{1 + j\tau_p} \exp \left\{ - \frac{(X - \rho Z)^2 + Y^2}{W_{0p}^2(1 + j\tau_p)} \right\}
\]

(6)

Here we have a difference between D.R.O. and S.R.O. : in the case of D.R.O., the idler beam wave is also at resonance, then its structure has been given in Gaussian form [12]. In S.R.O., the amplitude of the non-resonant idler beam wave has not previously been given, it can be determined, using equations (2), (4) and (6), from the following parabolic equation [14, 15] with certain approximations [16, 17] :

\[
\left(\frac{\partial^2}{\partial z^2} - \frac{j}{2k_1} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \right) E_i(X, Y, Z, t) = j\gamma_i E_p E_i^*(X, Y, Z, t) e^{-j\beta k z}
\]

(7)
by means of the Green’s function

\[G_i(X - X', Y - Y', Z - Z') = -\frac{j k_i}{2 \pi (Z - Z')} \times \exp \left\{ \frac{j k_i}{2(Z - Z')} [(X - X')^2 + (Y - Y')^2] \right\} \]

(8)

The coupling constant \(\gamma_i \) in equation (7) is of the form

\[\gamma_i = \frac{4 \pi \omega_i d_{\text{eff}}}{c n_i} \]

(9)

The effective non-linear coefficient is \(d_{\text{eff}} \) given by

\[2 \cdot d_{\text{eff}} = \chi \]

(10)

where \(\chi \) is the non-linear susceptibility.

The phase-mismatching is \(\Delta k \), given by

\[\Delta k = k_p - (k_i + k_s) \]

(11)

and the wave vectors of interacting waves are given by

\[k_j = \frac{n_j \omega_j}{c} \]

(12)

The solution of the equation (7) is

\[E_i(X, Y, Z, t) = j \gamma_i \int_{-\infty}^{+\infty} dZ' \int_{-\infty}^{+\infty} dX' dY' \times \]

\[\times G_i(X - X', Y - Y', Z - Z') E_p(X', Y', Z', t) \times e^{-j \Delta k Z'}. \]

(13)

After integration and elimination of all high frequency components, equation (13) becomes

\[E_i(X, Y, Z, t) = j \gamma_i e^{j\Delta k Z} E_p(t) E_i^*(t) \times \]

\[\times \int_{-l/2}^{l/2} dZ' e^{j \Delta k Z'} \left[1 + j \frac{1 + \mu}{1 - \mu} (\tau - \tau') + \tau' \right] \exp \{ \} \]

(14)

where

\[\mu = \frac{k_s}{k_p} \]

(15)

is the degeneracy parameter, and

\[\{ {1} \} = -\frac{j(1 - \mu)}{W_{op}(\tau - \tau')} (X^2 + Y^2) \times \]

\[\times \left[-1 + \frac{1 + \tau^2}{1 + j \frac{1 + \mu}{1 - \mu} (\tau - \tau') + \tau'} \right] \]

\[+ \frac{2 \rho Z'(1 + j \tau') X'}{W_{op}^2 \left(1 + j \frac{1 + \mu}{1 - \mu} (\tau - \tau') + \tau' \right)} \]

\[+ \frac{\rho^2 Z'^2}{W_{op}^2 (1 + j \tau')^2 a^*} \]

(16)

and

\[a^* = \frac{1}{1 + j \tau'} + \frac{\mu}{1 - j \tau'} - \frac{j(1 - \tau)}{\tau - \tau'} \]

(17)

Equation (14) was obtained assuming \(b_i = b_p = k_p W_{op} = k_s W_{op} \) (the non-linear interaction is maximal when the confocal parameters of the pump- and the signal waves are identical (see [6]), and using the specified field approximation [18], which, as is well known, does not consider the reverse action of the excited wave on the exciting waves).

Relation (14) defines the field of the non-resonant idler wave, its spatial distribution is (its spatial mode)

\[U_i(r) = u_i(r) = j \exp(j k_i Z) \times \]

\[\times \int_{-l/2}^{l/2} dZ' \frac{e^{j \Delta k Z'}}{1 + j \frac{1 + \mu}{1 - \mu} (\tau - \tau') + \tau'} \exp \{ \} \]

(18)

and its time-dependent part is

\[E_i(t) = \gamma_i E_p(t) E_i^*(t). \]

(19)

So, we can conclude that the spatial mode of the non-resonant idler wave does not have a Gaussian distribution.

2.2 FIELD AND PHASE EQUATIONS. — According to Lamb [11], the equations of motion are given by

\[(\omega_j + \phi_j - v_j) E_j = -\frac{1}{2} \left(\frac{\omega_j}{\varepsilon_j} \right) C_j \]

(20)

\[\dot{E}_j + \frac{1}{2} \left(\frac{\omega_j}{\varepsilon_j} \right) E_j = -\frac{1}{2} \left(\frac{\omega_j}{\varepsilon_j} \right) S_j \]

(20')

where \(v_j \) is the unloaded cavity mode frequency, \(Q_j \) is the cavity \(Q \) for the \(j \)th mode, \(\varepsilon_j \) is the dielectric constant for the polarized medium of interest. The driving terms are defined by the spatially averaged polarization \(P_j(t) \)

\[\overline{P_j}(t) = \int \text{d}^3r \cdot U_j(r) e_j P(r, t) = \int \text{d}^3r \cdot U_j^2(r) \]

\[= C_j(t) \cos [\omega_j t + \phi_j(t)] + \]

\[+ S_j(t) \sin [\omega_j t + \phi_j(t)] \]

(21)

where the integration extends over all space. If the \(j \) mode is confined within a cavity of length \(l_j \), we have

\[\int \text{d}^3r \cdot U_j^2(r) = \pi W_{op}^2 l_j \]

(22)

assuming that rapidly oscillating terms \(\exp(\pm 2 k_j Z) \) average to zero.
There are two polarization terms; namely, one resulting from the laser medium and the other resulting from the parametric medium. Their sum is given in equation (21), from which $C_i(t), S_i(t)$ can be calculated. By substituting their values in equations (20), (20') we obtain time-dependent expressions for the amplitudes and phases of the resonant waves.

\[C_i^j(t) = e_i^j \chi_i^j E_j(t) \]
\[S_i^j(t) = e_i^j \chi_i^j E_j(t) \]
where $e_i^j (j = p)$ are dielectric constants of the laser medium. We assume that the signal and idler frequencies are well-removed from any transition of the laser medium, so that contributions to them are essentially negligible ($j \neq i, s$ in Eqs. (23), (24)). For the pump, χ_i^p accounts for gain and saturation due to the laser medium; χ_i^s results in frequency shifts mode-pulling and -pushing effects.

\[\text{a)} \quad \text{The polarization caused by laser's field is determined by } [7] \]
\[\chi^p = \frac{1}{\pi W_0^2} \int \text{d}r U_i U_j U_k . \]

Thus we must evaluate the integral of the triple product $U_i U_j U_k$ over the parametric medium. Using (3) we get

\[\int \text{d}r^3 U_i U_j U_k = \int \text{d}r^3 u_i^p u_j u_k . \]

\[\begin{aligned}
C_p^i(t) &= \frac{1}{2} \text{Re} \frac{\bar{B}}{\xi} (1 + \mu) \int \text{d}r \left(\frac{t^2}{1 + \jmath} \right) \\
&\times \left(1 - j \frac{(1 - j^2) (\tau - \tau')}{(1 - \mu)} \right) + \frac{\tau^2}{1 - j} \\
&- \left(\frac{t^2 (1 - j^2)}{\xi} \right) - \frac{(1 + \tau^2) \left[\frac{1}{I_4} \right]}{2(1 + \mu)} \right) \right] .
\end{aligned} \]

\[\text{b)} \quad \text{Now let us consider polarization resulting from the parametric medium} \]
Using equations (2), (21) and (22) we get

\[\bar{P}_p^i(r, t) = \sum_{j,k} e_i^j \chi_j^k E_j^* E_k \sum_{j,k} e_i^j \chi_j^k E_j^* E_k \int \text{d}r^3 \left(\frac{t^2}{1 + \jmath} \right) \\
\times \left(1 - j \frac{(1 - j^2) (\tau - \tau')}{(1 - \mu)} \right) + \frac{\tau^2}{1 - j} \\
- \left(\frac{t^2 (1 - j^2)}{\xi} \right) - \frac{(1 + \tau^2) \left[\frac{1}{I_4} \right]}{2(1 + \mu)} \right) .
\]

30

\[\begin{aligned}
\text{with} \quad I_4 &= 1 + \frac{1}{2} \frac{1}{(1 - \mu) + 1 - \mu} (\tau - \tau') + \tau \tau' \\
\delta_i &= \left\{ \begin{array}{ll}
1 & \text{when } i = p \\
-1 & \text{when } i = s.
\end{array} \right.
\end{aligned} \]

Substituting (19) into (33) and (32), we obtain the values of C_p^i, χ_p, S_p^i as functions of $E_p(t), E_s(t)$. Carrying these values into (20), (21) and with the aid of (23), (24) we obtain the following wave equations:

\[\hat{E}_{p}(t) = \frac{1}{2} \frac{\alpha_p}{Q_p} E_p(t) + \frac{1}{2} \frac{\alpha_p}{Q_p} \chi_p^s E_s(t) - \frac{4 \pi^2 \alpha_0 p}{c n_i n_p} \times \]
\[\times \frac{d^2}{\xi^2 L_p^2} E_p(t) E_s(t) \int \text{d}r \frac{1 - \mu}{1 + \mu} \times \text{Re} \bar{\theta}(\bar{B}, \mu, \sigma, \xi) .
\]

\[\hat{E}_s(t) = - \frac{1}{2} \frac{\alpha_s}{Q_s} E_s(t) + \frac{4 \pi^2 \alpha_0 p}{c n_i n_p} d^2 \int \text{d}r \frac{1 - \mu}{1 + \mu} \times \]
\[\times E_p(t) E_s(t) \text{Re} \bar{\theta}(\bar{B}, \mu, \sigma, \xi) .
\]

\[\phi_p = - \frac{1}{2} \frac{\alpha_p}{Q_p} \chi_p - \frac{4 \pi^2 \alpha_0 p}{c n_i n_p} d^2 \int \text{d}r \frac{1 - \mu}{1 + \mu} \times \]
\[\times \frac{l^2}{\xi L_p^2} E_p(t) E_s(t) \text{Re} \bar{\theta}(\bar{B}, \mu, \sigma, \xi) .
\]
\[\phi_s = -\frac{1}{2} \omega_s \chi'_s + \frac{4 \pi^2 \omega_s}{c n_s} d_{ef} \frac{l}{1 + \mu} \times \]
\[\times E_p^2(t) E_s(t) \frac{3m}{\lambda} h(\bar{B}, \mu, \sigma, \xi) \]
(36')
in consideration of \(v_p = \omega_p \) and \(v_s = \omega_s \).

Studying gain coefficients and saturation effects of the pump laser, Oshman [7] has used Lamb's approximations and has found the following equation which determines \(\chi'_p \):
\[\frac{\omega_p L_p}{c} \chi'_p = -g_0(1 - \beta E_p^2) \]
(37)
where \(g_0 \) is the single-pass unsaturated power gain and \(\beta \) is a parameter accounting for saturation effects [7]. Equation (37) holds to a good approximation if saturation effects are too small to be observed and if [19]
\[\left(\frac{g_0}{\alpha_p} \right)^2 - 1 \ll 1 \]
(38)
\[\alpha_p = L_p/c \omega_p/Q_p \] is the single-pass power loss for the pump mode. In practice some lasers have a small gain \(g_0 \) (YAG-Nd\(^{3+} \)) and in the case of I.O.P.O., the signal and idler waves « drain » much of the laser power, so that the pump cannot saturate fully. Substituting equation (37) into (34), (35), (36) with a new time variable \(\tau_1 \) given by
\[\tau_1 = \frac{ct}{L_p}; \quad \tau_2 = \frac{ct}{L_s} \]
and
\[\alpha_s = \frac{l_s}{c} \frac{\omega_s}{Q_s} \]
where \(\alpha_s \) is the single-pass power loss for the signal mode. We obtain the following equations of motion :
\[\frac{dP}{d\tau_1} = \left(-\alpha_p + g_0 \left(1 - \frac{16 \beta}{c n_p} W_{2p}^2 P_p \right) - \right. \]
\[- K_1 \frac{\omega_s \omega_p}{W_{2p}^2} l^2 P_s h^{(1)}(\bar{B}, \mu, \sigma, \xi) \bigg) P_p \]
(39)
\[\frac{dP_s}{d\tau_2} = \left(-\alpha_s + K_1 \frac{\omega_s \omega_p}{W_{2p}^2} l^2 P_p h^{(1)}(\bar{B}, \mu, \sigma, \xi) \bigg) P_s \]
(40)
\[\frac{d\phi_p}{d\tau_1} = -\frac{1}{2} \frac{L_p}{c} \omega_p \chi'_p - \frac{1}{2} K_1 \frac{\omega_s \omega_p}{W_{2p}^2} l^2 P_s \times \]
\[\times \frac{3m}{\lambda} h(\bar{B}, \mu, \sigma, \xi) \]
(41)
\[\frac{d\phi_s}{d\tau_1} = -\frac{1}{2} \frac{L_p}{c} \omega_s \chi'_s + \frac{1}{2} K_1 \frac{\omega_s \omega_p}{W_{2p}^2} \times \]
\[\times L_p \frac{3m}{\lambda} h(\bar{B}, \mu, \sigma, \xi) \]
(42)
where
\[K_1 = \frac{128 \pi^2 d_{ef}^2}{c^3 n_t n_p n_s} \frac{\mu}{1 + \mu} \]
(43)
and the function \(h^{(1)}(\bar{B}, \mu, \sigma, \xi) \) is determined from (29)
\[h^{(1)}(\bar{B}, \mu, \sigma, \xi) = \Re \frac{3m}{\lambda} h(\bar{B}, \mu, \sigma, \xi) \]
(44)
\[\Re(2 \xi)^{-1} \int_{-\xi}^{\xi} d\tau \times \]
\[\times \int_{-\xi}^{\xi} d\tau' \frac{e^{-j(\tau' - \tau)}}{1 - \frac{1 + \mu}{1 - \mu} \left(1 + \frac{1}{1 + \mu} \right) (\tau - \tau') \tau'} \]
and the power of Gaussian waves are determined from
\[P_{p,s} = \frac{16}{16} c n_{p,s} W_{2p,s}^2 |E_{p,s}^0|^2 . \]
(45)
The equations (39) to (42) illustrate the time-dependence of the power and the phase of the resonance waves, equation (14) determines the power of the non-resonant parametric wave (idler wave) when all characteristics of the resonant waves are known. In the general case, these equations cannot be resolved analytically. They can be resolved only with the aid of a computer.

The function \(h^{(1)}(\bar{B}, \mu, \sigma, \xi) \) is a focusing function which allows the optimal power of the non-resonant wave to be obtained. This function was calculated numerically and the result is given in figure 2, it reaches a maximum at the values of \(\xi \) and \(\sigma \) which correspond to a maximal parametric interaction between the waves.

Fig. 2. — Plot of \(h^{(1)}(\sigma, \mu, \bar{B}, \xi) \) as a function of \(\xi \).
a. The case of \(\bar{B} = 0; \mu = 0.5 \) and \(\mu = 2/3 \). b. The case of \(\bar{B} = 1; \mu = 0.5 \) and \(\mu = 2/3 \). c. The case of \(\bar{B} = 3; \mu = 0.5 \) and \(\mu = 2/3 \).
3. Powers of the parametric interacting waves in the steady-state (c.w.-regime). Discussion.

In steady-state conditions, we have

\[- \alpha_p + g_0 \left(1 - \frac{16 \beta}{c n_p W_{op}^2} P_p \right) - K_1 \frac{\omega_1 \omega_p k^2}{W_{op}^2} \times P_s h^{(1)}(\bar{B}, \mu, \sigma, \xi) = 0 \]

(46)

\[- \alpha + K_1 \frac{\omega_1 \omega_k k^2}{W_{op}^2} P_p h^{(1)}(\bar{B}, \mu, \xi) = 0 \]

(47)

\[\frac{d}{dt} (\phi_1, \phi_0) = 0 \rightarrow \phi_1 = \phi_p - \phi_s + \frac{\pi}{2} = Cte. \]

(48)

Equation (48) is identical to (1).

a) In the absence of the parametric effect \((K_1 = 0)\); from (46) the power of the laser in the resonator becomes

\[P_p = P_{op} = \frac{g_0 - \alpha_p}{16 g_0 \beta} c n_p W_{op}^2. \]

(49)

Equation (49) corresponds to the case in which the mirrors of the laser resonator have a reflection coefficient which is 100% at the laser power.

b) Presence of the parametric effect \((K_1 \neq 0)\); from (47) we have

\[P_p = \frac{\alpha_s}{K_1 \omega_1 \omega_k k P_{op} h^{(1)}(\bar{B}, \mu, \sigma, \xi)}. \]

(50)

The pump power \(P_p\) is a simple hyperbolic function of the non-linear coefficient \(K_1 = 128 \pi^2 d^2_{eff} / c^3 n_1 \times n_p n_s, \mu / (1 + \mu)\). With equations (46), (49), (50) we can calculate the signal wave's power within the resonator, and we have

\[P_s = (P_{op} - P_p) \frac{16 g_0 \beta}{l K_1 \omega_1 \omega_k c n_p b P_{op} h^{(1)}(\bar{B}, \mu, \sigma, \xi)}. \]

(51)

The power of the non-resonant parametric wave (idler wave) is

\[P_i = \frac{c n}{8 \pi} \int_{-\infty}^{+\infty} dX dY |E_i(X, Y, Z = 0, t)|^2. \]

From (14) we have, in the case of absence of walk-off \((\bar{B} = 0)\), the total value of \(P_i\)

\[P_i = \frac{128 \pi^2 \omega_1^2 \omega_k^2}{c^3 n_1 n_p n_s} \frac{2 \mu}{1 + \mu} \frac{P_p}{W_{op}^2} P_s b^2 \int_0^\infty d\tau' \times \]

\[\int_0^\infty d\tau'' \frac{e^{-j(\tau'' - \tau')}}{1 - \frac{i}{2} \left(\frac{1 + \mu}{1 - \mu} + \frac{1 - \mu}{1 + \mu} \right) (\tau'' - \tau'') + \tau' \tau''}. \]

(52)

Using (49) and (51), equation (52) becomes

\[P_i = 4(P_{op} - P_p) \frac{P_{op}}{P_p} (g_0 - \alpha_p) (1 - \mu) \times \]

\[\frac{H^{(1)}(\sigma, \mu, \xi)}{h^{(1)}(\sigma, \mu, \xi)} \]

(53)

where

\[H^{(1)}(\sigma, \mu, \xi) = \int_0^\infty d\tau' \times \]

\[\int_0^\infty d\tau'' \frac{e^{-j(\tau'' - \tau')}}{1 - \frac{i}{2} \left(\frac{1 + \mu}{1 - \mu} + \frac{1 - \mu}{1 + \mu} \right) (\tau'' - \tau') + \tau' \tau'}. \]

(54)

We see that the power of the non-resonant wave (idler wave) is a simple parabolic function of pump power \(P_p\).

c) Discussion.

In steady-state, if we want to have parametric generation, it is necessary that \(P_i > 0\). From (53) we have

\[g_0 > \alpha_p \]

and

\[P_{op} \geq P_p \]

or

\[K_1 \geq K_{th} = \frac{\alpha_s}{\omega_1 \omega_k k P_{op} h^{(1)}(\sigma, \mu, \xi)} \cdot \frac{1}{P_{op}}. \]

(55)

With a given pump laser, the non-linear coefficient of the crystal must be higher than a threshold value determined by (55). We can reduce \(K_{th}\) by following methods, as shown by equation (55)

- increase of the pump power (increase \(P_{op}\)),
- increase \(h^{(1)}\) by the optimal focusing method to obtain a maximum value of \(h^{(1)}\).

Figure 3 shows the dependence of \(P_i\) on pump power \(P_p\). The curve reaches a maximum when

\[P_p = \frac{P_{op} + (g_0 - \alpha_p) c n_p W_{op}^2}{16 g_0 \beta}. \]

(56)
and this maximum value is equal to

\[P_{i_{\text{max}}} = P_{op}(\theta_0 - \alpha_p) (1 - \mu) \frac{H^{(1)}(\sigma, \mu, \zeta)}{h^{(1)}(\sigma, \mu, \zeta)}. \] (57)

The power \(P_i \) is zero when \(P_p = 0 \) and \(P_p = P_{op} \). This corresponds to an absence of pump laser, and to the condition \(K_1 < K_{\text{th}} \). Substituting (50) into (53) and using (55) we have the value of power \(P_i \) as a function of \(K_1 \)

\[P_i = 4 \frac{P_{op}}{K_1} \left(1 - \frac{K_{\text{th}}}{K_1^2} \right) K_{\text{th}} (\theta_0 - \alpha_p) (1 - \mu) \times \]
\[\frac{H^{(1)}(\sigma, \mu, \zeta)}{h^{(1)}(\sigma, \mu, \zeta)}. \] (58)

Equation (58) illustrates that \(P_i \) is a simple function of \(K_1 \).

As in equation (55) \(K_1 > K_{\text{th}} \) is a necessary condition for parametric oscillation.

The curve (c) has its maximum at \(dP_i/dK_1 = 0 \). Letting the derivative of (58) with respect to \(K_1 \) tend to zero, we find

\[K_1 = 2 K_{\text{th}} = \frac{1}{P_{op}} \frac{\sigma_\varsigma}{\omega_k \omega_k k_p h^{(1)}(\sigma, \mu, \zeta)}. \] (59)

\[\text{as in equation (55) } K_1 \geq K_{\text{th}} \text{ is a necessary condition for parametric oscillation.} \]

The curve (c) representing \(P_i(K_1) \) cuts the x-axis at the point \(P_i = 0 \)

\[K_1 = 2 K_{\text{th}} = \frac{1}{P_{op}} \frac{\sigma_\varsigma}{\omega_k \omega_k k_p h^{(1)}(\sigma, \mu, \zeta)}. \] (60)

\[\text{as } K_1 = 2 K_{\text{th}}, \text{ } P_i \text{ reaches its maximum and its value is} \]

\[P_{i_{\text{max}}} = P_{op}(\theta_0 - \alpha_p) (1 - \mu) \frac{H^{(1)}(\sigma, \mu, \zeta)}{\zeta h^{(1)}(\sigma, \mu, \zeta)}. \] (61)

We again find equation (57).

As equation (58) shows, when \(K_1 \) tends to infinity, \(P_i \) reaches an asymptotic value along the x-axis.

We have plotted in figure 4 the curve (c) illustrating the dependence of \(P_p \) upon \(K_1 \). It has two parts. The first represents the pump laser power without parametric oscillation. The second is the intracavity power of the laser in the presence of the parametric generation. Using the value \(K_1 = 2 K_{\text{th}} \) with the aid of (60) and (50) we have

\[P_p(K_1 = 2 K_{\text{th}}) = \frac{P_{op}}{2} \] (62)

which is equation (56). We can explain the power variations as follows. As the parametric generation increases, the pump power continually decreases; simultaneously, the non-resonance parametric wave power first increases, goes through a maximum, and begins to decrease. Quantitatively, this can be understood as the result of the fact that the parametric generation appears to be an increasing loss to the laser. Eventually, the total available power from the gain mechanism goes through a maximum and begins to decrease, in the same way that increasing output coupling losses to a laser can produce a similar maximum in output power [19]. We shall demonstrate that, in this case and at the degeneracy operation regime, these « non-linear output coupling losses » are equal to the maximum output power of the laser at the optimal transmission of the output mirror in the absence of the optional parametric oscillator.

In the case of a weak focusing (\(\zeta \ll 1 \)), we have [6]

\[H^{(1)}(\sigma, \mu, \zeta) \approx \zeta^2 \]
\[h^{(1)}(\sigma, \mu, \zeta) \approx \zeta. \]

At the degeneracy regime \(\mu \) has the value : \(\mu = 1/2 \). Inserting these values into (61), we have

\[P_{i_{\text{max}}} = \frac{P_{op}}{2} (\theta_0 - \alpha_p). \] (63)

So the « non-linear transmission coefficient » of the output mirror is

\[T = \frac{P_{i_{\text{max}}}}{P_{op}} = \frac{1}{2} (\theta_0 - \alpha_p) \]
\[= (\sqrt{\theta_0} - \sqrt{\alpha_p}) \times \left(\frac{\sqrt{\theta_0} + \sqrt{\alpha_p}}{\sqrt{\alpha_p}} \right) \sqrt{\alpha_p} \]
\[= (\sqrt{\theta_0} - \alpha_p) \left(\frac{\sqrt{\theta_0}}{\sqrt{\alpha_p}} + 1 \right) \frac{1}{2}. \] (64)

Using the condition (38) we have

\[\frac{1}{2} \left(\frac{\sqrt{\theta_0}}{\sqrt{\alpha_p}} + 1 \right) \simeq 1. \] (65)

Inserting (65) into (64) we have

\[T = \frac{P_{i_{\text{max}}}}{P_{op}} = \sqrt{\theta_0} \alpha_p - \alpha_p. \]
Rigrod [19] has demonstrated that the mirror's transmission T_{opt}, that results in maximum power output from a laser oscillator is given by

$$T_{\text{opt}} = \sqrt{\alpha_0 \alpha_p} - \alpha_p .$$

So we have demonstrated that, at the maximum I.S.R.O. power condition, the output power of the non-resonant parametric wave is equal to the maximum pump laser output power in the absence of O.P.O. (i.e. the converting coefficient η is 100 %).

In a previous work [14] it has been shown that, below threshold, the signal and idler powers remain zero, whereas above the threshold, the pump limits at the threshold level and additional pump power is converted to signal and idler power, thus the second part of the curve (c_1) illustrates the dependence of the threshold power on K_1. When the power of the non-resonant parametric wave is at a maximum ($\eta = 100 \%$) we have (Eq. (62)).

$$\frac{P_{\text{th}}}{P_{\text{th}}} = 2$$

i.e. the pump power is twice the threshold value. In comparison with the results of previous work based on external single resonance optical parametric oscillator, the converting efficiency is equal to 100 % when [5]

$$\frac{P_{\text{th}}}{P_{\text{th}}} = \left(\frac{\pi}{2} \right)^2 = 2.46 .$$

From (60) we see that with a given laser, we can choose the value of parameter K_1 to get a maximum value of the non-resonant parametric wave power P_i. Alternatively with a given laser and a given non-linear crystal we can choose the value of the function $h(1)$ so that the equation (60) is satisfied for getting a maximum value of the output power P_i.

4. Conclusion.

The theory of c.w.-I.S.R.O. has been developed. This leads us to conclude that with the optimal focusing method of a Gaussian laser beam the I.S.R.O. can be carried out experimentally to produce a c.w. tunable laser.

Acknowledgments.

One of us (Dr. Tran-Ba-Chu) wishes to thank Professor H. Paul, Dr. R. Fischer (in Z.O.S. der Akademie der Wissenschaften der D.D.R.), and Professor A. Bouvier and Dr. A. Bouvier for stimulating discussions.

References

[2] TRAN-BA-CHU, JURGEIT, R., NICKLES, P. V., Kvanto-
[3] GORMAINE, J. A., MILLER, R. C., in Physics of Quan-
tum Electronics (Mc Graw-Hill Book Comp.,
Lett. 10 (1967) 53.
(1969) 293.
[7] FISCHER, R., TRAN-BA-CHU, WIECZOREK, L. W.,
and MONTGOMERY, P. C., Appl. Phys. Lett. 16
der Phys. 27 (1971) 82.
(1968) 3597.
(1961) 489.
[16] FISCHER, R., NICKLES, P. V., TRAN-BA'-CHU, WIECZO-
[17] FAIN, W. M., CHAMIN, J. I., Kvantowaija radio fizika
(Moscou), 1965.
[21] SINGL, S., in Laser Handbook (ed. by Prokhorov et al.,
Soviet Radio, Moscow) 1978, p. 244 ; p. 255.