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(Reçu le 21 novembre 1983, accepté le 23 mars 1984)

Résumé. 2014 Nous avons combiné la théorie de la transition isotrope-nématique de Maier Saupe [1] et la théorie des
mélanges de Flory-Huggins, pour décrire les diagrammes de phases de deux nématogènes A + B. Les deux compo-
sants peuvent avoir des paramètres d’ordre différents SA, SB dans le mélange. On prévoit la morphologie du dia-
gramme en fonction de quatre paramètres seulement. Les calculs numériques sont limités au cas où les points de
transition isotrope-nématique des deux composants sont voisins (c’est le cas des corps chimiquement voisins). Pour
certaines valeurs des paramètres nous trouvons un diagramme de phases remarquable avec deux points critiques
de demixtion : l’un à haute température dans la phase isotrope et un second dans la phase nématique. Nous discu-
tons aussi l’effet de la longueur des chaines quand l’un des composants est un polymère nématogène avec des groupes
latéraux mésogènes, et quand les deux composants sont des polymères.

Abstract. 2014 We have combined the Maier Saupe theory [1] of the nematic-isotropic transition and the Flory
Huggins theory of mixtures to describe the phase diagrams of two nematogens A + B. The two components
can have different order parameters SA, SB in the mixture. We can then predict the morphology of the phase dia-
grams in term of a relatively small number (4) of interaction parameters. The final numerical calculations are
restricted to cases where the clearing points of the two components are nearly equal (cases of chemical similarity).
For certain sets of parameters we find a rather remarkable phase diagram with two consolute points 2014 one at
high temperatures in the isotropic phase and a second one at lower temperatures in the nematic phase. We also
discuss the effects of chain length on the phase diagrams : when one component is a nematogenic polymer [2] with
mesogenic side groups; and when the two components are polymers.
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1. Introduction.

1.1 I NEMATIC MIXTURES. - Nematic mixtures of small

thermotropic molecules A + B have been extensively
studied experimentally. A current way to identify a,
new nematic phase is to study the mixture with a
known nematic. The phase diagrams of these mixtures
have been discussed mainly in terms of nearly ideal
solutions [3]. In connection with solutions of non

nematogenic polymers in nematic solvents, we have
set up a description involving two interactions para-
meters [4]. More recently, Warner and Flory have
studied the phase diagrams of a mixture of rods in a
solvent [5]. A detailed lattice model for thermotropic
nematic mixtures has been constructed by Sivar-
dière [6]. In this model, each molecule occupies one
lattice site, and can be aligned into three separate
directions (X, Y, Z). This choice of three possibilities
ensures that the nematic-isotropic transition for a

pure species is first order, as it should, and predicts
an order parameter at transition Sc = 0.5 (slightly too
large but not unplausible). The model requires four

interactions parameters, and this, indeed, appears to be
the minimal number for a realistic description. Operat-
ing in this way, Sivardiere generates a broad, and
interesting classification of phase diagrams.
The aim of the present work is to enlarge the Sivar-

di6re description keeping four interactions parameters
as in reference [6].

a) We use a Maier Saupe model rather than the
three positions model, and this improves slightly the
predictions on the order parameters.

b) More important, we do not assume the same
order parameter for both components (as was done
by Sivardiere [6] and Warner and Flory [5]) but we
allow for two independent values SA(T, W x where T
is the temperature and 0 the volume fraction of B.
This distinction between SA and SB may be important
in practice, when the two components are chemically
very different.

c) We do not restrict our attention to small mole-
cules A and B, but we also consider the case where one
(or both) component is a polymer. This generates very
dissymetric phase diagrams, which are quite different
from those of reference [6].
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1. 2 NEMATIC POLYMERS. - Polymers exhibiting meso-
morphic behaviour have been extensively studied

during the past ten years. One can distinguish three
classes [5, 6] :

a) lyotropic systems of rigid chains + solvents
found with certain polypeptides [7] and synthetic
polyamides [8] (e.g. Kevlar + sulfuric acid) ;

b) flexible or partly flexible chains with mesogenic
units incorporated into the backbone of the poly-
mer [9] ;

c) polymers with mesogenic side groups [2] attached
to a polymeric backbone by an aliphatic chain called
the « spacer ». Side groups polymers may become
useful for liquid crystal display devices because of
their high stability and their relatively rapid response
to electrical fields ;

d) semi-flexible polymers, namely the « neat » poly-
ethylene type melts considered recently by G. Ronca
and D. Y. Yoon [17].
Thermotropic LC polymers « P » can sometimes

be dissolved in a nematogenic solvent « M », if the
chemical structure of M is similar to the mesogenic
group in the polymer. Various studies on this type of
polymer-solvent mixture are currently under way
(viscosities, elastic constants, neutrons, X-rays). The
experimental phase diagrams of such binary mixtures
are often rather complex and very sensitive to small
changes in the nematogenic units [10]. One of our
aims is to reduce this complexity by a suitable mean
field description. Thus we shall finally describe the
phase diagrams of mixtures

where M = monomer, P = polymer. Apart from the
interaction parameters discussed in section 2, we shall
need to specify the degrees of polymerization (NA, NB)
of the polymer species (PA, PB). We believe that this
analysis will be applicable mainly to side chain ther-
motropic polymers for the following reason : if the

spacer between the mesogenic group and the backbone
is not too small, one can assume an effective decoupl-
ing between the mesogen and the polymer backbone.
On the other hand, for group (b) mesogenic units in
the backbone, the persistence length of the polymer
may be strongly enhanced by the appearance of a
nematic order [11, 12]. This case has then certain
similarities with the case of rigid polymers forming a
nematic solution [(case a), studied in particular by
Flory and Abe [13]], and is less well treated by the
present theory.

2. Mean-field model for binary mixtures.

We always assume that the basic mesogenic units of A
and B are of similar size, and think of them as described
on a Flory Huggins lattice. The basic object is then

the free enthalpy of mixing (per site). This may always
be split as follows :

where G;so = G(SA = SB = 0) describes a situation
without nematic order.

2. 1 FREE ENTHALPY G;so OF THE ISOTROPIC MIXTURE. -
For this part we use the Flory Huggins theory [14]
for two polymers A, B of degrees of polymerization
NA, NB’ 0 being the volume fraction of B, Gi,. is then
given by :

The two first terms represent the entropy of mixing
and Uo is the monomer A-monomer B pair interaction
in the isotropic phase. In the following, we assume
Uo &#x3E; 0 (positive enthalpy of mixing), this being the
most usual case, at least when van der Waals interac-
tions are dominant. We define a reduced temperature
by 0 = kT/Uo ; Uo controls the miscibility of the two
species in the isotropic phase. The isotropic consolute
point deduced from [2] is given by :

We have solved three typical cases for our numerical
studies :

2. 2 FREE ENTHALPY Gnem DUE TO THE ALIGNMENTS
(SA, SB). - In a mean-field (Maier Saupe) model,
Gnem is given by :

Here E(S) is the decrease in entropy due to the align-
ment of the molecules. The last three terms describe
the gain in energy by molecular alignment and involve
three nematic interaction parameters UAA, UBB, UAB-
We assume a) that all three parameters Uij are posi-
tive (a negative UAB would probably correspond to a
mixture of disc-like and rod-like molecules and does
not correspond to our problem), b) that Uij para-
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meters are independent of degree of polymerization
NA, NB. This assumption is valid for polymers with
mesogenic side groups.
We set uij = Uij/U 0 to define dimensionless interac-

tion energies.
2 . 2 .1 Pure nematic « A » (W = 0) or « B » (W = 1 ).
- For 0 = 0 (or 0 = 1), we recover the standard
Maier Saupe free enthalpy

We now recall briefly the mean-field calculation of
SA(T), which is extended later to the mixture.
We choose a trial distribution function f (a) for the

molecular alignment given by 
’

with

m is a dimensionless measure of the quadrupolar
field aligning one monomer. The conjugate nematic
order S(m) is related to Z by,

The entropy E(m) is given by

From [7, 8], we can deduce E(SA). The derivative of E
with respect to SA is simply

SA is calculated by minimizing G with respect to SA :

This leads to

SA(m) is calculated from (7). Apart from the solution
SA = 0, equation (11) has one or two other solutions.
When T is below T A, defined by

(or OA = UAA/exe in dimensionless units)

the nematic phase is the stable phase (Gnem(SA)  0).
At higher temperatures, the isotropic phase (S = 0)

is the stable phase. At T = T A, there is a first order
transition and the order parameter has a universal
value SA(TA) = 0.429.

Conclusion : UAA and UBB are related to the NI
transition temperature of pure A and pure B respecti-
vely by the relation

As mentioned in section 1, a nematogenic polymer can
be mixed with a nematogenic solvent only if the two
basic units are very similar. This in turn implies
T A TB (assumption of chemical similarity). Thus
in the following we shall consider mostly the symme-
trical case

2.2.2 Mixture of A and B.

2. 2 . 2 .1 Nematic interaction parameter UAB. - Let
us start by the case of ideal mixtures. If UAB = U, it is
obvious that SA = SB whatever the composition 0
of the mixture. If we now go to a more realistic case,
with UAB :0 U, SA and SB are usually different. They
become equal only for 0 = 1/2. For 0 = 1/2, one
can define a o pseudo transition» temperature
T p(4) = 1/2) = TM. TM is the temperature of a hypo-
thetical nematic-isotropic transition at the fixed

composition 0 = 1/2. From the result (12), TM is
defined by

Note that TM is not usually observable as a real
transition temperature. For the (first order) nematic
isotropic transition, the composition of the two equi-
librium phases are generally different : the constraint
0 = 1/2 cannot be imposed simultaneously on the
two phases. However we shall see that, for an « azeo-
trope », symmetry considerations allow for an equi-
librium with 0 = 1/2 in both phases, and then TM
becomes observable. But more generally TM is simply
a useful parameter for the classification of phase
diagrams when NA = NB.

If UAB  U, TM  TA : the mixture disfavours the
appearance of a nematic phase.

If UAB &#x3E; U, TM &#x3E; TA : the nematic order is
increased by mixing.
Remark : If NB &#x3E; NA, the useful parameter is the

« pseudo transition » temperature Tp(o,,,), where Pr
is the critical composition (3). For NB large, 0,, -- 0
and TP(O,,) -- T A.
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2.2.2.2 Calculation of the nematic order SA and SB.
- SA and SB are derived by minimization of Gnem
(Eq. (4)). This gives

We calculate E(S) through the « field parameter » m.
The angular distribution functions of monomers A
and B are given by equation (6) with m = mA for
« A » and m = mB for « B ». 17(m) and S(m) are tabu-
lated. We choose a pair mA, mB and calculate E(mA),
SA(mA) and E(MB), SB(mB) respectively.
The equilibrium condition (16) becomes :

In dimensionless units and for the symmetrical case,
equation (17) becomes

From equation (18), it is clear that SA and SB depend
upon three parameters : O/oA, UAB/u and 0. In practice,
we choose a value of UAB/u and then calculate SA and
SB as a function of O/OA and 0. From (18) (a), we draw
SA as a function of SB. From (18) (b), we draw SB =
f (SA). The intersections give the solutions. We have
always the isotropic solutions SA = SB = 0. We may
have one or several intersections. For a solution
SA(01 Ø), SB(O, Ø), we calculate Gn,.’ If Gnem(SA, SB)O,
we retain the lowest energy anisotropic solution. We
show on figure 1 the calculation of SA(O, Ø), SB(o, Ø)
for two values of uAB/u. On figure 1 (a), the ratio uAB/u
is larger than one and, at fixed temperature, SA and
SB are maximum for 0 = 1/2. On figure 1 (b), uAB/u
is smaller than one and the nematic order is depressed
near 0 = 1/2. From these curves one can draw the
variation of SA and SB as a function of 0 for a given
composition (Fig. 2).

2.2. 3 Miscibility of A/B in the nematic phase. -
In the isotropic phase, the miscibility of A and B is
controlled by Uo. The resulting consolute temperature
0,, is a function of Uo, NA, NB (Eq. (3 )). In the nematic
phase, the effective AB interaction is modified by the
alignment parameters SA, SB. From equations (2, 4),
we find an effective interaction parameter

If Uo  Uo, the consolute temperature in the nematic

Fig. 1. - Nematic order parameters SA, SB as functions of
the reduced temperature (9/8A) and composition (Ø) with
the assumption of chemical similarity (equal clearing points
for A and B). The full lines are the isothermal curves (6 =
constante) and the dotted lines the curves 0 = constante.
a) UAB/ UAA = 1.5 ; the nematic order is increased by
mixing;
b) UAB/ UAA = 0.5; the nematic order is depressed by
maxing.

phase is reduced. From equation (3), one can easily
find that

If UAA = Uss = UAB, Uo = vo and the consolute
temperature is not modified by the molecular align-
ment.
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Fig. 2. - Explicit plot of the order parameter SA, SB as a function of the reduced temperature 9/BA deduced from Fig. 1.

a) UAB/ UAA = 1.5, b) UAB/ UAA = 0.5. The data are given for two volume fractions of B. i) 0 = 1/2, SA = SB ; the « pseudo
clearing point » corresponds to SA = SB = 0.429, ii) 0 = 0.01; the « pseudo clearing point » coincides practically at
0 = OA’

For 0 = 1/2, if UAA = UBB = U but UAB 0 U, UO
is simply given by

Thus Uo  Uo if UAB &#x3E; U : if mixing favours the
nematic order, this in turn increases the miscibility
of the two compounds. Then for the symmetrical case

We shall see in the next section that the morphology
of the phase diagrams is controlled by 3 parameters :
O’s’ = 8c, 0"’, and T p(Øc)’ the o pseudo » nematic
transition at the critical concentration of the isotropic
mixture (note that for NA = NB, ø c = 1/2 and

Tp(Oc) = TM).
It may be useful at this point to insist on the follow-

ing (classical but important) property : two nematics
need not be miscible in all proportions. If a certain

phase fl is continuously miscible with a nematic phase
a, fl is also a nematic. But if fl is not miscible with a, p
may still be nematic phase.

3. Phase diagrams.

3.1 DEFINITION OF THE EQUILIBRIA. - The equili-
brium between two phases (I and II) is described by the

equality of the chemical potentials of A and B

For our model, it is more convenient to use a different
pair of fields :

i) the exchange chemical potential

ii) the osmotic pressure

The equilibrium between two phases is then given by

In practice, to derive the phase equilibria, we calculate
G( Ø) at 0 fixed by inserting in equation (3) the values
Of SA (0, 0), SB (0, 0) calculated in paragraph (2 . 2 . 2 . 2).
The condition (24) corresponds graphically to the
existence of a common tangent - which specifies
the composition 0’ and øII of the two phases in
equilibrium. They are four possibilities :

a) a homogeneous phase (no common tangent)
either isotropic or nematic ;
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b) two isotropic phases (I, II) in equilibrium;
c) two nematic phases (I, II);
d) equilibrium between an isotropic phase (I) and a

nematic phase (II).
In the following section (4), we calculate numerically

various phase diagrams for (MA, MB), (MA, PB),
(PA, PB) pairs varying the interaction parameters
(but keeping UAA = UBB)’ On the other hand, for
dilute solutions (W - 0 and W - 1 ) and for azeotrope
mixtures we can use exact thermodynamic formulas
and relate the slopes of the phase diagram to the inter-
action parameters : this helps to understand some
important features of the phase diagrams and is
discussed below.

3.2 GENERAL FEATURES.

3.2.1 Dilute solutions near TA. - For 0 -+ 0, equa-
tions (16) for SA and SB become

The solution for SA is the usual threshold SA = Sc =
0.429. The value of SB is calculated from equations (25).
If IIAB  UAA, SB  Sc. In that limit, - TZ rr
4.47 S 2/2. Equations (25) lead to SB = UAB SA/4.47 OA-
If UAB = UAA, SB = Sc. If UAB &#x3E; UAA, SB(UAB) has to be
calculated numerically.
For 0  1, T ~- TA, we calculate the composition

ON and 4&#x3E;i of the nematic and the isotropic phase in
equilibrium.

i) the ratio of the two compositions is given in terms
of a free enthalpy of transfer AG for one B molecule
migrating from i to N

Here SB is the order parameter for W - 0 given by
equations (25). For SB  S" 2:(S) _ S 2 and

ii) The equality of the osmotic pressure leads to

where AHA is the latent heat of the pure A compound
at the NI transition (if OHA is known, Oi - ON allows
for a derivation of NB).
From (26), (27), we find that :
a) ON10i  1 if U As/U AA  1 and ON10i &#x3E; 1 if

UAB&#x3E; UAA;

b) 4&#x3E;N  4&#x3E;i if UAB 2-- UAA ;
c) 4&#x3E;N/4&#x3E;i varies exponentially with the degree of

polymerization NB. When NB is large, 4&#x3E;N tends to
zero exponentially.

For W rr 1, T - T B we find similarly :

Conclusion : The measure of T A and T B gives the
nematic interaction parameters UAA, UBB. From the
values of the composition l/JN(T), l/Ji(T) of the nematic
and isotropic phases in equilibrium, it is possible to
derive NA, NB and UAB. But the derivation of UAs
is not straightforward. We show now, however, that
if the phase diagram presents an azeotrope, UAB
is easily obtained.

3.2.2 Azeotropes. - An azeotropic mixture (see
for instance Fig. 4 (K, L)) has a clearing point TZ
somewhat similar to the clearing point of a pure
compound : the isotropic phase and the nematic

phase have the same composition Oz. We shall now
show the following theorem : at the point (Oz, TZ) the
two components A and B have the same order para-
meter SA = SB. To prove this, note that since GN =
G,SO + Gnem, we can write the exchange chemical
potential as the sum of two terms :

Similarly

The equality of J.1 and 17 in the two phases for the
same 0 leads to the azeotrope conditions :

We must add to equations (32) the two equations (16)
for SA, SB. This leads to :
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Fig. 3. - Classification of the phase diagrams based on the
two dimensionless parameters of equation (37). Above
(below) the line d nematic order is favored (reduced) by
mixing. To the right (left) of the line L12 the isotropic conso-
lute point 0,, is below (above) the « speudo clearing point »
OP(O,,) at the same concentration 0,,. The position of d2
depends upon NA/NB. We display L12 for two simple limits
NA = NB and NA  NB. The points I, J... correspond to
phase diagrams which have been computed numerically and
which are displayed on figures 4, 5, 6.

For these two equations to be satisfied simultaneously,
we must have

Then from equations (16, 34), we can write down
explicit formulae for the position of azeotropes :

Remark : In our model, for the azeotrope composi-
tion (0 = Oz) the order parameter SA(T, Oz) and
SB(T, Oz) are equal not only at T = Tz, but also at
all lower temperatures : this can be seen from equa-
tion (16) with 0 = Oz*

Inserting the condition 0  Oz  1 and Tz &#x3E; 0 in

equations (35, 36) gives the condition for the existence
of an azeotrope in the phase diagram.

i) If UAA + UBB - 2 UAB &#x3E; 0 (mixing tends to

destroy the nematic order) an azeotrope will occur
only if UAB  U AA and IIAB  UBB*

ii) If UAA + UBB - 2 UAB  0, the azeotrope
occurs only if UAB &#x3E; UAA and UAB &#x3E; UBB-
These conditions are obeyed in the symmetrical

case UAA = UBB. The other requirement to observe
the azeotrope is T Z &#x3E; T,, the demixing temperature.
To summarize : In our model an azeotrope behaves

exactly like a pure compounds, with a fixed composi-
tion at transition and a single order parameter in the
nematic phase. Note that when an azeotrope is found
in the phase diagram, one can derive immediately
the interaction parameter UAB from TZ and Oz :
this may be useful in practice. We also predict that the
position (TZ, Oz) of the azeotrope is entirely indepen-
dent of the degrees of polymerization (NA, NB) :
this may provide a useful check on the model.

4. Types of diagrams for cases of chemical similarity.
We give now a general discussion of the phase dia-
grams, within the assumption of chemical similarity
( UAA = UsB = U). This is supported by numerical
calculations for the following examples :

a) monomer-monomer NA = NB 1
b) polymer-polymer NA = NB - 100
c) monomer-polymer NA = 1, NB = 100.
The basic parameters for our discussion are :
Oc = isotropic consolute temperature (dimen-

sionless) defined in equation (3).
OP(OC) = pseudo clearing point at the composition

Oc (dimensionless) defined at the end of section 2
(recall that OP(O,) = 6M for NA = NB and °p(lPc) = 8A
for NA  NB)’ It is particularly convenient to choose
as our control parameters

where a,, is defined in equation (12). This choice allows
us to cover simultaneously the three cases (a, b, c)
defined above. A first line of importance d 1 in the

(x, y) representation (see Fig. 3) is the bisector x = y.
Whenever x &#x3E; y, the mixtures have lower clearing
points than the pure compounds, while for x  y
they have higher clearing points.
The second line of importance d 2 corresponds toy
W) = oc.

i) if NA = NB this is the line x + y = 1;
ii) if NB &#x3E; N A (tP p( tP c) -+ 0 A) this becomes a vertical

x = 1/2.
The two lines d 1, d 2 divide the allowed region in

the xy plane into four sectors (Fig. 3), which corres-
pond to the main types of diagrams.

4.1 MONOMER-MONOMER MIXTURES : I NA = NB = 1.
- We have calculated the phase diagrams corres-
ponding to the points (K, L, J, C, I, D) (E, F, G, H) of
figure 3. They are pictured on figure 4.
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4.1.1 Oc &#x3E; onem(y &#x3E; x).
At point « K », OM &#x3E; Oc &#x3E; on,m. One notices an

azeotrope (at Oz = 1/2). The mixture is stabilized

by the nematic order and demixes only at a very low
temperature (O’c"/Oc = 0.4).
At point « L », 8 em becomes negative : AB are

miscible at all temperatures in all proportions.
Point « J » is topologically identical to point « L »,

but the coexistence region is large because U AB U AA.
The size of the coexistence region gives an estimate of
UAB/ UAA. For UAB/UAA - 1, the NI coexistence zone
tends to a thin line.

Point « C » is very close to point « L » in the para-
meter space, but the diagram is qualitatively different
because Oc &#x3E; Om. This case « C » is interesting : the
upper biphasic region (o Chinese hat ») corresponds
to a demixing in the isotropic phase and to a nematic-
isotropic equilibrium. The lower biphasic region cor-
responds to a demixing in the nematic phase. We have
then two consolute points !
One goes from « C » to « I » by increasing UAB -

UAA : : when 0  0, one reaches type  I &#x3E;&#x3E; (pure
« Chinese hat &#x3E;&#x3E;).
For « D », 0"m &#x3E; Om and the two compounds are

never miscible in the nematic state. We call « D » the
« Napoleon » type (« hat »).

4.1.2 ° c  onem(y  x).
At point « E » the upper (thin) biphasic region

corresponds to the NI equilibrium. This is an azeo-
trope at Oz = 1/2. The miscibility is now reduced

by the nematic order.
At point « F » the two coexistence regions of « E »

become connected (o Donkey » diagram) onem &#x3E; OM.
At point « G » a demixing appears in the isotropic

phase (0, &#x3E; Om). We call G the « Ghost » type.
At point « H » the biphasic isotropic region disap-

pears even for c &#x3E; Om (o owl» type).
Conclusion : The miscibility of two compounds

can be completely modified by molecular alignments.
For instance, if UAB &#x3E; U &#x3E;&#x3E; Uo, the miscibility is
total in the nematic phase. On the other hand, the two
species demix if ) I U 0 I  ! UAB - U when UAB  U.

4.2 POLYMER-POLYMER MIXTURES : NA = NB = 100.
- We have represented on figure 5 the phase diagrams
corresponding to the points (L, J, D) (E, G, H) of
figure 3. It is interesting to compare the results to
case (a) pictured on figure 4.

4.2.1 Oc &#x3E; onem(y &#x3E; aC).
At point « L », the biphasic NI region is now

increased, as expected from the discussion of para-
graph III.2 (ON/oi -+ 0 as NA,B become large).
At point « J » one observes the same effect.
The structure at point « D » is completely modified.

For N = 1, it was « Napoleon » type. For N = 100,
it becomes « Chinese hat ». The reason is simple : as
soon as a nematic order appears, the mixture becomes

miscible at all temperatures : 0"m/Oc = 1 +
(U - UAB) S2. Since U and UAB are of the order of
100, o:m is always negative.

4.2.2 Oc  Ollm(y  x).
For U &#x3E; UAB, o,em/oc _ c 100. This property is well

displayed at point « E » : the miscibility is suppressed
by the nematic order. Note also the large thickness
of the NI region.
At point « G », we find almost complete immiscibi-

lity in the nematic phase.
At point « H », the one nematic phase is restricted

to extremely small 0.

Conclusion : At large N, one notices two effects :

1) the thickness of the NI coexistence zone becomes
very large ;

2) in the nematic state, the mixture becomes com-
pletely miscible for UAB &#x3E; U or completely immiscible
if U AB  U. This is typical of pplymer systems, where
a slight incompatibility is enough to provoke com-
plete phase separation.

4.3 MONOMER-POLYMER MIXTURES : I NA = 1, NB =
100. -We have represented on figure 6 the phase
diagrams corresponding to the points (Q, R) (M, N, P)
of figure 3. In this case (C), one must compare Oc,
0"m and OP(OC) -- OA. In the space of the parameters
(x, y), it corresponds to four regions limited by the
bisector Ji(0c = "m) c and the line A 2 (X = 1/2 or

Oc = 0A).

4. 3. 1 Oc &#x3E; 0"’(y &#x3E; x). - We have chosen the

points Q and R, one above and one below x = 1/2.
At point « Q », 0 A  0 e : one first observes a

demixing in the isotropic phase (0e = 1.65, Oc -- 0.1)
corresponding to the top of the distorted « hat »

shape biphasic region. In the nematic-isotropic part,
one notices a large dissymetry : for 0 -- OA, the ratio
of the thickness for the coexistence zone is of order

NB/NA = 100. We also find an azeotrope for 0 = 1/2,
Wz = Om = 1.48 (as predicted by our general theorem
of section III). We observe no demixing in the nematic
phase because 0"m  0.
At point « R », OA &#x3E; Oc and Ollm  0. We have

just a NI iphasic region, thin on the B side and thick
on the A side. The two polymers are completely
miscible.

4.3.2 Oc  Ollm(y  x).
At point « M », Oc &#x3E; OA. This diagram is a deform-

ed « G ost » derived from point G of figure 4.
At points « N », « P », the demixing in the isotropic

phase disappears because 0,,,  OA. These two dia-
grams correspond to the « Donkey shape » case F
of figure 4.
On « P », the asymmetry of the two phases region is

clear-cut because U AA UAB. One expects a very
thin zone on B side and a large zone on A side.
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Fig. 5. - Phase diagrams for polymer-polymer mixtures (NA = NB = 100) associated to the points (L, J) (D) (E) (G, H) of
figure 3. Compare with the monomer-monomer case and notice the thickening of the (N/I) coexistence zone. At point « D »
(o Chinese hat ») : the demixing in the « N » phase has disappeared. The diagram « E » is transformed in a « Donkey ».
At point « G » and « M », we find almost complete immiscibility in the « N » phase.

(On « N », the dissymetry is less because UAS 
U AA).
Conclusions : This case is intermediate between

case (a) and (b). The miscibility of the polymer chain
in the nematic phase is very small as soon as UAB 
UAA. This is related to the most familiar case of a non-
nematogenic polymer polymer solute (PS, PE...)
in a nematic solvent [15, 4]. One can dissolve only a
small fraction of P chains. On the other hand, if

U AD &#x3E; UAA, the miscibility of a polymer and a small
monomer is largely increased by the nematic alignment.

5. Conclusion.

1) We have established a certain catalog of allowed
phase diagrams for mixtures of nematogens, showing
the effects of interactions and of molecular weight.

2) The catalog is restricted however by a certain
number of constraints :

a) we have taken the enthalpy of mixing in the
isotropic phase as positive;

b) we have mainly concentrated our discussion on
U AA = UBB (cases of chemical similarity). This res-
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Fig. 6. - Phase diagrams for monomer-polymer mixtures (NA = 1, N, = 100) associated with the points R, Q, M (N, P)
of figure 3.

triction is probably not too serious for qualitative
purposes;

c) we have not include persistent length change
effects : it seems a good approximation for polymer
with mesogenic side groups where the main chains
are decoupled from alignment of mesogenic units by
the spacers ;

d) all crystal phases (or smectic phases) have been
omitted from the discussion.
On the whole, we feel that our choice of constraints

is reasonable at the present stage.

3) The inverse problem is of course of major

interest. From measurements on dilute solutions (A
in B and B in A) we can extract four slopes giving
the two heats of transformation of the pure compounds
plus two free energies of transfer AGA, AGB. From
TA, TB and the four slopes, using equations (26), (27),
(28), (29) we can derive the three interactions constants
UAA9 UBB, UAB, and the ratio NA/NB. Thus our choice
of phenomenological parameters appears rather well
adjusted.

4) Of course, in the more distant future, it may be
necessary to improve on various features - e.g. : to
distinguish between a nematogenic portion and a
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spacer portion in side group polymers, allowing for
different order parameters in both parts, etc... It may
also be necessary to improve on the Maier Saupe
theory to reconcile the transition points TA, TB and
the latent heat AHA, AHB : but they are clearly pro-
blems of the second generation.
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