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Résumé. _ Nous présentons une réalisation pratique d’une variante du modèle d’accélération de Fermi. Nous
mettons en évidence trois bifurcations successives sur le chemin vers le comportement chaotique.

Abstract 2014 An experimental model of a modification of the Fermi acceleration problem is described. Evidence
is presented for three consecutive bifurcations on the period doubling route of the system from regular to chaotic
behaviour.
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1. Introduction. - The discovery of strange attrac-
tors has stimulated interest in the physics of turbu-
lence in the last few years. Three scenarios according
to which the phenomenon should develop have been
proposed [1]. Experimental evidence exists for all
three scenarios. For instance, the period doubling
scenario of Feigenbaum [2] has been already observed
in a number of physical systems : Rayleigh-B6nard
convection cell [3], PLL models of the Josephson
junction [4], non-linear RLC resonance circuits [5],
and a mechanical (compass in an alternating field)
model [6].

It is the last of the above-mentioned experiments
that stimulated the present author to search for the
period doubling cascade in an even simpler mecha-
nical system : an elastic particle jumping on a vibrating
surface. The idea of the experiment can be introduced
in a number of alternative ways. In the following we
have chosen the way in which it has been discovered,
i.e., via an analogy with the discrete sine-Gordon
chain.

2. The discrete sine-Gordon chain. A cascade of
bifurcations of the central island. - The expression :

describes the potential energy of a one-dimensional
chain of particles coupled by harmonic forces and
submerged in an external periodic field. The model

known as the discrete sine-Gordon chain serves as a
first order approximation for a whole variety of

physical systems among which the coupled pendulum
chain designed by Scott occupies a special place due
to its laboratory scale dimensions [7]. We shall use
the vocabulary of the experimental device in the

description presented below of the essential properties
of the theoretical model. Stationary configurations of
the chain described by (1) are given as solutions of a
recurrence equation :

obtained when condition of equilibrium of forces is
applied to (1).

Solutions of the second order difference equation can
be conveniently presented within a (Oil Oi+ 1 ) map. The
map for equation (2) displays a translational symmetry
and can be seen to consist of identical 2 n x 2 1C

squares. Thus, results of the numerical analysis of the
equation are represented by the landscape of a single
(Oil Oi + 1) square, where Õi = Oi[mod 2 7t]. See figure 1.
The landscape can be described as : islands of order
submerged in the sea of chaos.
The shape, area and position of the islands depend

on the external field parameter A. A rigorous analysis
of the landscape and its physical meaning for the
discrete sine-Gordon and similar models has been

performed by Aubry [8] ; here, we shall limit ourselves
to but one of its most visible landmarks - the central
island located around the (n, n) point.
Without getting into some unnecessary details, the

evolution of the island with increasing A can be
described as follows :

For A  1 (see Fig. la) the island is elongated and
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Fig.1. - (0i, Õi + 1) map for the discrete sine-Gordon

equation (2). A = 0.5, 1.5 and 5 in figures a, b and c, res-

pectively.

stretches almost from (0, 0) to the (2 n, 2 n) comer of
the map. At this stage the island is filled with smooth

elliptic orbits, whose discrete rotation induced by
consecutive iterations of (2) is very slow even at the
centre of the island where it is fastest. As A increases

(see Fig. 1 b), the island shrinks changing to a more
square shape. Orbits of a given period « flow down »
the island; those already at the shore enter the sea of
chaos while new, of a shorter period are generated by
the (n, n) top of the island. To be more precise, orbits
of commensurate periods do not cover smooth curves
but are seen as chains of discrete points which, as A
increases, prove to be located within smaller islands

(within which a similar process takes place). Conse-
quently, the island at first sight monolithic proves to
be by no means such. It must be rather seen as a collec-
tion of concentric belts of smaller islands (which on
their own display similar morphology) separated by
thin strips of chaos. « Consecutive » commensurate
belts are separated by dams of incommensurate

orbits. The belts, very tight at the top of the island,
become looser as with increasing A they shift towards
the island’s shore. At a certain A = Å.l (see Fig. c) the
period of rotation at the top of the island reaches 2
- the island bifurcates into two smaller and the story
repeats itself. A = A2 makes the two islands bifurcate
simultaneously, and so on. Consecutive bifurcations
make the central island disperse into a well organized
archipelago of more and more tiny islands. Values
{ Ai }i= oo at which the bifurcations are observed are

arranged in a sequence accumulating at a A. limit in
which the archipelago becomes non-denumerable
while its total area shrinks to zero - a Cantor set is

formed. It has been shown recently [9] that like in the
original one-dimensional case [2] convergence of the
Ai I sequence becomes geometrical at high stages of
the bifurcation cascade and is governed by a universal
constant : ð2D = 8.72..., different from that found for
one-dimensional mappings (61 D = 4.67...).
Can the cascade of bifurcations be illustrated by

some simple experiments carried out on Scott’s

machine ?
To answer the question we must analyse the physical

sense of both the elliptic fixed point (n, 7r) and the
orbits which surround its

The (7c, n) point always represents this particular
configuration in which all pendula stand up the gravi-
tational field. Configurations seen in the map as

elliptic orbits surrounding the point represent modu-
lations imposed of the up-standing chain. That the
arranged in-line, up-standing chain is stationary, is

obvious, since both gravitational and elastic forces
vanish in this configuration. That a modulated up-
standing chain can be stationary, is less obvious, but
calculations show that the wavelength of the modula-
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tion can be so adjusted relative to its amplitude that
the condition of equilibrium of forces is satisfied. For
commensurate wavelengths another factor must be
taken into account - the phase of the modulation
wave. Only at one particular phase is the modulation
wave pure. An endeavour to shift the phase leads to a
secondary modulation. This is the physical sense of the
belts of secondary islands to which commensurate
orbits are transformed as A increases.

It is in agreement with intuition that the higher the
amplitude, the longer the wavelength of the modula-
tion. Consequently, the shortest modulation is always
represented by the centre of the island; when its

wavelength reaches 2, the island bifurcates. And so on.
Though stationary, all. the configurations described

are unstable mechanically - any fluctuation makes
them fall down. It would need a demon prestidigitator
to use Scott’s machine to demonstrate the cascade of
bifurcations described. It was the main aim of the

present author to find a way in which the instability
could be overcome and the cascade visualized in a live

experiment. Such a way exists and is described in the
next part of the paper.

3. The jumping particle model. - The idea lies in a
reinterpretation of equation (2). This second order
difference equation can be regarded as resulting from
a set of two first order difference equations :

The two equations make a good approximation for
equations of motion of a perfectly elastic particle
jumping perpendicularly (within a gravitational field)
on a horizontal vibrating plane. The model is, as the
present author has found out, already known as the
Pustilnikov modification of the Fermi acceleration
model [10]. Oi denotes now the time of the i-th collision
in which the particle arriving at the vibrating plane
with velocity vi-1 I departs from it to the next jump
with velocity vi modified by A sin Oi. The next jump
lasts (in appropriate units of time) vi and ends at °i+ 1.

Let us notice that the model is essentially different
from the « kicked pendulum » for which equation (1)
can be regarded as Lagrangian [ 11 ].
Due to the equivalence of equations (3) and (2) the

modes of jumping which are possible in the Pustil-
nikov model are illustrated by the same set of maps that
we analysed above. Each stationary configuration of
the sine-Gordon chain has its counterpart in a specific
jumping mode of the Pustilnikov system. As before, we
shall limit ourselves only to a short analysis of modes
represented by the central island; due to the cascade of
its bifurcations, the modes should follow the Feigen-
baum scenario of period doublings.
Twice in each cycle the vibrating surface crosses the

state of zero velocity - in its upper and lower turning
point. If the particle is thrown onto the surface in

such a moment, its velocity will be preserved during the
collision (A sin 0; = 0). Thus, if the initial velocity is
chosen in such a way that the resulting jump lasts
T = 2 n, the next collision will coincide with the next
turning point (of the same kind) and so on - a periodic
jumping pattern is initiated. Since there are two

kinds of zero velocity points, two kinds of the simplest
jumping modes are possible. Equations :

describe the two modes.
The first one (4a) is represented by the (0, 0) or

(2 n, 2 n) comer of the map. The second one (4b) by
the (n, n) centre surrounded by central island. A pertur-
bation destroys the first mode. The second one is

stable - a perturbation leads only to a phase modu-
lation of it. The phase modulation is equivalent to the
angular modulation analysed in the case of the

coupled pendule chain.
Bifurcation of the central island results in doubling

of the period of the jumping mode. Which after the
first bifurcation is given by :

and can be described in plain words as a mode in
which a jump shorter than 2 n is followed by a longer
one. Altogether, the periodicity is preserved in 4 n.

Consecutive bifurcations double the period up to
infinity.
To the best of the present author’s knowledge, the

jumping particle model has been always regarded as a
convenient thought experiment, and no efforts have
been made to construct it as a real experimental
system. Below, a working design is described.

4. Experimental set-up. - Figure 2 presents block
diagram of the experimental system. The vibrating
plane is provided by the surface of a concave lens
fixed to the membrane of a small loudspeaker supplied
from an audio generator. Frequency of the vibration
equals about 100 Hz. The slight curvature of the lens
surface stabilizes the trajectory of the jumping par-
ticle. Jumping modes of a steel sphere of a diameter
a -- 4 mm are monitored by an oscilloscope whose
x-axis sweep is triggered by the audio generator. Since
collisions of the steel sphere with the lens surface
produce clear click sounds, a microphone placed
above the system makes it possible to observe the
collisions as regular wave packets. Position of the
front edge of the collision sound indicates directly its
phase in relation to the vibration of the lens surface.
Consequently, a periodic jumping mode is seen as a
standing image of the wave packets produced by conse-
cutive collisions.

Since at low levels of the vibration amplitude a
trivial solution in which the sphere moves together
(in contact) with the vibrating surface is also possible,
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Fig. 2. - Experimental set-up. M : microphone, S : steel

sphere, G : lens, L : loudspeaker.

the periodic jumping mode must be initiated by an
external perturbation - a delicate knocking at the
lens does the job.

5. Results. - A threshold ho exists below which the
2 n-periodic jumping mode is not possible. Knocking
at the lens produces only a short sequence of jumps
and the sphere stops i.e. gets into the trivial solution.
Above Ao, the particle can be easily put into an endless
regular sequence of collisions heard as a clear rattling
sound and visible as a standing image on the screen of
the monitoring oscilloscope. Figure 3A presents the
case. Exposure time was about 1 s. Thus, the image is
made from about 100 of identical traces. A slow,
continuous increase of the vibration amplitude makes

the phase of the jumping mode shift towards n - the
standing image shifts along the x-axis.
At a well defined A, the tune of the rattling sound

changes. At the same time the image seen on the
oscilloscope screen splits in two. Figure 3B presents
the first splitting. The period of the jumping mode
doubles. Further increase of the vibration amplitude A
makes the two images separate more and more up to
another critical value A2 in which each of the two
images splits in two on its own. The second splitting
presented in figure 3C results in a subtle change of the
rattling sound. The third bifurcation observed at a A3
value of the vibration amplitude is very delicate and
easily perturbed by any fluctuation. Figure 3D presents
a clear image of the event.
What happens next is difficult to say without a more

sophisticated analysis of the observed chaotic at the
first sight jumping mode. Anyway, next steps of the
period doubling route seem to be too delicate to be
observed in a real experiment due to the effects of the
unavoidable noise.

Amplitudes A,, A2, A3 have been measured and in
units in which A, = 1, are equal 1.097 and 1.117 res-
pectively. Thus the Feigenbaum factor :

A systematic error in the above-presented value
cannot, however, be excluded due to non-linear
distortions introduced by the loudspeaker. In the

simple experimental equipment used during the preli-
minary study the factor could not be eliminated.

Fig. 3. - Oscilloscope recordings of three consecutive bifurcations in the jumping particle model. A : before the first bifur-
cation ; B : after the first and before the second bifurcation; C : after the second and before the third bifurcation; D : just
after the third bifurcation.
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6. Discussion. - Equations (3a, b) describe an ideal
system in which the « vibrating » surface provides
momentum to the colliding particle without changing
position itself. This is certainly not the case in the
experimental system we designed.

This inconsistence matters, of course, but it seems
that results presented are determined by still another
factor : dissipation. At each collision the jumping
particle looses a part of its energy. Consequently,
equation (3b) should rather read :

Exact, quantitative properties of this dissipative
model (already considered by others in connection
with a strange attractor it may produce [12]) cannot be
determined without numerical analysis, but its most
essential qualitative features can be deduced by
intuition.

First of all, let us notice, that dissipation removes
the two-dimensional translational symmetry of the

(0i, Oi , 1) map observed for the non-dissipative case.
Having lost its symmetry the (0i, 0i+1) map becomes

awkward in application. Instead, the (0i, vi) phase
space can be used. One must remember, however, that
it is now only the Oi variable that can be expressed
modulo 2 n; the velocity vi cannot be reduced like
that.

Dissipation damps any phase modulations, conse-
quently elliptic orbits are not possible in their previous
form. In general, they must turn into spirals falling
down onto centres located near elliptic fixed points
- point attractors with their bassins are formed If,
however, A is sufficiently high and if an elliptic orbit is
commensurate of a sufficiently low order, then being
itself built as a belt of secondary elliptic fixed points
(surrounded by smaller elliptic orbits), it turns into a
belt of point attractors (each surrounded by smaller
bassins). The jumping mode corresponding to such a
belt of attractors can be described as a stable commen-
surate phase modulation of a given jumping mode. As
the dissipation increases this possibility is less and less
probable due to another effect - a shift of point
attractors from their k = 1 positions. The shift is

necessary to compensate dissipation. In the simplest
case of the 2 n-periodic jumping mode represented in
the absence of dissipation by the (n, 2 n) elliptic fixed
point (we use now the (0i, Vi) notation !) corresponding
attractor is shifted to (n - s, 2 rc) position, where
A sin Oi term does not vanish. The shift can be easily
calculated as :

It is obvious that this point attractor must vanish
below well defined value ho at which the shift equals
n/2. Similar reasoning is valid for any other attractors
formed from elliptic fixed points and concerns in parti-
cular the whole family of attractors formed by the

cascade of bifurcations of the central island In conse-
cutive steps of the cascade, the basin of the central
attractor disperses into archipelago of smaller and
smaller basins; at constant dissipation, the basins
become eventually too small to keep the perturbed by
noise jumping mode inside - the Feigenbaum scena-
rio is cut short. What happens next, we are not able to
answer at present. The jumping mode must leave the
period doubling route. Are there any new attractors
ready to accept it ?
A few words of comment seem to be necessary

concerning the value of 61 that we determined experi-
mentally : it coincides (within the error limits) with the
universal convergence ratio ð 1D = 4.67... characteristic
for one-dimensional mappings which, at first sight,
appears to be in contradiction with two-dimensional
nature of mapping (3a, 3b) which we have shown to
describe the idea of the jumping particle model and
which produces a cascade of period doublings with
b 2D = 8.72...
The explanation of this discrepancy lies once more

in the dissipation present in the experimental realiza-
tion of the jumping particle model. As shown by
Helleman and Zisook [13] even infinitesimal dissi-

pation changes radically convergence of the bifurca-
tion cascade of a two-dimensional mapping at its

high stages so that the limit convergence ratio equals
ð1D instead of b 2° (the latter being preserved only in
the pure area-preserving, i.e., k = 1 case).
One must remember, however, that this theoretical

result concerns the behaviour of the bifurcation
cascade in its limit, while the value we determined
describes the cascade only at its very beginning.
Consequently, one should rather calculate the first
three Å.-s of the cascade produced by mapping (3a, 7)
and find its starting convergence ratio for k E (o, 1).
Such calculations described in detail elsewhere [14]
have been performed proving that the value of b 1
we determined (i.e., 4.8) can be fitted by k ~ 0.2, thus,
the experimental system proves to be highly dissipa-
tive. Experiments, which are being performed at

present, indicate that the dissipation factor depends
strongly on details of the experimental system (for
example materials of which both the jumping particle
and the vibrating surface are made, their masses,
frequency at which the jumping mode is excited, etc.),
so, the measured value of d1 may vary in a wide range.
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