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Résumé. — Nous avons mesuré par spectroscopie de corrélation de photons la self-mobilité aux temps courts
de particules colloidales sphériques dans des suspensions liquides concentrées. Pour des fractions en volume
¢ = 0,3, la théorie incluant les interactions hydrodynamiques a deux corps ne permet pas de décrire nos résultats,
ce qui indique I'importance des interactions multiples.

Abstract. — The short-time self-mobilities of spherical colloidal particles in concentrated liquid suspensions
were measured by photon correlation spectroscopy. For volume fractions ¢ 2 0.3, theory incorporating two-
particle hydrodynamic interactions was not adequate to describe the data, indicating the importance of many-

particle contributions.

1. Introduction. — Concentrated suspensions of
microscopic particles in a liquid occur widely in
nature and are of importance in many industrial
processes. In fairly dilute suspensions (volume frac-
tion ¢ < 0.05, say) the effects on particle Brownian
motions of both direct interparticle interactions (for
example, coulombic or « hard-sphere ») and indirect
hydrodynamic interactions (transmitted through fluc-
tuating flows in the suspending liquid) are reasonably
well understood theoretically [1-7]. At these concen-
trations it is adequate to treat hydrodynamic inter-
actions as pairwise additive. However, at larger ¢,
clusters of more than two particles become probable
and the validity of assuming pairwise additivity of
hydrodynamic interactions is questionable. Here we
report measurements by photon correlation spec-
troscopy of the mobility, over distances small com-
pared to the particle radius, of single particles in
suspensions of volume fractions up to about 0.45.
This local self-mobility is possibly the simplest useful
dynamic property of a concentrated suspension. Our
results indicate that many-body hydrodynamic inter-
actions have a significant effect for ¢ 2 0.3.

In order to measure the self-mobility (rather than
the more complicated collective dynamic properties)

light-scattering measurements had to be made at
values of the scattering vector much greater than those
at which significant oscillations occur in the struc-
ture factor (see section 2). This necessitated the use
of relatively large particles (diameter ~ 1.2 pm). In
order to obtain reasonably transparent dispersions
at high concentrations it was necessary to match the
refractive index of the liquid (in fact a mixture of
liquids) closely to that of the particles. Experimental
details and some of the difficulties encountered in
light-scattering measurements on this rather unusual
system are discussed in section 3.

2. Theory. — The simplest quantity which can be
measured by dynamic light scattering from a con-
centrated suspension is the wavevector-dependent
effective diffusion coefficient D,;(K), determined from
the initial slope or « first cumulant » of the méasured
photon correlation function [1, 5-7]. For a large
number N of identical spherical particles, this coeffi-
cient can be written [7, and references therein]

N
D (K) = [NK2S(K)]™' 3 <K.D/{{R,}).K

ih,j=1

eiK-Rij > ; (1)
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here K is the scattering vector (magnitude K), S(K)
the static structure factor, R;; the vectorial separation
between the centres of particles i and j and the angular
brackets represent an (ensemble) thermal average
over all possible particle configurations. Equation (1)
is valid on a timescale long enough that it is meaning-
ful to talk about diffusive (Brownian) motion in
response to the rapidly fluctuating solvent forces, but
over which the particle positions barely change [1, 7].
D;({ R, })/kT is thus the mobility tensor which
describes the velocity response (on this same timescale)
of particle i to a force on particle j and depends, in
the general case, on the instantaneous spatial confi-
guration { R, } of all the particles; kT is the thermal
energy.

If measurements are made at large enough K (as
in our experiments, see section 4), many oscillations
occur in exp(i K.R;;) for small changes in R;; and
only i = j terms survive the average in equation (1);
for the same reasons S(K) assumes its high-K value
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of 1 (well beyond any oscillations). Thus, in this
high-K limit, equation (1) simplifies to

D§; = };Pg D (K) = (K.D;,({R, }).K)/K? (2)

where D,,/kT is now the short-time self-mobility
referred to in section 1. We have dropped the explicit
dependence of D on K since it becomes K-inde-
pendent in this limit (see eq. 4); however we have
kept the subscript «eff » to avoid confusion with the
long-time self or tracer diffusion coefficient which
describes the motion of particles over macroscopic
distances (many interparticle spacings).

Several authors [2, 3] have considered the form of
D,,. For a pair of particles Felderhof [3] obtained

an expansion for D,, to order (a/R,,)°, where q is

the particle radius. Recently Mazur and co-workers
[8-10] have considered a many-particle system (see also
Kynch [11]). Their lowest-order terms are the same
as Felderhof's two-particle results and the next term
is a three-body contribution of order (a/R)’ :

75 a’
+ = ——— {1 = 3. £ )2 [l — 3(Fj-Fi1)?
j,kZ#l 16 R} R; RZ, { (Fy5F)] [ i)l
j*k
+ 6(F o Fy)? (B Fie))? — O(F 5o Fp) (Fi-Fiy) (BigoB1p) } By B + 5 ()

here D, is the «free-particle» diffusion constant,
Ry = |Ry |, 1 is the unit dyadic and fj is a unit
vector pointing from the centre of particle j to the
centre of particle k. Substitution of the one- and
two-particle terms of equation (3) into equation (2)
leads, after some manipulation, to [3, 6, 7]

3¢ (7 5a* 9 a°
for =Do[1 - a_3 dR R? g(R)<Z -IF -3 F):l 5

0

(4a)

where g(R) is the radial distribution function of the
particles and the volume fraction ¢ = % npa’, p being
the average number of particles per unit volume.

Batchelor [2] has emphasized that, even for two
particles, the series expansion of equation (3) becomes
inaccurate for small interparticle separations due to
neglect of two-body terms of higher order in a/R.
He points out that the two-particle problem has
been solved exactly (though numerically rather than
analytically). Thus equation (4a) can be written more
exactly as

s _
Deff -

® A, 2B
=D0[1 — @ j dR R? g(R)(l - —3‘—‘ - —32)]
a

0
(4b)

where 4,, and B, are components of the self hydro-
dynamic tensor, dependent on a/R, which are defined
and tabulated by Batchelor [2b].

3. Experimental details. — Spherical colloidal latex
particles of polymethyl methacrylate (PMMA) of
radius approximately 0.6 pm, stabilized by a poly-
hydroxystearic acid coating, were obtained from
Professor R. H. Ottewill’s group at Bristol University
in the form of a «paste» in dodecane. A weighed
sample of this paste was dried to determine the latex
weight fraction. A separate weighed sample was
washed and centrifuged down several times in n-
hexane. After removing most of the supernatant
hexane and weighing again, we added carbon disul-
phide carefully until a relatively clear suspension
was formed. This choice of liquids was dictated by
the requirements of refractive-index matching (see
below) and particle stability. By assuming the densi-
ties of latex, hexane and CS, to be 1.19, 0.659 and
1.263 mg.cm ™3 respectively, the latex volume fraction
of the sample was calculated to be ¢ = 0.21. Note
that this calculation assumes the latex particles to
be homogeneous ; if, for example, the polymer coating
were « loosely-packed » this approach could under-
estimate ¢, a possibility considered further in sec-
tion 5.3. Higher volume fractions were obtained
subsequently by removal of clear supernatant after
the particles had been centrifuged down.



Ne 3

Measurements of the angle of minimum deviation
of a laser beam through corners of the sample cell
(having square cross-section) yielded dispersion refrac-
tive indices (RI). In order to obtain clear enough
samples for light scattering it was necessary to obtain
a dispersion refractive index within about 0.003 of
that of the latex. The latter was estimated to range
from 1.512 at wavelength A = 647 nm to 1.524 at
A = 476 nm. During the process of concentration,
and also if the laser wavelength was changed (since
the RIs of the PMMA and liquid mixture had different
dependences on wavelength), it was sometimes neces-
sary to add a few drops of either CS, (RI =~ 1.63) or
hexane (RI =~ 1.37) to obtain a better index match
(see below). )

Photon correlation dynamic light-scattering (DLS)
measurements were made using standard equipment.
The krypton ion laser was operated on any of four
lines : red 647 nm, yellow 568 nm, green 521 nm and
blue 476 nm. The sample cell, of square 1cmx 1 cm
cross-section, was placed so that the scattering volume
(of linear dimension ~ 200 um) was within 1 mm of
both its entrance (front) face and exit (side) face (see
Fig. 3). This configuration provides a short path in
the sample for the incident beam and single-scattered
light seen by the detector, thereby maximizing the
single-scattered intensity. Since the light scattering by
these large particles is strongly peaked in the forward
direction, this configuration also minimizes the inten-
sity of detected multiple scattering : typically it
would require many scattering events for a photon
initially deviated by a small angle to reach the detector.
The scattering angle 6 was varied only in the range
60° < 0 < 1200, although the scattering vector K
was also varied by changing the laser wavelength.
Room temperature was controlled to 19.5 + 0.5 °C.
The correlator sample time was chosen so that the
observed electric field correlation function spanned
only about half of a decay time or less; in this time
a particle diffuses a distance equal to about 1/10 of
its radius or less. Effective diffusion coefficients were
obtained from a second-order cumulant fit. For the
very dilute sample mentioned in section 4 the nor-
malized second cumulant was found to be 0.04 + 0.04,
in adequate agreement with the value, < 0.01,
expected for a polydispersity of less than 109/, At
higher concentrations the dominant contribution to
the second cumulant comes from the effect of inter-
particle interactions [7] and values as large as 1 or
more were found.

At each concentration the sample was shaken
vigorously, placed in the photometer ard allowed to
stand for an hour or so for residual swirling motions
to cease ; all light-scattering measurements were made
within the next 24 hrs. Within a few hours the effects
of gravitational settling were evident. A layer of
clear supernatant appeared at the top of the sample
and a dense layer of particles at the bottom. The
observation of Bragg spots in the light scattered by
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this bottom layer showed the particles to be in a
polycrystalline « solid » arrangement. DLS measure-
ments were always made in the middle of the disorder-
ed «fluid-like » region between these layers. It was
a fortunate occurrence that dust particles, which were
quite evident when the sample was first placed in
the equipment, appeared to vacate this region within
a few hours.

We encountered several other experimental diffi-
culties in the study of these concentrated suspensions.
The attenuation, due to scattering, of the laser beam
on passage through 1 cm of the sample was measured
at various concentrations and wavelengths ; we define
an attenuation length by L = — (In T)™! cm, where
T is the ratio of transmitted to incident intensities.
We found that, for samples with L greater than about
1.5cm (ie. a relatively close match between latex
and liquid refractive indices where scattering is low),
D, was sometimes significantly larger than for
samples with lower L values. This effect seemed
particularly marked for the yellow krypton line. The
reasons for this observation were not firmly esta-
blished; it is possible that a subpopulation of smaller
particles (e.g. colloidal sulphur from degradation of
the CS, [12]) becomes important when the latex
particles scatter weakly. However we found that, if
L was kept below about 1.5 cm by suitable adjustment
of dispersion refractive index, consistent results could
be obtained at all wavelengths (see Fig. 1).

In fact measurements were occasionally made
with L as small as 0.3 cm. With such a strong scatterer,
multiple scattering must be considered. As mentioned
above, the light scattered by these relatively large
particles is strongly peaked in the forward direction
so that the dominant multiple scattering is also in
this direction. Its effect at large scattering angles (as
in the present work) is to reduce the apparent diffusion
coefficient D,.(K) and, for L = 0.3 cm, the study of
scattering from parts of the sample further away from
the exit and entrance windows did show evidence of
such distortions. Nevertheless, by using the scattering
geometry shown in figure 3, we found that measure-
ments could be made at large scattering angles without
incurring significant multiple-scattering errors even
in strongly-scattering samples of these large spheres.

We also observed that the laser beam became
expanded somewhat after passage through a con-
centrated sample due, presumably, to absorption
causing local heating and « thermal lensing ». When
a high incident intensity (a few hundred mW) was
used, semi-log plots of correlation functions of light
scattered from the centre of a weakly-scattering
sample occasionally showed downward curvature
caused, we assume, by particle motions induced by
convection. However, with strongly-scattering sam-
ples (smaller L), lower laser intensities (some tens of
mW) could be used and such distortions were not
observed.

The particle size was measured in three ways.
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Firstly the angular positions of the first two minima
in plots of the angle-dependence of the time-averaged
intensity scattered by a dilute sample were compared
with theoretical Mie scattering predictions. This gave
a radius a = 0.59 + 0.01 um. Secondly a dilute
sample of latex in CS, (whose viscosity was known
accurately from the literature) was studied by DLS.
The radius calculated from the measured diffusion
constant was @ = 0.58 + 0.02 um. Finally the lattice
spacing of the polycrystalline solid of a sample which
had settled for several weeks under gravity was
determined from the positions of the « powder » dif-
fraction rings. In fact these rings were found to be
non-circular having horizontal radii a few percent
smaller than vertical radii indicating some gravita-
tional distortion of the crystals. The assumption of
a face-centred-cubic lattice gave an average spacing d
of the 111 planes of d = 1.03 um; in turn this gives
an average centre-to-centre particle separation of

3/2d = 1.26 pm, several percent greater than the
particle diameter ~ 1.17 pm measured by other
techniques (above). Several factors could contribute
to the difference. For one thing, a distorted crystal
cannot be close-packed. Furthermore, computer simu-
lations of hard spheres show complete crystallization
for ¢ = 0.55 [13] (compared to ¢ = 0.74 for close
packing). Rough measurements of the volume of the
crystal phase (with knowledge of the weight of latex
in the sample) yielded a crystal volume fraction of
¢ =~ 0.61. If this crystal could be « compressed » to
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close-packing, the particle separation would be rough-
ly 1.26 x (0.61/0.74)'/> pm = 1.18 um, in good agree-
ment with the diameter measured by other methods.

4. Results. — Figure 1 shows the scattering-vector
dependence of the effective diffusion coefficients
D, (K) of three samples, a dilute sample (¢ < 0.005)
in a CS,-hexane mixture (bottom curve) and two more
concentrated samples. In fact the reciprocal D} (K)
is plotted to conform with previous work [14] on
interacting particles, where the effect of S(K) (in
eq. 1) was sought. We note that measurements made
at different wavelengths superimpose quite well and
that D..(K) decreases with increasing concentration
in accordance with the expectation that diffusion
should be increasingly hindered.

The oscillations apparent in the data for the dilute
sample are surprising at first sight since at this con-
centration interparticle interactions can be neglected
and we expect S(K) =1 and D «(K) =~ D, (eq. 1
with D;; =1 D, §;) for all K. For the following
reasons we believe they are due to polydispersity.
The average intensity scattered at angle 6 by a particle
of radius ~ 0.6 um exhibits about 5 minima as 6
increases from 0 to 180° The angular positions of
these minima depend on particle size. Therefore, as
the scattering angle or vector is changed, dynamic
light scattering effectively samples different aspects
of the particle size distribution of a polydisperse
suspension ; thus the apparent « free-particle » diffu-
sion coefficient also shows an angle-dependence. It
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Fig. 1. — Reciprocal effective diffusion coefficients Dz;'(K) as a function of scattering vector K for three samples at volume
fractions ¢ indicated. Measurements were made at four laser wavelengths : O-red, X-yellow, [J-green, A-blue.
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fractions ¢ indicated. Measurements made at different wavelengths are not distinguished. Symbols @ and X are alternated

with changing concentration to avoid confusion.

is probable that this effect can be exploited as a probe
of polydispersity ; this will be discussed elsewhere [15].
Here it suffices to say that curves of the type shown
in figure 1 (for ¢ ~ 0) can be obtained from a theo-
retical model for polydispersities of less than 0.1
(standard deviation/mean particle size).

In order to minimize this polydispersity effect, an
estimated solid line (not shown in figure 1) was drawn
through the dilute sample data. This provided an
averaged (K-dependent) free-particle diffusion coef-
ficient Dy(K). The data for D;!(K) obtained at
higher concentrations were then multiplied by the
appropriate value of D,(K) to provide estimates of
Dy/D(K). The results of this operation are plotted
in figure 2 where data for all the concentrated samples
are shown; we see that, for K = 2.5 x 10°cm™?,
the oscillations are, within experimental error, remov-
ed. The fact that these normalized high-K data are
essentially independent of K provides confirmation
that off-diagonal (i # j) terms in equation (1) are
negligible so that D (K) can confidently be inter-
preted as the single-particle mobility D3, of equation
(2. For K < 25 x 10°cm™!, some oscillations are
evident in the data, especially at high concentrations.
The maximum in these data for K ~ 2.0 x 10° cm™!
coincides roughly with the expected 4th maximum in
S(K) for hard spheres of radius 0.59 pm.

By averaging the high-K data (the solid lines in
figure 2) we get estimates of D5,/D, which are plotted
as a function of volume fraction in figure 3. The error

|
INCIDENT
BEAM N
= = ==
\ SCATTERED
BEAM
Oo i
n%
o [ -
o | J | I 1
Ol 0.2 0.3 0-4 0.5

VOLUME FRACTION @

Fig. 3. — Upper right : Schematic of position of scattering
volume in sample cell. Lower left : Data points @ are measur-
ed short-time self-diffusion coefficients D (relative to
free-particle diffusion constant D,) as a function of volume
fraction. Solid line is « two-particle theory », the numerical
evaluation of equation (4) with the « exact » hard-sphere
g(R) (see text). Dashed line is equation (8), the O(¢?) density
expansion which includes three-particle effects. The crosses X
are discussed in the text.

bars are taken as + 10 %, rather larger than implied
by figure 2, in an attempt to include possible syste-
matic errors arising from the experimental difficulties
discussed in section 3.
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5. Discussion. — 5.1 EVALUATION OF THE THEORE-
TICAL EXPRESSIONS. — Numerical evaluation of equa-
tion (2) can be approached in several ways. Firstly,
one can calculate a «density expansion» of D5, in
powers of the volume fraction ¢. Clearly, the ¢°
contribution comes from substituting the first term
in equation (3) into equation (2), giving D5; = D,,.
The ¢' contribution is obtained by using in equa-
tion (4a) the lowest-order approximation for g(R)
which, for hard spheres, is

glR) =0 for R<2a
gR) =1

This leads to Felderhofs well known result [3]

©)

for R>2a.

D3 =Dyl — 1.73¢ + ). )

There are two contributions of order ¢2. The first
is a two-body term which comes from using in equa-
tion (4a) the ¢' term in g(R) for hard spheres [16]
(i.e. the next-order correction to eq. 5). This can be
evaluated analytically to give [10]

D3 =Dy(1—-1.73 ¢ —0.93 ¢ +--) (two-particle) .
@)

The second ¢? term comes from substitution of the
three-particle term in equation (3) into equation (2)
and averaging over the lowest-order three-body
spatial distribution function (the three-body analogue
of eq. 5). This contribution has recently been evaluated
numerically by Beenakker and Mazur [10] with the
result

D§;=Dy(1—1.73 ¢ +0.88 2> +--) (two- and three-
particle). (8)

We are currently investigating an alternative ap-
proach [17] to the evaluation of equations (2) and (3)
using expressions for g(R) and its three-body ana-
logue valid to all orders in ¢. To this end we used the
method of Verlet and Weis [18] to compute g(R) for
hard spheres; this method modifies the Percus-
Yevick hard-sphere result to bring it into agreement
with computer simulations and therefore provides
the best approximation to an exact hard-sphere g(R)
currently available. The resulting integral (eq. 4a)
for the two-body contribution was evaluated nume-
rically. Since no accurate analytic approximation
exists for the three-body spatial distribution function
we are using computer-generated (Monte-Carlo) con-
figurations of hard spheres to perform the spatial
average.

In figure 3 the lower (solid) line is the result of
evaluating the one and two-body terms in equa-
tions (2) and (3) using the Verlet-Weis g(R) (see
above). For ¢ < 0.15 this agrees, as it should, quite
well with the (two-particle) result of equation (7)
(not plotted in Fig. 3); even at ¢ = 0.4 the O(¢?)
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density expansion of equation (7) is lower than the
«exact g(R) » two-particle result by only about 20 ;.
The upper (dashed) line in figure 3 is equation (8),
the O(¢?) density expansion which includes three-
body effects. The crosses are the results of the Monte-
Carlo calculations discussed above. Again there is
surprisingly close agreement between the density
expansion and the « exact g(R) » evaluations. Reasons
for the rather large error on the Monte-Carlo calcula-
tion at ¢ = 0.42 will be discussed elsewhere [17].

It should be emphasized that neither of these
approaches provides a complete theory. Even to
order ¢2, the first approach neglects two- and three-
particle terms in the expansion of equation (3) of higher
order than (a/R)’. While it does evaluate equations (2)
and (3) to all orders in ¢, the second approach also
neglects two-, three- and many-particle terms of higher
order than (a/R)’. We note that, by use of the Verlet-
Weis g(R) and Batchelor’s approach to the hydro-
dynamics (eq. 4b), it is, in principle, possible to cal-
culate « exactly » two-body contributions to DS valid
to all orders in both a/R and ¢. Due to the relative
inaccessibility of complete hydrodynamic data and
the conceptual simplicity of the series expansion
approach we have not done this. However we point
out that the difference between the quantities in round
brackets in equations (4b) and (4a) is positive for all
values of a/R. To be more specific, calculations using
Batchelor’s tabulations [2b] show that, at R/a = 2
(i.e. touching spheres), 1 — (4,,/3) — (2 B,,/3) = 0.148
and (5a*/4 R*)—(9a®/8 R®)=0.065; at R/a=2.1 the
values are 0.072 and 0.051 respectively; and for
R/a > 3 the values are essentially the same. We con-
clude, therefore, that, since g(R) > 0, the evaluation
of the exact equation (4b) will lead to theoretical
predictions which lie below the solid line in figure 3
(the evaluation of eq. 4a), but probably by a relatively
small amount. For example, to first-order in ¢,
equation (4b) leads to [2Db]

Desfr = Do(l — 1.83 ¢),

a value smaller, but not by much, than that of equa-
tion (6).

5.2 COMPARISON OF THEORY AND EXPERIMENT. —
First we note that the lowest volume fraction at which
measurements were made, ¢ =~ 0.2, probably repre-
sents about the highest volume fraction at which
equation (8), the O(¢?) density expansion of Beenak-
ker and Mazur, is valid. We see that the data point in
figure 3 at ¢ ~ 0.2 does indeed lie nearer to the two-
and three-particle p.ediction of equation (8) (the
dashed line) than to the two-particle prediction
(the solid line). However the (possibly generous)
error estimate spans both theoretical predictions.
There is a clear need for very precise measurements
at ¢ < 0.2.

For ¢ > 0.35, the experimental points lie above
the two-particle theoretical prediction by an amount
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significantly greater than the estimated experimental
error. In view of the considerations of the last para-
graph of section 5.1, this observation points unambi-
guously to the invalidity of assuming pairwise additivity
of hydrodynamic interactions in concentrated particle
SUSpensions.

However we also see in figure 3 a significant diffe-
rence at high ¢ between experiment and theory incor-
porating just two and three-body hydrodynamics. At
these high volume fractions many-particle clusters
become as probable as those of two or three particles.
Thus a possible interpretation of our results is that,
at high concentrations, the full theory would lead to
a density expansion for D5, with terms of oscillating
sign, which converges only slowly with increasing
powers of ¢. Unless this expansion can be resummed
in some way, the outlook for a full understanding of
short-time self diffusion (and, presumably, of more
complicated hydrodynamic properties) of concentrat-
ed particle suspensions is somewhat discouraging.

5.3 GENERAL COMMENTS. — Throughout this paper
we have assumed that the polymer-coated particles,
suspended in a mixture of two liquids, can reasonably
be regarded as « hard spheres » in a homogeneous
liquid continuum. These assumptions are worth
further brief comment.

Firstly we mention that, at the highest volume frac-
tion studied, ¢ =~ 0.44, occasional « Bragg spots »
were observed, particularly in the main diffraction
ring. It thus appears that the sample contained small
regions of solid crystalline phase in co-existence with
the fluid-like phase. Such co-existing phases have been
observed in other colloidal systems [19] and are well
established in hard-sphere computer experiments [13]
which predict the onset of the phase transition to
occur at ¢ = 0.49. This difference between observed
and predicted phase-transition concentrations is pro-
bably associated with the structure of the polymer
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coatings of the particles. As discussed in section 3,
if this coating is loosely-packed, the volume fraction
will be underestimated by our calculation procedure.
Furthermore, the inter-particle interaction cannot
be truly « hard-sphere » and the « effective hard-sphere
volume fraction » could be significantly larger than
the calculated « bare » value. Note that if the data
points in figure 3 were all moved a few percent to the
right to allow for this, marginally better agreement
between experiment and the three-particle theory
would be found.

Secondly, we have, for simplicity, neglected possible
complications caused by preferential solvation of the
particles and « ordering » of the liquids at the particle/
polymer surfaces.

6. Conclusion. — Measurements of the concep-
tually-simple short-time self diffusion coefficients of
particles in liquid suspension show that hydrodyna-
mic interactions cannot be assumed to be pairwise-
additive at high concentrations.
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Note added in proof. — Glendinning and Russel
(J. Colloid Interface Sci. 89 (1982) 124) have recently
evaluated equation (4b) using exact (numerical) data
for D,,. As we conjectured in section 5. 1, their results
lie slightly below the solid line in figure 3 (the evalua-
tion of equation (4a)).
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