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Résumé. 2014 Les coefficients de transport des gaz quantiques polarisés (3He, H~ et D~) ont été calculés dans le
domaine de température 0,04-10 K pour une polarisation nucléaire M quelconque (0 ~ M ~ 1). Après une analyse
en ondes partielles des caractéristiques des collisions dans les trois systèmes, on étudie les différentes « sections
efficaces » directes et d’echange qui sont nécessaires pour décrire la collision de deux atomes polarisés. Les consé-
quences de l’indiscernabilité des particules se manifestent macroscopiquement par de nombreux effets : parmi
ceux-ci on étudie ici la variation de la conduction de la chaleur en fonction de la polarisation nucléaire du milieu,
l’existence d’un couplage entre les modes de diffusion de la chaleur et de la composante longitudinale du spin et le
caractère oscillatoire de l’évolution des composantes transverses du spin.

Abstract 2014 A complete quantum phase shift calculation of several transport coefficients in spin polarized quan-
tum gases (3He, H~ and D~) has been carried out for temperatures ranging from 0.04 K to 10 K and nuclear polari-
zations M varying from 0 to 1. After a detailed analysis of the dynamical features of the collision, the various direct
and exchange « cross sections » necessary to describe the collision between two spin-polarized atoms are studied
Emphasis is then placed on some particle-indistinguishability consequences that could be seen in 3He or H~ sys-
tems, such as the strong M dependence of the heat capacity, a mode coupling between heat capacity and longitudinal
spin diffusion and the oscillatory character of the evolution of the transverse components of M.
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Transport properties in spin-polarized gases were
studied in two previous articles [1, 2] (hereafter called
LLI and LL2). At low temperatures, particle-indis-
tinguishability effects may become ‘essential during
collisions and consequently strongly affect the non-
equilibrium properties of macroscopic systems (’).
Insofar as the nuclear polarization of the atoms can
reinforce their indistinguishability, one can predict
that transport properties not only in dense degenerate
systems, but also in dilute, non-degenerate gases
should be sensitive to nuclear polarization.
As was shown in LLI, due to symmetry effects, the

collision between two spin-polarized atoms will

generally affect both the kinetic and the. nuclear
variables of the impinging atoms. As a result the
Boltzmann equation for the spin density operator
exhibits, through its collision term, a strong depen-

(1) All the effects discussed here, as in LL1 and LL2, are
due purely to the strong correlations induced by the Pauli
principle between nuclear and translational variables and
not to magnetic coupling between internal and external
variables. These effects are therefore different from those
discussed in molecular gases transport theory [3, 4].

dence on the nuclear polarization described in the
most general case by four independent « cross sec-
tions » : : Qk, ae’, !:x, ifwd (equations (16) and (32) of
LL 1) ; Uk is the standard differential cross section for
distinguishable particles, Uk", Te’, ifWd are three real
independent functions of the scattering amplitude
f (8) which arise through exchange effects. To cha-
racterize these various terms further, it can be noticed
that ak and aex mainly govern the evolution of scalar
and longitudinal variables (relative to the local spin
direction). In the simple case where the directions of
the spins are parallel everywhere in the sample, the
medium can be described as a mixture of (2 I + 1)
species (for the spin I = 1/2 case, the « up » and
« down » species), the cross section for collisions of
atoms in different spin states is simply ak (distin-
guishable « cross section ») and that for atoms in the
same spin state is the properly symmet{ized cross
section ak + . k ex with s = + 1 (respectively - 1 )
for bosons (respectively fermions). On the other hand
k and fwd govern the evolution of transverse nuclear
variables, they are associated with oscillatory and
non-dissipative effects that we called in LLI the
« identical spin rotation &#x3E;&#x3E; effects.
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On the macroscopic scale, this complexity of the
collision term of the Boltzmann equation reveals
itself in a wide variety of polarization-dependent
effects. One can distinguish between the pure damp-
ing phenomena governed only by the two cross sec-
tions ak and akex, and the phenomena with an oscilla-
tory character that involve the two extra cross sections

T’x and T’xd. Among the first kind, there is the strong
dependence of heat conduction and viscosity on
nuclear polarization (equations (60) and (75) of LL 1 ),
and the existence of mode coupling between spin
diffusion, heat conduction and eventually concentra-
tion diffusion in isotopic mixtures (equations (30)
and (41) of LL2). Belonging to the second kind,
there is the oscillatory behaviour of the transverse
spin current which can result in spin waves in dilute
media. Similar phenomena do exist in dense degene-
rate systems : the nuclear polarization dependence
of heat conduction and viscosity has been studied by
Bashkin and Meierovitch [5] in 3He-4He mixtures and
the first experimental evidence has been very recently
obtained by Greywall and Paalanen [6]. An oscilla-
tory behaviour of the transverse spin current in dense
3He was also predicted some years ago by Leggett [7]
and observed experimentally by Corrucini and co-
workers [8}. All this experimental evidence for indis-
tinguishability is concerned with dense, degenerate,
fermionic systems at very low temperatures. As a
result of the work reported in LL 1 and LL2 we can
predict that such effects could manifest themselves
both in bosonic and fermionic non-degenerate sys-
tems as soon as the temperature is low enough for the
De Broglie wavelength to be comparable to the

potential interaction range, whatever the density of
the gas; for 3 He, HT and DT these effects must be
significant as soon as the temperature is in the range
of one kelvin. Moreover, in dilute systems the quan-
tum mechanical analysis of binary collisions allows an
ab initio calculation of all the predicted effects With
regard to recent experimental developments it appears
that strong nuclear polarization can be achieved in
H’[ [9] as well as in 3 He ; it therefore seemed useful
to give numerical estimates of the predicted effects.
This was done with standard techniques : phase shift
analysis of the collision, and numerical computation
of the phase shifts [101 and collision integrals [It, 12}
for the three systems HT, Dr and 3He.
The aim of section I is to describe the main features

of the collision in the three systems. None of these
potentials is strong enough to accommodate bound
states, but the phase shift analysis reveals some marked
differences. In Hi the effective interaction is essen-

tially repulsive and weak whereas in DT or in ’He the
proximity of a virtual state leads to a larger, attrac-
tive, effective interaction in the low-energy limit.
Differential and angular-averaged cross sections are
then studied in the light of this analysis of the collision.
In section 2 we report the results of our computation
of the heat conduction coefficient, mode coupling

between heat and spin diffusion and oscillatory
transverse spin diffusion due to identical spin rotation
effects.

1. The collision in the quantum gases HT, Di , 3He. -
1.1 INTERACTION POTENTIALS. - In this study we
have focussed our interest on the three lightest quan-
tum systems : Hi, OJ, and 3He. HT and DT are the
electronic spin-polarized isotopes of hydrogen.
Throughout this paper we suppose the electronic

polarization to be complete and the hyperfine interac-
tion negligible; in these limits HT and DT behave
dynamically as a boson [ 13,14] and a fermion respec-
tively, whose nuclear spin I = 1/2 (or I = 1) is not

coupled to external variables. The atoms only interact
through the 3 Eu molecular potential. The best des-
cription of this potential for an internuclear distance r
in the range of interest is that of Kolos and Wol-
niewicz [15]; we have used Silvera’s fit [ I 6j

where all quantities are in atomic units and q(x) is
the unit step function defined by ’1(x) = 0( 1 ) if

x  0( &#x3E; 0).
For the 3 He system, where the interaction potential

is not so well known, we have computed all quantities
of interest for two pair potentials :

the widely used Lennard-Jones potential

with c = 10.22 K and a = 2.556 A,
and the HFDHE2 potential of Aziz et al. [17] which

gives presently the best overall agreement with expe-
riment :

with the following parameters values :
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Unless otherwise stated the curves shown in this
article have been evaluated using the Lennard-Jones
potential.

1.2 PARTIAL WAVE ANALYSIS OF THE COLLISION. -

For the three systems the phase shifts 6, have been
calculated by numerical integration of the radial wave
equation according to a standard procedure [10, 18].
The numerical results are reported in figures 1, 2, 3, as
functions of a dimensionless parameter k* which
is the product of the wave number k by the « diameter &#x3E;&#x3E;
of the atoms u (defined by V( 0) = 0). As can be seen
on the figures the low energy behaviour of the three
systems is quite different.

Fig. 1. - Collisional phase shift for HT as a function of the
reduced wave number k* = k J (a = 3.687 A is the diameter
of the interaction potential). For k* = 1 the kinetic energy
of the relative motion is 3.54 K. The scattering length is
small (0.72 A) and positive; the repulsive interaction is

slightly dominant.

Fig. 2. - Collisional phase shifts for DT as a function of the
reduced wave number k* = kt1 (t1 = 3.687 A). k* = 1

corresponds to a relative kinetic energy of 1.77 K. The scat-
tering length is equal to 3.52 A and negative; the attractive
interaction becomes slightly dominant.

Fig. 3. - Collisional phase shifts for 3 He as a function of
the reduced wave number k* = k a (a = 2.556 A is the dia-
meter of the Lennard-Jones potential). k* = I corresponds
to a kinetic energy of 2.46 K. The scattering length is equal
to 6 ok and negative; the attractive interaction dominates the
low-energy behaviour of the collision but is still insufficient
to stabilize a bound state.

Let us first examine the s-wave scattering. In Hot the
low energy I = 0 phase shift is negative, which is the
signature of a repulsive effective interaction. Never-
theless the balance between attractive and repulsive
effects is almost perfect, and the phase shift is very
smalL This can be measured by the scattering length
ao defined as usual as :

For HT the scattering length is positive and equal to
0.72 A. In DT, due to the larger mass, attractive effects
prevail at low energy and the scattering length becomes
negative (ao = - 3.52 A). In 3 He the balance between
repulsive and attractive effects is still more favourable
to the attractive effects and the scattering length is

larger, of the order of 6 A, and negative (2).
Another important feature of this analysis is the

relative weight of 1 =1= 0 partial waves scattering for a
given wave number k*. At very low wave numbers the
scattering is always isotropic, but in DT and 3He it
becomes very rapidly anisotropic with increasing
wave number. In these two systems as soon as k* = 1

(i.e. for energies between 1 and 2 K) the scattering
appears to be dominated by the 1 :A 0 collision
channels and the isotropic, low-energy behaviour

(2) The low energy characteristics of the collision are very
sensitive to the interaction potential : for example for 3 He
the scattering length varies from ao = - 6.06 A for the
Lennard-Jones potential, to ao = - 6.97 A for the Aziz
potential. (On account of the agreement between the Aziz
potential and ab initio Hartree-Fock calculations in the

range 4-5 a.u. this second value is probably the better one.)
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cannot be reached unless very low temperatures are
achieved. As a consequence the validity of the des-
cription of the transport properties in these systems
in terms of s-wave pseudo-potentials is limited to the
very low temperature range (T  100 mK or less)
and a full numerical analysis of the collision is neces-
sary in order to obtain realistic results.
On the other hand, at the highest energies studied

in this work the behaviour of the phase shifts is essen-
tially controlled by the repulsive part of the potential.
For a repulsive, hard-core potential of radius R,,
the high energy phase shifts behave as :

The comparison with the exact results shown in

figures 1-3 allows the determination of an effective,
hard-core radius of the order of a. As a first conse-

quence, and in contradiction with the low energy case,
the high-energy behaviour of the three systems can be
described relatively well with a as a scaling parameter.

1. 3 DIFFERENTIAL CROSS SECTIONS. - Combining
these phase shifts one obtains the differential cross
sections introduced in the collision term of the quan-
tum Boltzmann equation (equation (32) of LL 1 ) :
the direct (or classical) cross section is as usual :

and the two « exchange cross sections &#x3E;&#x3E; are given by :

We show in figures 4 and 5 some of these results
for HT and ’He systems (the DT patterns, being quite
similar to the 3 He ones, have been omitted).
The first remarks deal with the similarities between

the different systems. As a function of k* = k a, and
for 2  k*  7, the general features of the angular
patterns appear to be similar in each system : in

particular the number of lobes of the angular dia-
grams depends almost exclusively on the k* value.
In this range of wave numbers the main effect appears
to be that of diffraction by the repulsive potential of
diameter 6. All the cross sections reflect the quantum
oscillations due to this diffraction effect. At the highest
wave numbers studied here the Qk cross section is

strongly peaked in the forward direction at an angle
of order 2 n/k a = 2 7r/k* ; the k ex cross section, which

Fig. 4. - Differential cross sections for 3He as a function of
the scattering angle. The correspondence between the labels
of the curves and the wave vector is the following : (1)
k* = 1/210; (2) k* = 3/210; (3) k* = 9/210; (4) k* = 1;
(5) k* = 3; (6) k* = 7. One can notice in the figure the
isotropic low-energy behaviour of the differential cross

sections (k* - 1/70). At the highest k* studied here the ordi-
nary scattering cross section appears to be strongly peaked
in the forward direction. The exchange cross sections do not
decrease very quickly with increasing energy, but oscillate
more and more rapidly, reflecting the domination of partial
waves with increasing I values.
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Fig. 5. - Differential cross sections for HT as a function of
the scattering angle. Same values of the reduced wave num-
ber k* as in figure 4.

has a forward-backward symmetry, is much weaker
and consequently particle scattering occurs essen-

tially in the forward direction. In fact transport phe-

nomena are not sensitive to all the details of the diffe-
rential cross sections but only to a few angle-averaged
ones which we shall now study.

1. 4 ANGLE-AVERAGED CROSS SECTIONS. - As usual
the averages are defined by the general formula

The calculations of viscosity, heat conductivity, lon-
gitudinal spin diffusion and their couplings involve,
in the first approximations developed in LL1 and LL2,
the three averages :

The first two averages (2 1 and Q 2 of the « distin-
guishable particle cross section » ak have the same
qualitative variations as a function of the energy of the
encounter. We have chosen to focus our attention on

Q 2kj’ which appears in the expressions of heat conduc-
tivity and viscosity combined with the exchange cross
section Q2EXI. The results for HT and ’He are shown
in figures 6 and 7. As expected, in the s-wave approxi-
mation the low energy limit of Q 2 and Q 2 is the

8n 2 

[ak] Fizz

same and equals 3 aõ. However, as the energy

increases the contribution of the p, d, ... waves becomes
important and the two cross sections behave diffe-
rently ; due to the alternate contributions of even
and odd phase shifts Q 2 X, exhibits a few oscillations
and rapidly vanishes.

If we now compare the two systems HT and 3 He
we see some marked differences in the low-energy
behaviour. In HT, due to the balance between attrac-
tion and repulsion discussed in section 1.2, the

Q 2 and Q2Ex] cross sections are very weak at zero
energy and then go through a maximum near k* =1.5
(i.e. for an energy of the relative motion of the order
of 8 K); in 3 He, on the contrary, due to the low-energy
attractive effect, Q 2 and Q 2 x, take their largest value
at k* = 0 and then rapidly decrease as functions of k.

Let us now turn to the « identical spin rotation »
effects which govern the oscillatory transverse spin
diffusion. They are described by two exchange cross
sections
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Fig. 6. - Angle-averaged monochromatic cross sections
for HT. Q 2 and Q[;ex1 are the two cross sections involved in
the calculation of the heat conduction coefficient. The very
low zero energy value is a characteristic feature of HT due
to the quasi Ramsauer effect already discussed in section 1. 2.
As expected in the s-wave approximation, the behaviour of
Q 2 , and Q 2..] is identical for k*  1, but the exchange cross
section decreases very rapidly in the semi-classical region
(k* &#x3E; 3). The two cross sections Qj)«xj and i fwa measure the
« identical spin rotation » effect in the scattered and trans-
mitted beam. As expected, the low-energy behaviour is

totally dominated by the effect in the transmitted beam.
For k* &#x3E; 1 each contribution decreases slowly with increas-
ing energy but the sum of the two contributions vanishes
as quickly as Q [a 2.. As explained in section 1. 3 it is a feature
of the semi-classical region where the quantum interference
effects still exist but are rubbed out by angular averaging.

which measures the identical spin rotation in the
scattered wave and

which measures the identical spin rotation effect in the
transmitted beam and is not reducible to an angular

Fig. 7. - Angle-averaged monochromatic cross sections
for 3 He. Same comments as in figure 6.

average of the quantity Tex(o) (3). From that point of
view, the previously-studied averaged cross sec-

tions (10)-(12) collect both the effects of the collision
in the transmitted wave and in the spherically scattered
wave and are comparable to the sum

1 -

As expected in LL2, the low-energy behaviours of
Qlexl and T’xd are quite different; in the low-energy
limit Q[,rfx] tends towards zero while T fwd x diverges as
1 /k. At low energy the dominant feature of the colli-
sion is actually this rotation of the spins in the trans-
mitted beam. Moreover, this effect decreases very
slowly with the energy of the impinging particles
and is still important at the highest wave numbers
studied here.

(3) As explained in LL 1 there is no conservation rule on
, individual spin which relates ikx(9) and Tfxwd as is the case for
example for UTOT and 0" k( lJ) or 6fwd and O":X( lJ) . through the
conservation of the particles.
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However, it clearly appears in figures 6 and 7 that
the effect in the transmitted wave is almost exactly
balanced by the average effect in the scattered wave,
so that the sum Q [r + T fwd ex (like Q2 rapidly goes
to zero with increasing k and becomes quite negligible
when k* is larger than 3 or 4. Such an effect is typical of
semi-classical collisions [19]. When the wavelength
of the particles becomes smaller than the range of the
interaction potential (k * &#x3E; 1) more and more phase
shifts are necessary to describe the collision and the
dominant 1 values are of the order of magnitude
1 ~ k*. (This can easily be checked on the angular
diagrams of figures 4 and 5 where the number of lobes
is a signature of the dominant partial waves.) If we
consider a superposition of spherical waves with large
angular momentum l (lo + Al  1  10 + Al, 10 &#x3E; 1,
Al  10) they form a laterally-localized wave packet
that can be characterized by a classical impact para-
meter b = k-’ lo. This wave packet will be pre-

dominantly scattered in an angle 0 directly con-
nected to the 10 value. (In the WKB approximation

9 = + 2(:1) - + 2 nn.) Most of the quantum1-10 ‘=‘o /
paths, and especially the most important in the scatter-
ing (/0 ~ k*), can then be described by classical trajec-
tories, which should preclude the observation of

exchange effects : in fact it clearly appears in this
example that the interference effects do subsist in the
semi-classical region (Figs. 4 and 5) but the angular
selectivity of the transport process becomes insuffi-
cient for their observation and they are washed out by
the angular averaging which leads to formula (12)
and (15).

2. Transport phenomena in HT, DT, 3He. - From
the knowledge of the collision it is straightforward to
evaluate the transport coefficient in partially-pola-
rized quantum systems. The theory described in LL 1
and LL2 will be only briefly summarized here. The
treatment is based on the standard Chapman-Enskog
solution of the Boltzmann quantum equation, which
supposes the density to be low and the gradients of
the physical quantities to be small. In the first approxi-
mation (Navier-Stokes approximation) the flux of the
molecular properties appears to be proportional to
the first-order derivatives of the physical macroscopic
quantities (temperature, magnetization...). In this

approximation, which is the framework of all the
results given here, the numerical solution of the pro-
blem can only be approached by some approximate
method. (As usual we have used an expansion of the
density operator using a basis of Sonine polynomials,
and have used one or two terms of this expansion;
it is to this last expansion that we shall refer later on
in the discussion.) The transport coefficients appear
then as homographic functions of collision integrals
which are various averages of the quantum cross
sections (10)-(15) over the Boltzmann distribution.

The definition of the 0 collision integrals is, as usual :

where Qj«j is the angular averaged cross section eva-
luated for the wavenumber k = (m/p)1/2 y/h, m being
the mass of the particles, and /3 = llkt.
The phenomena discussed in this paper involve

collision integrals Q of the three differential cross
sections ak(O), u:X( 0) and t:X( 0), and similar averages
on ifwa defined in LL2 (Eq. 4) as :

where re’ is the cross section (14) evaluated for the
wavenumber k = (m/p)1/2 ylh.
These integrals have been computed by means of
Simpson’s rule together with the Newton 3/8 rule for
temperatures ranging from 40 mK to 10 K and are
believed to be accurate to within 1 part in 100 in the
most unfavourable cases (Z- (S) and 0 (’,’) for T Z 1 K)
and in general to the order of a few parts in 1 000.
Some of these integrals have already been computed
by Monchick et al. [12], their results agree with ours
within the quoted uncertainties (4). With the help
of these integrals and of the formulas given in LL 1 and
LL2 we are now able to evaluate the viscosity and
heat conduction, as well as spin diffusion coeffi-
cients (5).

2.1 HEAT CONDUCTIVITY. - The heat conducti-

vity of HT, DT and 3He, and its variations with the
nuclear polarization M, are reported in figures 8, 9
and 10. (In the DT case, the nuclear spin of which is
equal to one, we have for simplicity considered only the
two situations where the nuclear polarization is
either zero or complete.) For the spin 1/2 case this
coefficient is in the first approximation equal to

where K(0) is the coefficient of the unpolarized gas
(equation (61) of LL 1 ) and the Ç1 and Ç2 coefficients

(4) In fact the inaccuracies due to an insufficient know-
ledge of the potentials are much larger than the numerical
uncertainties and can probably range from a few % to ten or
fifteen percent in the most unfavourable cases. Moreover,
the very low temperatures results (T  50 mK for HT and
T  250 mK for 3 He) are presumably unrealistic due to the
neglect of the hyperfine interaction.

(5) Tables of collisions integrals for the three systems HT,
DT and 3He, described by the afore-mentioned potentials,
are available on request.
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Fig. 8. - Heat conductivity versus temperature T and
nuclear polarization M in HT. The heat conductivity mono-
tonically decreases with increasing polarization.

- full line curve M = 0;
-8-8-8 M = 0.6;
2013.2013.2013 M = 0.8;
------ full polarization M = 1.

Fig. 9. - Heat conductivity in DT versus temperature, for
zero nuclear polarization (full line) and full nuclear polari-
zation (dashed line). The low-temperature divergence of
heat conductivity for fully polarized systems is a characte-
ristic feature of fermionic systems; the « bump » at 2 K is a
dynamical feature explained in section 2.1.

are expressed as functions of the collision integrals
through formulas (56) and (61) of LLI. The curves
shown here represent the first approximation des-
cribed by formula (18) and equation (61) of LL 1.
Calculation of higher approximations is easily done
with the help of the tables of collisions integrals and of
equation (24) of LL2. The second-order corrections
in the M 2 expansion (equation (24) of LL2) are quite

Fig. 10. - Heat conductivity in 3 He versus temperature
and nuclear polarization M :

Same comments as in figure 9.

negligible (of the order of 10- 3). They are not to be
confused with the second-order correction for K(0)
which has been studied in reference [ 12] and amounts
typically to a few percent in the observed temperature
range (6 % at 3 K).

. 
In the three studied systems the heat conductivity

appears to be strongly dependent on the nuclear pola-
rization in a wide range of temperatures; for the

lightest case (HT) the effects are still measurable up to
20 K. On the other hand, these results display a large
qualitative difference between boson and fermion

systems. In HT the heat conductivity varies monoto-
nically with the nuclear polarization and quite
smoothly with the temperature. In DT and 3 He, on the
contrary, the variation of heat conductivity with
nuclear polarization exhibits a peak at intermediate
temperatures and a divergence at very low tempera-
tures (T  100 mK). The low-temperature increase
of the conductivity of totally polarized 3He and DT
is a simple effect of the Fermi statistics : the Pauli
principle forbids all scattering in even-1 waves, and on
the other hand, at low temperature the centrifugal
barrier prevents the interaction in all l :0 0 channels;
as a result the effective interaction goes to zero with
the temperature and the heat conduction (as the vis-
cosity) diverges in fully-polarized fermion systems.
It must nevertheless be stressed that this effect appears
in a very low-temperature range where the vapour
pressure of 3He (and DT) is probably very low. More-
over, the condition of full polarization is essential; if
there are traces of the opposite polarization the low-
temperature conductivity will go to zero dominated
by the non-vanishing interaction between atoms in
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opposite nuclear spin states. From an experimental
point of view, the strong change of heat conductivity
with nuclear polarization (around 2 K for 3 He, 1 K
for DT) is probably of much greater interest and more
readily accessible to measurements. The observed
« bump » of the heat conductivity in nuclear polarized
DT and 3He is due to a local phase shift cancellation
in the p(l = 1) and f(l = 3) waves. (Easily seen on the
phase shift diagrams 2 and 3 at k* - 1.75, it can be
checked on the monokinetic cross sections of figure 7
where it explains the local equality between Q2 and
Q [,...I.) Such a cancellation is a pure dynamical conse-
quence of the balance between attractive and repulsive
interactions. Its observation is made possible in nuclear
polarized systems by elimination, through the Pauli
principle, of the even channels of interaction. In the HT
system the variations of the cross sections are much
smoother, being always dominated by repulsive
effects, and so are the variations of the heat conduc-
tivity with nuclear polarization and temperature.

2.2 LONGITUDINAL SPIN DIFFUSION. - As it has
been shown in LL2, the spin diffusion in a partially
polarized system is not isotropic, the diffusion of the
longitudinal component of the polarization being
quite different to that of the transverse one. [We call
longitudinal (respectively transverse) the component
of the polarization parallel (respectively perpendicular)
to the main local magnetization.] The oscillatory
mode of diffusion of the transverse polarization will be
considered later : as a first stage we will focus our
interest on the purely damping mode of longitudinal
spin-diffusion. This process has an exact analogue in
concentration diffusion in classical mixtures : the
diffusion of the « up » specie in the « down » one
is controlled in the first approximation by the collision
between distinguishable atoms (cross section Uk)
and the diffusion of the longitudinal component of the
polarization is then independent of M (the analogue
of the chemical concentration) and is given by the
formula

with :

The general features of the first approximation can be
seen in figures 15 and 16 (full line curves) for HT and
3He. A more refined approximation (section 2 of LL2)
predicts a weak dependence of this coefficient on
the nuclear polarization, which is easily evaluated
with the help of formulas (22) and (23) of LL2. The
total correction due to the second approximation is
rather small and does not exceed 5 %, the M depen-
dence of the process being still smaller and at the
most of the order of 2 % , (in the HT case for
T  200 mK). The longitudinal spin diffusion mode
thus appears to be fairly insensitive to exchange
effects but the symmetry principle is at the origin

of a new effect : the mode coupling between heat
conduction and longitudinal spin diffusion.

2. 3 MODE COUPLING BETWEEN SPIN DIFFUSION AND
LONGITUDINAL HEAT DIFFUSION. - In the presence
of both a temperature and a longitudinal magnetiza-
tion gradient the fluxes of heat and spin polarization
M appear to be coupled by the symmetry effects.
The flux of heat reads :

the flux of the longitudinal component of the polariza-
tion being then given by :

withe = ± 1 for bosons (respectively fermions).
The algebraic formulas for these two cross coeffi-

cients L 12(M) and L21 (M) are given in LL2 (equa-
tions (22) and (25)); the numerical ratio of the cross
coefficients to the main ones are shown in figures 11

Fig. 11. - Coupling coefficients for the two coupled modes,
heat conduction and longitudinal spin diffusion in HT, versus
temperature and nuclear polarization M, M varying from
0 to 1 with :
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Fig. 12. - Cross coefficients for the two coupled modes
(heat conduction and longitudinal spin diffusion) in 3 He.
(Same legend as in figure 11.)

and 12 for HT and 3He. The analogies between the
two cross coefficients of the same gas are merely an
exhibition of the Onsager relation as explained in
appendix III of LL2. Nevertheless, the Onsager
relation between the two cross coefficients depends
on the nuclear polarization M, so that the M depen-
dence of the two terms L,2 and L2, is different. The
coupling of the heat flux with a magnetization gra-
dient is a monotonically increasing function of the
polarization, whereas the coupling of the spin flux
with a temperature gradient increases with increasing
polarization, has a maximum for a nuclear polariza-
tion of about 60 % and then decreases towards zero
as the polarization becomes complete. One could
envisage using these couplings in order to stabilize
or possibly over-polarize a small region of a sample
by a gradient of temperature, but the order of magni-
tude and the M dependence of the L2, coefficient
are unhappily not very favourable to that prospeci~
The numerical results call for a last remark : even

at the lowest temperatures here considered (40 mK),
and especially in 3He, the results still differ signifi-
cantly from those obtained in LL2 in the scattering-
length approximation. The collision integrals involved

in the computation of these coefficients favour the
high energy part of the Boltzmann distribution func-
tion, as a consequence they are still sensitive to p and d
scattering at a temperature as low as 40 mK, and the
scattering-length approximation will never be a good
approximation in these gases.

2. 4 TRANSVERSE SPIN DIFFUSION AND SPIN WAVES. -

As explained in section 2.2 the direction Oz of the
local magnetization is an anisotropy axis for the spin
diffusion, and parallel and perpendicular polariza-
tions evolve quite differently. The general form of the
transverse polarization current is : 

-

In the first approximation the transverse spin diffu-
sion coefficient Dl is just given by :

where Do is the « classical » diffusion coefficient given
by equation (19) and p has the following expression

_11"B. _lotB.

In addition to the usual damping terms, equa-
tions (22) and (23) exhibit an oscillatory behaviour
due to the « identical spin rotation &#x3E;&#x3E; discussed in LL 1
and LL2. The ratio of the angular precession fre-

quency of these spin waves to the damping constant
is directly measured by the constant BMJl1.’ which
reduces in the first approximation to BMJl (6). The
coefficients p and D 1. evaluated in this first approxi-
mation are reported in figures 13 to 14.
As predicted in LL2, the p coefficients take very

large values at low temperatures. (They are predicted
to diverge as T-1/2 when T goes to zero.) Moreover,
as can be seen in figures 13 and 14, they are still impor-
tant in a large range of temperature.
To illustrate the uncertainty due to the potential, we

have shown in figure 14 the p coefficient of 3He cal-
culated with the two afore-mentioned potentials
described in section 1. l.
As can be seen in this example, the uncertainty

due to the potential never exceeds 10 %; it takes the
largest value in the intermediate temperature range
where the competition between attractive and repul-
sive effects is maximum. Experiments in the tempera-
ture range 1-2 it would then be a very stringent
test of the potential.

Associated with this transverse precession of the
spins is a slowing down of the diffusion exhibited in
figures 15 and 16. In these figures we can evaluate

(6) The second approximation for DL and p, are given
in LL2, formulas (26), (27) and appendix II.
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iig. 13. - «Identical spin rotation » coeflicient p in HT
’ersus temperature.

Fig. 14. - « Identical spin rotation » coefficient p in 3 He
versus temperature. The full line curve has been calculated
with the Lennard-Jones potential (Eq. 2), the dashed one
with the Aziz potential (Eq. 3).

both the blocking of the transverse spin current and
the anisotropy of the spin diffusion. (The zero pola-
rization curves for D 1. are just equal to Do which is a
very good first approximation to the MZ diffusion
coefficient.) They appear to be quite important in the
two studied systems.

Similar macroscopic effects have been predicted [7]
and measured [8] in dense Fermi liquids at very low
temperatures (in the collisionless regime at

T  20 mK). The present study shows that such
effects are not limited to degenerate fermionic sys-
tems but also occur in both fermionic and bosonic

gases in a very large range of temperature. Spin
echo measurements, or spin relaxation in inhomo-

Fig. 15. - Transverse spin diffusion coefficient in Hi
(same legend as in figure 11 for nuclear polarization). The
full line curve (zero polarization) is a good first approxima-
tion to the longitudinal spin diffusion coefficient for any
value of the polarization.

Fig. 16. - Transverse spin diffusion coefficient in 3 He.
(Same legend as in figure 10 for nuclear polarization.)
The full line curve is a good first approximation to the lon-
gitudinal spin diffusion coefficient for any value of the pola-
rization.

geneous magnetic field [20], are likely to be most
sensitive to these effects and to give a direct measure-
ment of the « identical spin rotation &#x3E;&#x3E; effect.
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