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Résumé. 2014 Afin d’élaborer une nouvelle méthode pbur décrire les propriétés du cristal parfait, une étude mathé-
matique des matrices cycliques a été récemment entreprise [J. Physique 42 (1981) 903] par l’auteur qui la poursuit
dans le présent article. Le calcul des éléments de certaines fonctions de matrices d’interaction interatomique,
de dimension infinie, constitue une méthode naturelle pour décrire les propriétés vibrationnelles, électroniques,
magnétiques... du cristal. On montre que ces fonctions peuvent être calculées par une réduction considérable
de l’ordre de la variable matricielle, basée sur les relations qui relient les matrices cycliques et certains polynômes
orthogonaux. Des expressions exactes peuvent être ainsi obtenues sous la forme d’intégrales multiples, pour les
fonctions qui décrivent des propriétés mesurables, des fonctions thermodynamiques, la fonction de Green, la
densité d’états... La méthode ne requiert pas une analyse spectrale préalable du problème. On donne en particulier
des expressions de la densité d’états locale et totale.

Abstract 2014 As a new approach to describe perfect crystal properties, the mathematical study of cyclic matrices
initiated recently [J. Physique 42 (1981) 903] by the author is pursued in the present article. A very natural for-
mulation of vibrational, electronic, magnetic... crystal properties is offered by calculating the elements of some
functions of interatomic interaction matrices, whose dimensions are infinite. These functions can be handled by
a drastic reduction of the matrix variable order, which is based on relations linking cyclic matrices and orthogonal
polynomials. Exact expressions are obtained in the form of multiple integrals. They are valid for functions des-
cribing experimentally measured properties, any thermodynamic function, Green’s function, density of states,
etc. Their derivation does not require a prior spectral analysis of the problem. A detailed study of the density
of states is undertaken, and a simple closed expression is given for this quantity.
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1. Introduction. - There is at present a renewed
interest in real-space methods for studying properties
of solids, but curiously the use of cyclic matrices
(circulant), although it has long been recognized [1]
as offering an adequate and very natural approach,
seems to be neglected. In spite of the inherent diffi-
culties in dealing with functions of matrices of enor-
mous dimensions, except in a purely numerical way,
some success has been obtained by this method in
the case of vibrational [1, 2] and electronic [3, 4] pro-
perties of crystals. But unfortunately many other deve-
lopments have remained purely formal and further

advances have been hindered by an insufficient elu-
cidation of the properties of the cyclic matrices.
Moreover, being generally founded on the relation-
ship which connects the eigenvalues of a cyclic matrix
and the primitive roots of unity, some previous
approaches yield results often similar to those attai-
nable with a reciprocal-space formulation; conse-

quently one loses the most interesting expected benefit
of the method, which should be a real space descrip-
tion of crystal properties.
To good approximation, it has been recognized

that the introduction of model Hamiltonians reduce
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phonon, electron, magnon... problems to a similar
formulation; the choice of an appropriate local basis
set : vibrational displacements, atomic orbitals, spin
states... yields a formulation of dynamical equations,
Schrodinger equations, spin-exchange Hamiltonians...
in terms of some specific hermitian matrices of infinite
dimension, which will be designated collectively as
interaction matrices and labelled D in the present
article. A decomposition of D can be obtained in terms
of high-order cyclic and low-order noncyclic matrices
to describe respectively the lattice and the pairwise
interactions between the atoms. Our aim will be to

develop a theory formally without reference to a

particular system, in order to emphasize the simila-
rities existing between many different physical pro-
perties which are simply related to the elements of
some matrix function f(12). The general designation
f can have many different meanings : Green’s func-
tion, local or total density of states, correlation func-
tion, total energy, partition function, any thermody-
namic function... The local properties, where one is
interested in different behaviour of atoms for diffe-
rent lattice sites, are determined by the diagonal ele-
ments of f(12), whereas the solution of scattering
problems is given by the off-diagonal elements of
f(12). The global properties of the crystal, as the ther-
modynamical properties, are additive functions of the
eigenstates given by the trace of f(12). The D-eigen-
values determination is not an indispensable pre-
liminary for applying the above formalism and

recently, in an article [6] subsequently to be referred
to as 1, we have obtained expressions in closed form
for the elements of a matrix f (D) of infinite order
by taking into account the similarities of the relations
fulfilled by Chebyshev orthogonal polynomials and
cyclic matrices. But the validity of the above results
is restricted to the case where the pairwise interactions
between. atoms belonging to neighbouring unit cells
are simply expressed by matrices which are commu-
tative and identical for opposite directions in space.
The consideration of functions of noncommutative

matrices is beset with difficulties, but is nevertheless
indispensable in order to allow the theory to treat
models giving a realistic description of crystal pro-
perties. The solution of the problem is reported in
the present article, and can be visualized as the gene-
ralization of the results obtained in 1. A simple
example of the application of the theory is also

reported.

2. The interaction matrix. - The structure of an
ideal crystal lattice is formed by the regular repetition
of L x L x L = N unit cells. In the basis defined by
the primitive translation vectors ei, e2, e3 of the lat-
tice, with the origin at the zeroth cell, a unit cell is
located at position vector 1, which refers collectively
to the three positive or negative integers 11, 12, 13.
We define the matrix g" whose elements are regarded

as parameters of different physical meaning, to des-

cribe the interaction between the s atoms of the zeroth
unit cell and the s atoms of the 1 th unit cell. The order

off is q = sr, where r is the dimension of the atomic
basis set used to describe the physical interaction. The
matrix can be easily specified in the different cases :
for a dynamical matrix the elements are components
of the force constant tensor, the invariance of the

potential energy against rigid body translation leads
to a relation between the diagonal and off-diagonal
elements, and the atoms undergo displacements in the
three directions of space, so that r = 3 ; for a tight-
binding Hamiltonian the diagonal and off-diagonal
elements represent respectively the energy of orbitals
and the hopping of an electron from one orbital to
another, and accordingly r will take the values of 1, 3
or 5 for s, p or d orbitals; for a spin Heisenberg Hamil-
tonian the diagonal elements equal to zero, while the
off-diagonal elements are exchange integrals and r =1.

Clearly the matrices a, depend on 1, i.e. are diffe-
rent for different neighbours, but if we assume the

crystal to satisfy cyclic boundary conditions they are
invariant with respect to translation so that al des-
cribes the interaction between two unit cells 1’ and
I + 1’.

In order to construct the interaction matrix D for
a perfect infinite crystal where the range of interaction
is limited to the n th neighbours, we can start by
writting the block matrix which concerns the atomic
rows collinear with ei . We choose the column indice
of the matrix first row elements, varying from 0 to
L - 1, to correspond to the following sequence of h
values

According to the above mentioned property of the
matrices, we can write the qL x qL block matrix
in the form of a block circulant matrix, whose first
row may be written as

9000 fl00 1 fl002 ° ° ° fl00n # 0 ... 0 Q fl00E ° ° aooi fl00i
n nonzero elements L-2n-1 zero n nonzero elements

elements

and the elements of the next rows follow by cyclic
permutation; or equivalently using the direct product
notation

where 1!}, (resp. m _ 1) the topological non-symmetric
cyclic matrix of order I (resp. 2013 /)

is the matrix having a single nonzero element in the
first row and the l th (resp. (L - 1)th) column [3].
The 1!}, (resp. 1!}-,) matrix relates an atom with its
lth neighbour situated in the direction e3 (resp. - e3).
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The mp’s are commutative L x L matrices which
obey the following relations

An element in the kth row and lth column (labelled
starting from 0) is given by

where A(q) is the Kronecker function, or in more
concise form

since a single indice is sufficient to designate the ele-
ments of the zeroth row that fully define a cyclic
matrix.
The next step in the construction of the D matrix

is to consider the atomic planes parallel to the plane
(e2, e3), where the interacting units are the previously
considered linear chains. An obvious generalization
of the atomic row results yields the following expres-
sion for the qL 2 x qL Z block matrix describing plane
interactions

where equation (3) has been used.
Further development of the same argument leads

finally to the total interaction matrix D in the form

The D matrix is indeed a multi-level partitioned
matrix, in the sense that 1!}kt Q mk2 8&#x3E; 1!}k3 © gktk2k3
may be identified with the cyclic matrix 1!}kt whose
elements are identical blocks mk2 8&#x3E; 1!}k3 0 ak1k2k3
which may itself be partioned into blocks constituted
by the matrix Mk2 with elements mx3 © akik2k3. . This
last block matrix is a cyclic matrix having the non-
cyclic matrix akk2k3 for elements. Hence, considering
the partially cyclic character of the D matrix, the
element in row i and column j of the noncyclic block
matrix, which is the 11, l2,13 block matrix element in
the first row of the block circulant matrix, will be
labelled as [D ]’th13,ij.
The order of the matrix D is qN x qN, and for

any crystal of reasonable size the dimensions of D are
enormous, therefore we will find very convenient

subsequently to consider a matrix d of finite order
q x q, derived from D. On account of equation (5)
and of direct product properties we have the relation

which associated with the following 1-1 correspon-
dence between topological cyclic matrices and scalar
variables

leads from equation (8) to the matrix

subsequently referred to as the characteristic inter-
action matrix.

This matrix has been defined with reference to the

reciprocal space representation of D : a Fourier
series which can be written, for a given wave vector
q = (qX’ qr qz), as

The two series (9) and (10) differ by their weight
factors only, which are orthogonal functions in both
cases (see Eq. (16) below) and this property will be
of great utility in the present work.

3. Functions of the interaction matrix. - Consider-

ing the interaction matrix of a perfect infinite crystal,
where interactions of an atom with its neighbours
situated outside a domain K centred on this atom are

neglected, we have

In order to calculate functions of the matrix D which
can be defined, for example, by power series it is

clearly necessary to obtain first an expression for D p,
where p is some positive integer. But in equation (11),
whereas the cyclic matrix factors’ are commutative
and satisfy the simple relations (1)-(7), on the contrary
the ai’s do not commute with each other and hence
they do not obey some principles of elementary
calculus as for instance the multinomial development
rules of ordinary algebra with numbers. To write
expressions comprising noncommutative factors, we
shall adopt the convention of representing by one
overlined factor the entire set of factors which can be
derived from it by permutation of its terms. Thus for
example AB is equal to AB + BA. Hence our conven-
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tion allows us to express in condensed form, using
equations (4), (5), the matrix

whose elements, according to equation (7), are given by

In order to proceed further we must introduce
some considerations on orthogonal polynomials of
degree n and specifically on Chebyshev polynomials
of the second kind Cp(x), whose properties are strongly
related to those of cyclic matrices as shown in 1.

An important property of these polynomials is that
they satisfy the rule [13]

or according to de Moivre’s theorem

A similar relation applies to any scalar variable x in
the form

. _ _ . __

and it holds also, from equation (5), for the 1!}p matrices,
so that

which has proved to be a useful property [3, 6].
As usual ( ..., ... ) denotes the scalar product;

by a change of variables and a generalization of the
one-dimensional definition [13], we have in n
dimensions

The Cp polynomials being of degree n, we have obviously

and consequently :

taking into account the relation Co(x) = 2.
Substituting equation (16) in equation (13) we have

so that the process of introducing variables x, x’, ... results in annihilation of all the terms forbidden by the cyclic
matrix properties in the multinomial development of the noncommutative matrices gi. Rearranging terms we
have
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and more generally for any function f (x) expressible as a power series in x we get

As a special interesting case, let us consider the element

I B B - I I .

Repeated L3 = N times, this element forms the diagonal of the matrixf(12). Then an expression for the trace
follows readily

On account of equation (15), the results obtained in equations (19)-(21) appear to be expressed as multiple

integrals of some J(t!) matrix elements that will be denoted g x , y , 2013); the integrals’orders are respectively- 

x y z

2, 4, 6 for 1, 2, 3-dimensional lattice spaces. But sometimes the function g x y Z can be written in the formx’’ y’’ z’
gl x + x , y + y , Z + Z and we prove now that the integrals’orders are simply equal to the lattice-spacex x y’ y Z’ z
dimensionality in that special case. By taking advantage of the ChebyschetT’s polynomials property

it follows from equation (16) that the scalar product

This result can be extended easily to other variables and functions so that

When applicable this result should be useful for handling certain types of scalar product.

Generally, the solution of a physical problem is

given by just a few elements of the D matrix function,
or perhaps even a single one. According to equa-
tion (15), the results here reduce the calculation to
the integration of d-matrix function elements. More-
over, we may remark that we are not concerned with

writing the matrix D ; instead the characteristic
interaction matrix d can be used from the start.

Considering the difference in size between d and D
matrices, the economy of work is very important, but
above all the results are given by expressions whose
analytic properties may be guessed with some faci-
lity, even in the case where the integrals are to be
found numerically.

This theory takes the periodicity of the lattice into

account by means of cyclic-matrices properties and
contact must be made with the familiar Bloch’s theo-
rem approach. We have stressed already that the d
matrix is constructed in close analogy with the q-space
dynamical matrix or Hamiltonian, and comparison of
equations (9) and (10) gives the rule for deducing,

from d(q), the matrix d x , y , z subsequently used" 

x y z

to apply theorem (19). Hence it appears that the method
is usuable and easily understood without reference to
cyclic matrices. Regarding applications, an obvious
advantage of the present method is to give exact
closed-form expressions of the desired functions
accessible to experiment without the prior require-
ment of obtaining the dispersion relation, then to
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integrate over the Brillouin zone and finally obtain
the density of states by approximate methods.

3.1 THE SYMMETRIC CASE. - In primitive crystals
the atom at the origin has sometimes identical interac-
tions with all its neighbours located at positions given
by indices of the same absolute value, so that

and consequently the D matrix being symmetric can
be expressed in terms of the symmetric topological
cyclic matrices

The results obtained in 1 refer to this simple special case and we discuss now consistency with the present results.
On account of equations (9), (23) the characteristic interaction matrix is written

by employing equation (14).
Thus, in this case, performing the scalar product in equation (18) gives terms like

and since (22) is valid the last equation can be written

Hence it turns out that equations (18), (19), (20), (21 ) can be simplified in this special case by giving to the cha-
racteristic interaction matrix the new form

and performing the scalar product with the polynomial product Cl,(x) Ch(Y) Cl3(z); this method is fully deve-
loped in 1.

4. The density of states. - An obvious advantage of the present theory is to give directly (without the aid
of the spectrum) expressions in closed form for functions which are attainable experimentally. Nevertheless
the local density of states [7], though it is inaccessible to most experiments, is sometimes important if one is
interested in different behaviour of atoms for different lattice sites, and it can be easily derived through the
Green’s function.

In matrix notation the Green’s function reads

where ~ is a positive small quantity; the unit matrix 1 will be omitted as understood. In order to use theorem (19),
we define the characteristic Green’s function and develop to first order in B
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where the adjoint of A is written adj 4, and hence it turns out that the elements of the real part of the Green’s
function can be written from theorem (19) as

From equation (30) the imaginary part of the characteristic Green’s function may be written

and on account of

we have

which, according to the relation [8]

can be written as

The derivative of the argument of the b function is given by

and for a given eigenvalue En of the d matrix, it takes the value

so that equation (33) can be rewritten in the form

by turning the Dirac b function property [10, 11]

to advantage.
From equations (34) and (35) we finally have
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The local density of states consists of only one diagonal element of this matrix [9]

where the indice i stands for a coordinate of the local basis set. Equation (38) can be rewritten on account of
equations (37a, b)

and finally summing the diagonal elements given by (39) we obtain for the total density of states the expression

The equation

defines an hypersurface S in R 6 and it is clear that the scalar product in equation (40a) can be written, according
to equation (15a), as a surface integral over S; so that the bands limits and the forbidden energy gaps are thereby
easy to determine from the structure of the integrand, full results being obtained by calculation of the integral.
- - 

5. Example of application : the diatomic chain

dynamics. - In order to illustrate the feasibility of
the method we consider now briefly a simple case :
the vibrations of a diatomic linear chain with nearest

neighbour interactions only.
The interaction matrix is [1, 2]

with

a_ 1 being the transpose of al, where III and 112 are
the two atomic species masses and y the nearest

neighbour force constant. In this example the a

matrices are clearly noncommutative. The charac-
teristic interaction matrix reads

and for this one dimensional case theorem (19)
applies in the form

or

For example the density of states n(w2) can be
readily evaluated according to equation (40)
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where wi, w22, the eigenvalues of the characteristic
dynamical matrix (42)

are given by

Using the reduced squared frequency

the density of states (45) reads, from equation (36),

The scalar product in (49) can be evaluated using equation (22), so that

or, from equation (15),

Hence from equation (50) the spectrum of squared frequencies has the analytic form

which is a well established result [2]. 
z

We have just obtained the expression of the den-
sity of states as a first example of application of the
present theory, but an obvious advantage of the
method is just its ability to give expressions for
measurable quantities without spectrum calculations.
As a second illustration, we show the method to be
capable of giving a closed form expression for the
specific heat C, of the diatomic linear chair. Starting
from the formal expression in terms of an infinite sum
over the normal modes frequencies [12], we find that

and using the result of equation (44) we obtain the
trace of this infinite order matrix in the form

h 2
where the matrix d’ = fi 12 has for eigenvalues" d’ = (2 k T has for eigenvalues

/ 2 
’ z

co 12= (2 h 2 2 so that equation (55) takesw12,2= (2 kB T) WI,2 SO that equation (55) takes

the form

which from equations (15), (22) can be rewritten as

where

and
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Therefore an expression in closed form has been
obtained for the specific heat without a prior calcu-
lation of the frequency spectrum. Other functions of
the dynamical matrix D could be easily calculated;
some more examples of application of the present
theory to lattice dynamics problems will be presented
in a forthcoming paper.

6. Conclusion. - The simplicity of the example
treated above should not obscure the general character
of the present theory. Its range of applicability includes
every model describing any crystal properties in
terms of pair interactions where the range of interac-
tion, though finite, is not limited. Nevertheless the

algebra becomes more complicated as the dimensiona-
lity of the crystal increases; the order of the multiple
integral in the solution is proportional to this dimen-
sionality. Lack of symmetry in the interaction also
doubles the order of the integral which is, in any event,
never superior to six. The complexity of the integrands

increases with the number of interacting neighbour
atoms to be considered, whereas the order of the
characteristic interaction matrix is proportional to
the number of atoms in the unit cell and to the dimen,
sion of the local basis set. Hence, as everywhere else,
any refinement of the model is a source of increasing
complexity in the algebra, which nevertheless remains
extremely simple as compared to other methods.

Finally, this method allows direct calculation

(without sampling E(q)) of exact closed-form expres-
sions for measurable crystal properties. Being not
essentially limited to the calculation of Green’s
function diagonal elements (as the recursion method),
and involving no approximation (in contrast with the
moment method for instance), it deals with crystal
periodicity in a most natural way (dual with Bloch’s
theorem) which could prove to be less adequate to
treat problems involving large deviations from periodi-
city.
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