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Exciton Bose condensation : the ground state of an electron-hole gas
I. Mean field description of a simplified model

C. Comte (*) and P. Nozières

Institut Laue Langevin, BP 156X, 38042 Grenoble Cedex, France

(Reçu le 17 décembre 1981, accepté le 4 mars 1982)

Résumé. 2014 Nous considérons un gaz d’électrons et de trous dans un modèle simple de semi-conducteur, avec un
gap direct et des bandes isotropes et non dégénérées. Nous étudions la condensation de Bose de ce système en
fonction de la densité, négligeant dans une première étape l’effet d’écran et la structure de spin des porteurs. Nous
décrivons ainsi le passage continu depuis le condensat de Bose d’excitons atomiques à basse densité jusqu’à l’état
« d’isolant excitonique » 2014 et finalement au plasma d’électrons et de trous libres à haute densité. Comparée aux
théories existantes, notre formulation prend en compte l’appariement des électrons et des trous dans l’état fonda-
mental, dans un langage simple et proche de la réalité.

Abstract. 2014 We consider an electron-hole gas in a simple model semiconductor, with direct gap and isotropic,
non degenerate bands. We study the Bose condensed ground state of that system as a function of density, using
a mean field variational ansatz. In a first stage, we ignore screening as well as the spin structure of the carriers.
We thus describe the smooth transition between Bose condensation of atomic excitons at low densities, and the
« excitonic insulator » state and ultimately electron-hole plasma at high densities. As compared to previous treat-
ments, our approach includes the effect of electron-hole pairing on the ground state, within a simple realistic ansatz.

J. Physique 43 (1982) 1069-1081 1 JUILLET 1982,

Classification
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1. Introduction. - Consider a semiconductor con-

taining an equal number of conduction electrons and
valence holes, N per unit volume. Such carriers may
be produced by an appropriate pumping technique,
or they may result spontaneously from an overlap
of conduction and valence bands (monitored for
instance by pressure). In the former case, one controls
N, in the latter the chemical potentials; the physics
remains basically the same. We assume that the
carriers are cold (’). We may then ask what is their
ground state ? How does it evolve with density ?
Does one expect density instabilities leading to a
liquid-gas phase separation ? These questions have
received considerable attention in the past, the main
landmarks being the work on Bose condensation

(*) On leave from Laboratoire de Spectroscopie et

d’Optique du Corps Solide (Laboratoire associ6 no. 232
au C.N.R.S.), 5, rue de l’Universit6, 67000 Strasbourg.

led by Kjeldysh [1-3] and by Kohn [4] in the late
sixties (the so-called « excitonic insulator »), and the
many papers on electron-hole droplet condensation
in the seventies [5]. In the present paper, we take the
issue again. Using a simplified model, we propose a
variational ansatz which interpolates between low
and high densities. We thus emphasize the smooth
transition between Bose condensation of atomic
excitons at one end, excitonic insulators and ulti-

mately the normal electron-hole plasma in the other
end. At that stage, we do not attempt to describe
realistic materials : we rather wish to understand the

many body aspects of an interacting electron-hole
gas, taking into account the tendency to form bound
pairs (a trend which is ignored in usual Hartree-Fock
or RPA approximations). Similar interpolations have
been carried out befpre [6] using essentially the
same mean field approximation. Our language is
somewhat simpler, and we feel that our variational
ansatz is more realistic. Our approach is quite general,
and it can be transposed to other problems. Instead
of electron-hole pairing, one can study particle pairing
in an attractive Fermi gas : one thereby describes
the smooth transition between a weak coupling
BCS superconductor on the one hand, and the Bose
condensation of strongly bound « molecules » on

(1) Such a statement may be quite unrealistic in pumped
systems. Unless they are produced exactly at threshold,
the carriers have a temperature which may be much higher
than that of the lattice. They can be cooled only if their
lifetime is longer than the energy relaxation time. Such a
requirement is hard to meet, especially in direct gap materials
in which the lifetime is short.
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the other hand. In the same way, one can analyse
the competition between particle and pair conden-
sation in a Bose liquid [7]. These problems will be
dealt with in separate papers.

Consider first a single electron-hole pair : it forms
a bound pair, the exciton, whose energy - 80 and
radius ao provide the natural units of the problem.
Two excitons may in turn bind into a molecular

structure, the biexciton. The situation is completely
analogous to hydrogen, the hole playing here the
role of the proton : the exciton is the H atom, the
biexciton is the H2 molecule. The molecular binding
energy 8M depends critically on the electron-hole
mass ratio a = me/mh. While large if (1  1 (H2
molecule), 8M is very small when a - 1 : the hole
zero point motion overcomes the additional hole
covalent bonding [8]. (Correspondingly, the spatial
extent aM of the biexciton is » ao.) Note that these
complexes retain spin degrees of freedom : the exciton
is singlet or triplet. Among the various biexciton
states, the « para » form (electron and hole spin
singlets) maximizes the binding (while minimizing
the rotational energy).

In actual life, one faces many complications. The
gap may be direct or indirect. There may exist several

valleys in either the conduction or the valence bands.
Bands may be anisotropic - or even orbitally degene-
rate (as observed in optically active excitons, made
up with an s-electron and a p-hole). In addition,
the electron and hole spins may be coupled by inter-
band exchange. The resulting many faceted problem
is very rich, but very complex. In order to extract
simple ideas, it is better to consider first a simple
situation (admittedly not realistic) : a direct gap
semiconductor with isotropic, non degenerate bands.
The only parameters are then the density N and the
mass ratio Q. Such a model provides the backbone
to which we may add, one by one, the above compli-
cations.

Consider now a dilute exciton gas, such that

Nal  1. If they remain in atomic form, two bound
pairs have a small overlap and the excitons can

presumably be treated as bosons, whose internal
orbital structure is irrelevant. Similarly, a bound
biexciton should also behave as a structureless
boson if Na£ « 1. The corresponding ground state
presumably breaks some symmetry. One may think
of several possibilities :
- Crystallization into a regular lattice of either

excitons or biexcitons. Cristallization of para-biexci-
tons has recently been considered by Nikitine [9] :
it appears likely if Q , 1 (as in H2); when (1 ’" 1,
localizing the holes would probably cost too much
kinetic energy.
- Bose condensation into a single quantum state

with total momentum q = 0, as in liquid 4He. Such
a possibility has received considerable attention,
especially in the work of Hanamura et al. [10]. For
very dilute systems, Na£ « 1, the condensed entities

should be biexcitons : one recovers the « pair con-
densation model » of Bose liquids, which has been
sometimes advocated for liquid 4He [13]. As the
density increases, biexcitons start overlapping, and
eventually they dissociate : we turn into an atomic
exciton condensation [7] (’).

In what follows, we shall assume that the ground
state is Bose condensed. Such a state, which minimizes
the kinetic energy, looks reasonable if J - 1. In

that case, biexciton binding is very weak : we shall
ignore it altogether. We thus consider only a conden-
sate of atomic excitons. Strictly speaking, that should
only hold if

Nevertheless, we shall extend the discussion down
to N = 0.
When Na 3 &#x3E; 1, the excitons overlap, and one can

no longer ignore the fact that the « bosons » are

actually made up with two fermions. This is indeed
a very old problem [11]. Its impact on the process
of Bose condensation was analysed in a pioneering
paper by Girardeau [12]. The first terms in a density
expansion of the ground state were discussed in
detail by Kjeldysh and Kozlov [2] (we shall actually
use their approach throughout our paper). Without
going into details, a simple argument clearly displays
the fundamental physical point. Let ak and bk be
creation operators for a conduction and a valence
electron, respectively (we temporarily ignore spin).
A ground state exciton is characterized by the creation
operator

where Pk -...; I lag’ is the internal orbital wave function.
A state with N condensed excitons has a wave function

(I vac ) denotes the intrinsic semiconductor N = 0).
The corresponding occupancy of the kth fermion
state is nk = N 1 cPk I2. If Nag « 1, nk is  1 and we

need not worry with the exclusion principle. If how-
ever Na 3 Z 1, nk saturates (it cannot exceed 1) : :
the nature of the bound state changes drastically.
Such a saturation is a consequence of the exchange
between electrons (and holes). Physically, the exciton
bound states draw on the same stock of underlying
Fermi states; once that stock is exhausted (n. - 1),
exchange becomes the dominant feature.

(2 ) The dissociation of biexcitons when N increases
was stressed by Brinkman and Rice [5]. They assume it

occurs when N-"’ - aB, the scattering length of two
biexcitons. In practice, the Van der Waals attraction is

negligible, and aB is controlled by the exchange repulsion,
- 7 ao. Their mechanism is somewhat different from that
of reference [7], where dissociation occurs even for point
bosons.
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We may then approach the problem from the
other end, considering a dense system such that

Nag » 1. The excitons overlap so much that they
loose their identity completely. One has better
think in terms of an electron-hole plasma. Such a
« normal » phase may still be subject to instabilities :
- Charge density waves [14] represent the dense

counterpart of the crystallized state described in the
dilute limit.
- Excitonic insulator states may be viewed as

Bose condensation of weakly bound electron-hole
« Cooper pairs », in much the same way as electron
Cooper pairs condense in superconductors. In diffe-
rent guise these states were predicted long ago by
Des Cloizeaux [5], by Kozlov and Maksimov [3],
the most important contributions being those of
Kjeldysh and Kopaev [1] and of Kohn and co-
workers [4]. (Related models were discussed recently
in connection with a two band description of rare
earth alloys [15].) Such states are known to depend
very much on the nature of the gap, on anisotropies
and impurity scattering. For our isotropic simplified
model, they occur at arbitrarily large density N.
As noted earlier, symmetry breaking is the same in

dilute and dense systems. Consequently, one should
proceed smoothly from one limit to the other, with
a gradual change of the physical picture as the den-
sity increases : bound pairs which were real atomic
entities evolve toward the loose cooperative binding
typical of superconductors, a point recently empha-
sized by Leggett [16] in a somewhat different language.

In an electron gas, we need not worry about possible
liquid-gas phase transitions : the density of the system
is fixed by the positive charge rigid background.
In an electron-hole system, instead, nothing opposes
spontaneous density fluctuations (the carriers are

globally neutral) : this is just the issue of the electron-
hole droplet condensation. The stability of the ground
state is controlled by the curve that gives the energy
per particle, Eo/N in terms of the volume V/N.
Typical situations are shown on figure 1. Original
treatments of that problem relied on a comparison
of the normal plasma with the individual exciton

energy so, with no attempt at describing the inter-
mediate density regime [5]. The consensus was that
case « b » would hold for an isotropic semiconductor,
band structure effects leading instead to the physi-
cally interesting case « c » observed in Ge and Si.
We shall see that pairing effects might modify that
conclusion (see for instance [6]).
The present paper is concerned only with the direct

gap, isotropic non degenerate model defined earlier;
moreover, we completely ignore the spin degrees of
freedom of electrons and holes in order to simplify
the algebra. We limit ourselves to a mean field approach,
similar to the BCS theory of superconductivity,
using an unscreened Coulomb interaction between
free carriers. In section 2, we construct the Kjeldysh
wave function which describes the Bose condensed

Fig. 1. - Various possibilities for the liquid-gas phase
diagram of an electron-hole system. In the dilute limit, the
energy per particle goes to the exciton binding energy
( - so); case (a) : the homogeneous state is stable at any
density; case (b) : liquid gas equilibrium corresponds to
the double tangent B1 B2, i.e. to a finite pressure at T = 0;
case (c) : the vapour pressure vanishes and the liquid phase
has a density corresponding to the minimum C.

ground state for arbitrary density. We consider
in detail the dilute and dense limits, where analytic
expansions are possible. The nature of elementary
excitations is briefly discussed, as well as the critical
temperature, whose origin is quite different in the
two limits. Section 3 is devoted to a numerical dis-
cussion of the intermediate density region. Using the
Kjeldysh wave function as a variational ansatz, we
interpolate between dense and dilute systems; we
show that even at o metallic » densities, pairing
corrections are very important.

In a second paper, we shall try to improve on that
very crude unrealistic model. First of all, we shall
restore the spin degrees of freedom of electrons and
holes : within a mean field approximation, results are
not changed much. Next, we shall examine the effect
of screening - a much harder problem for which
we can only give estimates. Formally, one can cons-
truct a generalized RPA which reduces to the standard
treatment of correlations for dense systems [5],
and which provides an approximate form of the
Van der Waals attraction in the dilute limit. Inter-

polation at intermediate densities is unfortunately a
formidable numerical task, and we shall only present
crude, indicative estimates. Finally, we shall briefly
survey complications brought about in more realistic
models : anisotropies, degenerate bands, multivalley
structures, etc...

The problem of the ground state of an electron-hole
gas in a semiconductor is extremely rich and diver-
sified : here we only tackle its simpler features. These
two papers should be viewed as mostly methodolo-
gical : at this stage, comparison with experiment
would be unrealistic.
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2. The Kjeldysh-Kozlov-Kopaev formulation of Bose
condensation. - We consider a direct gap semi-
conductor : momenta k are measured from the band
extrema in the Brillouin zone. We assume isotropic,
non degenerate parabolic conduction and valence
bands. Let at and bkQ be the corresponding creation
operators. Taking the intrinsic semiconductor as a
reference (no free carriers), we write the one electron
hamiltonian as

In each band energies are measured from the cor-
responding extremum ; me and mh are the electron
and hole effective masses.

In the Coulomb interaction, we retain only the
part associated with free carriers : everything connect-
ed with the filled valence band is included in either

exchange corrections to the gap or in screening by
the static dielectric constant x of the intrinsic material.

Moreover, we ignore interband electron-hole exchange,
involving band to band matrix elements of the density
fluctuation pq : the corresponding matrix elements
are - q : they are negligible if the concentration of
free carriers is small. (Later, we shall return to these
interband terms, as they are the only ones that couple
the electron and hole spins.) The Coulomb interac-
tion operator is thus written as

in which Pq and V q refer to free carriers only (’)

Ne and Nh are the number of carriers of each type.
The corresponding terms in (4) subtract the self
interaction of electrons and holes - equivalently,
they act to move the a* and the b to the left in the
product operator Pq P-q-
We fix the free carrier density Ne = Nh = N :

electrons and holes have each their own chemical

potential, J1e and Ph (note that J1h refers to a hole,
not to a valence electron). The chemical potential
for a pair is

Such a canonical description is appropriate if we
control the pumping mechanism. If instead electrons
and holes exist in thermal equilibrium, J.le and Ph
are locked by the chemical equilibrium condition

where G is the energy gap (absolute Fermi levels are
the same in both bands). To the extent that Jl(N)
is monotonous, the two points of view are equivalent.
The ground state of a single exciton is hydrogenic.

It has a Bohr radius ao h’ K/m* e2, where m* is the
reduced mass (m* me + mh" 1 ). The correspond-
ing « Rydberg » is so = e2/2 Kan. Very often, we shall
measure k in units llao and energies in units go,
a choice which implies 1ï2/2 m* = e2/2 K = 1. The
normalized internal wave function of the q = 0 ground
state is then

The exciton may exist in spin singlet or triplet varie-,
ties, whose degeneracy is only lifted by interband
exchange. For the moment, we ignore that feature
and we simply forget about spin.

Consider now a Bose condensed system of N
excitons. At small densities, Nao  1, their internal
structure is not much affected by neighbours : it
should remain close to the single exciton form [8].
If Bose condensation were only macroscopic occu-
pancy of the q = 0 exciton state, the corresponding
wave function would be (2). Actually, we know that
Bose condensation also implies phase locking and
large fluctuations in the number of particles. Within
a mean field approximation (zeroth order in the

Bogoliubov weak coupling expansion), the ground
state wave functions should be instead

(within a normalization factor). The modulus of A
fixes the average number of particles; its arbitrary
phase signals the breakdown of gauge invariance.
Replacing t/1ó by its expression (1), we cast (9) in the
form

Finally, we expand the exponential and we remember
that electrons and holes are fermions subject to the
exclusion principle :

Upon normalization, (11) appears as a special case
of the BCS-like ansatz

in which

(3) Strictly speaking, the intraband matrix element of

P, is only 1 if q -+ 0 : that condition is met for small densi-
ties.
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The fact that (12) can describe Bose condensation
of dilute excitons was recognized by Kjeldysh and
Kozlov [2] : the shape of vk then depicts the internal
state of the bound electron hole pair, while its magni-
tude, A = FN, fixes the density. The corresponding
behaviour of I Vk 12 as a function of 8k = h2 k’/2 m*
is sketched on figure 2.

Fig. 2. - The ground state fermion distribution (vk)2,
as a function of pair energy E, for various densities N.
Curves (a) and (b) correspond to dilute systems (Nag « 1),
in which (vk)2 scales with a constant shape as a function
of N. Curves (d) and (e) correspond to the dense limit :
the Fermi level drop sharpens and moves to higher energies.
The transition between these two limits is smooth, as shown
by curve (c).

Let us follow the evolution of (12) as the pair
density N grows. vk 12 first increases in magnitude
without changing its shape. When I Vk 12 approaches 1,
it is « stopped» by the normalization condition

1 u 12 + I V 12 =1 - a mathematical statement of the
exclusion principle. Physically, the N condensed
excitons exhaust the underlying stock of fermion
states. ln order to pack up more particles, vk must
spread further away in k-space. Since Ok - ao /2
such a saturation occurs when Na 3 _ 1, i.e. when
excitons start overlapping.
We may also start from the opposite end, Nag » 1.

The ansatz (12) describes equally well the usual

degenerate electron-hole plasma : we need only take
for 1 vf a step function

where kF = (6 n’ N)1/3 is the Fermi wave vector

(remember we ignore spin !). As a function of Ek,
the distribution levels off at the pair chemical poten-
tial Jle + Jlh = p. Actually (14) is only a first approxi-
mation. As shown by Kjeldysh-Kopaev and by
Kohn [4], however large the density (and small the
interaction), an isotropic electron-hole gas always
undergoes an instability analogous to superconducti-
vity - except that electron pairs become electron-hole
pairs. The resulting excitonic insulator is still des-
cribed by (12), except that I Vk 12 is rounded off near

Sk = Jl, over a width L1 that decreases exponentially
when N grows. L1 is the energy gap.

Putting the two limits together, we see that the
Kjeldysh wave function provides a smooth transition
between the dilute condensed excitons in one limit,
the excitonic insulator and ultimately the electron-hole
plasma in the other. The evolution of Vk I’ as the
density increases is sketched on figure 2 : when satu-
ration is reached, I Vk 12 extends to larger energies 8k,
with a sharper and sharper drop. Since (12) accurately
describes the limits N ---+ 0 and N -+ oo, it may be
viewed as an interpolation in the intermediate density
region, which cannot be very wrong. Mathematically,
it is simple - however the physical interpretation is
no longer obvious : curve c in figure 2 is equally remote
from condensed point bosons (curves a and b) and
from a degenerate plasma (curves d and e).

In our isotropic model, Bose condensation occurs
at all densities. As a result, the ground state is always
an insulator. One always can think in terms of bound
electron-hole pairs, but with a different physical pic-
ture in the two limits. For small N, the pairs are well
identified, each electron interacting with only one
hole, except for infrequent collisions. For large N, we
are dealing with Cooper pairs whose radius is much
larger than the particle spacing. Binding is then a

cooperative effect rather than a single pair affair.
Actually, (12) is nothing but the mean field approxi-

mate ground state, taking into account Bogoliubov
anomalous pairing a* b )&#x3E; as well as the ordinary
Hartree Fock pairing a* a &#x3E; and ( b b* &#x3E;. At the
moment, we view it as a variational ansatz in terms
of the unknown vk, subject to the normalization
condition

(it provides the best mean field ground state). Since
the number of pairs is not conserved, we minimize
(H-pN). Disregarding spin, the corresponding expec-
tation value is

8k = Ii 2 k2/2 m* is the pair kinetic energy. The second
term is the usual electron-electron and hole-hole

exchange (hence the absence of a factor 1/2). There is
no Hartree term since the gas is globally neutral. The
last term is the anomalous interaction due to Bose
condensation (as in a superconductor). Note that we
must include the normal Fock terms which are often
discarded in simple treatments : they control the energy
at high densities and they are crucial in the minimiza-
tion. It is easily shown that (16,) is stationary subject
to (15) if vk obeys the following condition
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(17) is the basic input of our discussion. It is solved
by setting (4)

Standard algebra then yields

Solved self consistently, (18) and (19) provide the
unknown Çk and ’jk’g is chosen last in such a way
as to ensure the required value of N = L I Vk 2.

Such a formulation is valid at arbitrary density -
but it can be pushed through analytically only in
limiting cases. We first consider the dilute limit,
analysed in detail by Kjeldysh and Kozlov [2]. vk is
then small and in leading order, (17) reduces to the
homogeneous equation

(20) is nothing but the Schrodinger equation for the
single exciton bound state. Normalizing Vk so that
L I Vk 12 = N, the zeroth order solution is

As expected, the chemical potential is the (negative)
energy of a single bound exciton. It appears through
a linear eigenvalue equation which also fixes the shape
of vk. In that order, excitons are completely indepen-
dent, and the density N only enters through the magni-
tude of vk. Knowing VkOl we easily infer the condensa-
tion parameter d k :

It vanishes when N --+ 0 (contrary to p).
Proceeding to the next order in N as in perturbation

theory, we write

with bvk orthogonal to OkO. To first order in bvkl (17)
reduces to

bVk is ’" a3 and therefore N = a2 + O(LX6). On pro-
jecting the first equation (24) onto OkOl we obtain (see
Appendix A)

(25) is the lowest order correction to the chemical

potential, first derived by Kjeldysh and Kozlov [2].
It arises from the exchange repulsion between the
electrons and the holes that make the interacting
excitons - hence its positive sign. Such a short range
repulsion due to overlap of internal wave functions
is familiar. What is unusual is how simply it enters
the formalism - though a saturation of the coefficient
vk : that is a consequence of the Bose condensation.

Actually, (25) is not the only contribution of order
N in the dilute limit. Besides the static repulsion due
to the exclusion principle, two excitons should feel an
attraction due to their joint virtual excitation ; at large
distances, it becomes the usual Van der Waals poten-
tial. The existence of that other contribution to 6p
was also recognized by Kjeldysh and Kozlov, who
gave its complete formal expression; we shall see that
such an attraction may be viewed as the dilute limit
of screening corrections.

In next order, 6y - N 2, the mean field approxima-
tion breaks down completely (it already failed to

provide the attraction in order N). This is well known
for an ordinary Bose gas of point particles (17). We
nevertheless carry the solution of (17) one step further
in Appendix A : the calculation has no real physical
significance, but it provides a test for crude numerical
solutions of (17).
An explicit solution is equally straightforward in

the high density limit, Na’ &#x3E; 1. In zeroth order, A
vanishes and the system is an ordinary Hartree Fock
plasma (the density fixes kF, and the chemical potential
is in turn the Fermi energy CF)’ In next order, a small
excitonic insulator instability develops. With loga-
rithmic accuracy, we can take Ak constant : we just
need to minimize (16) with respect to A. For a short
range interaction, we would find

in which Ec is a cut off of order CF, V is the angular
average of Vkk’ over the Fermi surface and No is the
density of states at Fermi level (’). Minimization yields
the usual BCS weak coupling result :

(4) Note that L1k, Ek are here pair energies. As compared
to the usual quasiparticle description Ek is the energy needed
to create an electron and a hole with equal momenta k.
Similarly, L1k is a pair gap, twice the usual BCS gap. Such
a formulation is more convenient in our variational

approach.
(1) No is defined with respect to the pair energy : hence

the factor 2 in (26).
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Strictly speaking, (26) is not valid here because we use
a long range unscreened Coulomb interaction. As a
result, an additional singularity appears when k - k’.
Within our constant d ansatz, we find easily that

which upon minimization gives

(27) is useful as a test of our interpolation scheme :
in real life, it is unphysical since the interaction is

always screened ! We should retain only one conclu-
sion ; the gap vanishes exponentially when the density
N goes to oo.

Fig. 3. - A rough sketch of the behaviour of p (full curve),
L1 (dashed curve) and E. (dashed curve when N &#x3E; Nc,
dotted curve when N  NJ as a function of density N.

We show in figure 3 a possible interpolation of the
various parameters in the intermediate density region.
We may define an «effective» order parameter
d = d (kF), where kF = (6 n2 N)1/3 is the Fermi wave
vector of non interacting electrons and holes. A va-
nishes in both limits, going through a maximum in
between. The chemical potential p is - so at small
density, while it is positive for large N ( - the Fermi
energy). In figure 3, we assumed p(N) was monotonous,
a conclusion which is supported by the numerical
analysis of section 3.

Ek represents the energy needed in order to create
an electron-hole pair, each with momentum k (it
corresponds to ionization of a condensed bound pair).
The minimum value of Ek is the actual energy gap Em
for such excitations. From (18), we may write

When is &#x3E; 0, the minimum value of E. is achieved
when Sk - ilk = 0 : the energy gap is then L1 (’).
Such a case, characteristic of usual superconductors,
holds at large densities. If however ilk is  0, the
minimum Ek corresponds to Sk = 0, i.e. to the zone

centre, as pointed out by Leggett [16]. The energy gap
is then

In the extreme dilute limit, Em goes to eo, the free
exciton binding energy - as expected. We can in fact
push the calculation one step further. For small N,
Lik is given by (22). Similarly, using the machinery of
Appendix A, we find that

(see (A. 6) and (A. 7)). Using (25), we thus obtain

Starting from the dilute limit, the energy gap first
increases, despite the fact that I III decreases : the order
parameter d o supersedes the decrease of I Po 1. Even-
tually, E. will go through a maximum. The qualitative
behaviour of Em(N) is also sketched on figure 3 : the
energy gap changes smoothly from a small coopera-
tive effect in the dense limit into a strictly atomic
quantity in the dilute case.

In addition to the quasiparticle excitations, the

ground state (9) possesses collective excitations, that
can be viewed either as a bound quasiparticle pair
or as fluctuations of the order parameter ak bk). ln
the dense limit, these are the Bogoliubov modes inside
the gap d ; in the opposite dilute case, they are the
« phonons and rotons » of our Bose gas, describing
centre of mass motion of the bound excitons (as opposed
to ionized quasiparticles). Once again, one goes
smoothly from one to the other as N varies.
An important parameter is the critical temperature

Tc at which Bose condensation disappears. Unfortu-
nately, the Kjeldysh approach does not permit a
smooth description of T c throughout the whole den-
sity range, as it does for the ground state. Basically,
(9) is a mean field approximation, which only describes
bound pairs with total q = 0 : it does not account for
thermal excitation of collective modes - correspond-
ing to the « normal », uncondensed fluid in liquid 4He
language. This is not important in the dense limit,
where thermodynamics is controlled by ionization of
excitons : 7§ then results from breaking of condensed
pairs, a process which is easily incorporated in the
BCS-type formulation. On the contrary, ionization is
negligible in the dilute limit : only the centre of mass
excitation of bound excitons is relevant; T c is reached

(6) That minimum may be slightly shifted if we take into
account the k-dependence of A,.
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when the q = 0 state is empty, a process that no
mean field calculation can account for.
For large N, Tc is exponentially small, of order 4 .

In the other limit N -+ 0, we recover a free Bose gas,
in which Tc - N . In between, T c should go through
a maximum, which we do not know how to calculate.
It is not even clear whether the evolution is smooth;
the transition temperature might result from different
mathematical singularities in both cases. If we start
from the normal high temperature state, we expect a
singularity to develop
- when the electron-hole t-matrix at the Fermi

level diverges : this is the Thouless [18] criterion for
critical temperature in a superconductor;
- when the chemical potential reaches the bottom

of the bound state exciton band; that provides the T,,
of a free Bose gas.

It is not clear whether these two singularities are
manifestations of one and the same thing. If they are
not, Tc should display a cusp at intermediate N, when
the two critical temperatures cross (Fig. 4). More
likely, the instability changes its nature progressively,
and Tc is smooth.

Fig. 4. - The critical temperature Tc for Bose condensa-
tion as a function of N (a) if there exist two distinct insta-
bility mechanisms (full curve) (b) if only one instability
changes its nature progressively (dashed curve).

3. Numerical interpolation in the intermediate den-
sity region. - Our variational ansatz (12) can be used
for arbitrary densities. In principle, we could use it

directly, and minimize the general expression (16) as
a function of vk - either by solving the non linear
equation (17) or by direct Monte Carlo minimization.
The numerical work, however, is rather formidable,
not really worth the effort in view of the crude, over-
simplified model we are using. We shall thus limit our
ambitions : we shall take for vk a simple functional
form, depending only on two parameters, and we shall
minimize the energy with respect to these parameters.
Our calculation may be viewed as an interpolation
between the dense and dilute limits - not the best

variational choice for vk, yet one which is reasonable.
Similar calculations were made long ago by Silin and
by Zimmermann [6], using a rather crude choice for
vk. We wish here to be more realistic - at the expense
of numerical computation; we shall choose a shape
of vk which is correct in the two limits N - 0 and
N -+ oo.

From (19), we see that

(2 Ak = tg 2 Ok yields the o angle » Ok of the Bogoliubov
canonical transformation). In the dilute limit, Vk is
 1 and

(we now use the reduced units defined earlier). In the
opposite dense limit, L1 is small and we have

In between, we try an interpolation which reduces to
the right limits :

C and Q are our new variational parameters. When
N --+ 0, we expect that ( - 0, Q - - 1; if instead
N --+ 00, , should again vanish while Q - k’ (thereby
restoring electron-hole symmetry around the Fermi
level).
The numerical calculation is then straightforward,

although fairly heavy. From (34) we infer Vk, which
we carry into (16). We then do the integration nume-
rically in order to obtain

Each density N corresponds to a curve in the (C, 0)
plane : we minimize ( E ) along that curve. Altoge-
ther, we only use one parameter in order to characte-
rize the shape of vk : the other parameter is actually
the density.

In figure 5, we show our results for the energy per
particle, s. The density is measured by the interparticle
spacing rs, defined as (’)

(remember that eo = ao = i)’ On the same figure,
we plot the result of a standard Hartree Fock calcu-
lation

(’) Here we do not include spin degeneracy : our defini-
tion of rs differs from the usual one by a factor 21/3.
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Fig. 5. - The ground state energy per particle, s, as a function
of interparticle spacing, rs, defined in (31). Energies are
measured in units Bo, r in units ao. Curve « a » is the result
of our variational interpolation ansatz (30). Curve « b »
is the usual Hartree Fock ground state energy, given by
(32). Curves « c » and « d » correspond to the low density
expansions of appendix A, respectively within the heuristic
ansatz (30) and from the exact expression (17) of the ground
state energy.

Note that the Hartree Fock ground state is a special
case of our variational ansatz (12), corresponding to
a step function V(gk) : SHF is thus above the real e,
as verified by numerical calculation. That result calls
for a number of comments :

(i) 8 goes smoothly from the Hartree Fock energy
at high density into the single exciton energy - so = - 1
when rs - oo. Such a feature, already obtained by
Silin [6], is a definite improvement on older treatments
of Coulomb interactions, which did not take into
account the tendency to form bound pairs. Here,
because of Bose condensation, we can follow the tran-
sition smoothly from one end to the other.

(ii) The curve g(r,) is monotonous : there is no liquid
gas phase separation. In fact, that result is probably
specific of our simple model. We shall see later that
a crude treatment of screening seems to restore a first
order transition. Anyhow, degenerate or anisotropic
bands will make pairing harder as N increases : that
may restore the Hartree Fock minimum.

(iii) The minimum of EHF, occurring at r., - 3, cor-
responds to so called « metallic densities ». We see
that at such densities, s is over twice sHF* The pairing
corrections, describing the progressive formation of
bound excitons, are thus extremely important. That
fact is well known to nuclear theorists, who have
included such pairing terms in their nuclear models
for a long time. The physical effect is may be more
transparent here, emerging as it does from the forma-
tion of a bound state. In any case, it is clear that any
calculation that ignores pairing is questionable. (The
situation is completely different for the usual one

component plasma, in which there is no attractive

force.)
(iv) In order to assess the validity of our restricted

variational ansatz (34), we also plot in figure 5 the
result of a direct density expansion in the dilute limit,
carried out in Appendix A. Curve « c » is the expansion
within the ansatz (34), curve « d » is the exact expan-
sion of the general equation (17). We see that the
agreement is quite good in the range of convergence
of such expansions.
The behaviour of g(rs) is just what one would guess

knowing the expansions in the two limits of small and
large densities. Indeed, if we were to draw the curve
of figure 5 « with the artist’s touch », there would be I
little freedom ! It is nevertheless gratifying to have a
quantitative interpolation scheme based on a well
defined ansatz.

Fig. 6. - The chemical potential as a function of r s
(curve « a »), as compared to the variational parameter 0
(curve « b »), and to the Fermi energy EF of a free particle
gas with the same density (curve « c »).

We may analyse our result further. In figure 6, we
plot the chemical potential p as a function of rS, as
well as the parameter Q of our variational ansatz,
and the Fermi energy EF = fii2 kF/2 m* of a non inter-
acting gas with the same density (N = kF/6 rc2). In
the dilute limit rs - 00 I, Jl and S2 go to the same
limit - 1, but with a different slope (see (A. 17)). In
the other limit rs - 0, Jl and Q should both reduce
to the same value SF : however, we are still far from
that limit when rs - 1. In that region, Sl is already
very close to SF : the transition region in which Vk
drops from 1 to 0 is nearly centred on the Fermi energy
(as it would be in an ordinary superconductor). Put
another way, the excitonic insulator instability does
not affect much electron-hole symmetry. On the other
hand, p  Q, a feature which signals the importance
of interaction terms in the energy.
The order parameter L1k is given by (18) : using our
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ansatz (34), we can calculate it numerically. The cor-
responding k-dependence is sketched on figure 7 for
various densities. For small N, we have

Fig. 7. - The relative order parameter, dk/do, as a function
of momentum k, for various densities : « a » : rs = 10;
 b &#x3E;&#x3E; : rs = 3;  c &#x3E;&#x3E; : rs = 1.75;  d &#x3E;&#x3E; : rs = 1.3;  e &#x3E;&#x3E; :
rs = 1.

(see (22)). When N grows, L1 extends to larger k ; at
first it shows a flat plateau. Ultimately, it should

develop a logarithmic peak near kF, due to the long
range of the bare Coulomb interaction. If we perform
the angular integration in (18), we find

The narrower the profile of Uk’ vk,, the stronger the
peak at k = kF. Such a singularity is related to the
unusual behaviour (27) : it would be strongly reduced
if we included screening. Anyhow, it does not show

up yet at rs = 1 (the gap is still too large and it blurs
the logarithm). In practice, we can by pass the diffi-
culty by calculating A at the Fermi level directly
from (28) instead of(18). If we ignore the k-dependence
of the Fock term (which is small at high density), we
see that

It follows that

In practice A * is a useful characterization of the order
parameter which is always very close to the effective
d = d (kF) defined earlier. In figure 8, we plot the
density variation of A * (which also specifies comple-
tely our variational parameters), as well as the nume-
rical values of A and of the k = 0 value, A 0. The
maximum is clearly apparent.

Fig. 8. - The parameter J* = 2 CI(I + k 2) as a function
of rs (curve « d »). For comparison, we also plot the numerical
value of L1 = A (k,) (curve « b ») and of do = J(0) (curve
«c»).

Fig. 9. - The pair excitation energy E, as a function of k
for various densities (the same as in figure 7).

Finally, we show in figure 9 the behaviour of the
excitation energy Ek as a function of k for various
densities. As described qualitatively in section 2, the
minimum of Ek, located at k = 0 when N is small,
moves out to finite k at larger density. The variation
of Em as a function of density is plotted in figure 10,



1079

together with the momentum at which the minimum
occurs. Numerical interpolation thus substantiates
guesses of the preceding section.

Fig. 10. - The minimum energy E. (full curve) and the
momentum km at which it occurs (dashed curve) as a function
of I/r..

4. Conclusion. - We have shown how a BCS-like
mean field wave function can describe the transition
between dilute excitons and a dense electron-hole

plasma. This is made possible by Bose condensation
which guarantees that all bound pairs have the same
total momentum q = 0. As a result, the tendency to
form bound pairs can be incorporated into an order
parameter - as it is commonly done in nuclei. We
find that the ground state energy goes smoothly from
the Hartree Fock value to the free exciton energy - 80.
Within our variational ansatz, and for our simple iso-
tropic band model, there is no liquid-gas phase sepa-
ration. We shall see in a second paper that such a
conclusion is probably invalid if we include screening.
We note that pairing corrections are still very impor-
tant at so called « metallic densities &#x3E;&#x3E; r., - 1 (way
beyond the minimum of the Hartree Fock curve).
We discussed the variation of relevant physical

quantities as a function of density. The order parame-
ter A goes through a maximum, while the energy gap
departs from A at low density : it goes toward the
atomic exciton ionization energy. We briefly discussed
the critical temperature, which also vanishes in both
limits : we pointed out that the physical origin of T c
was completely different in dilute and dense systems.

Except for a more realistic wave function, our for-
mulation is equivalent to that of Silin and of Zimmer-
mann [6]. We tried to cast it in a very simple variational
language that can be readily generalized to more
complicated situations.
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Appendix A. 2013We want to expand the solution of
(17) in powers of N. We start from the general expres-
sion (16), and we replace uk by

We are thus led to minimize the quantity

in which we have set

We write vk in the form (23)

in which Oko is the normalized ground state exciton
wave function (8X bvk being orthogonal to 4&#x3E;kO. The
number a and bvk will both result from the minimi-
zation process.
We know that cx -,IN-; moreover bvt, given by

(24), is of order a’ - N 3/2. Finally 6p is - N. Retain-
ing only terms up to order N 3 inclusive in (A. 21 we
find :

(remember that vko = fXcPkO is a solution of (19)).
Ak is exactly the coefficient defined in (24). A and B
are numbers,

We shall first minimize (A.I) with respect to wk,
and then with respect to a. From the resulting a and
wk, we can infer the total number of particles

Hence the relationship Jl(N) which is our final goal.
The algebra is straightforward, but somewhat

tedious. It is convenient to use reduced units in which

ao = so = 1. With that choice
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All the calculation uses the following integrals :

In calculating Sntv we do the angular integration
first, and we integrate by parts with respect to k
and k’. In the same way, we establish the recursion
relation

Starting from 2 = (1 + k2) - 1, (A. 7) yields all
the successive 1m. With the help of (A. 6), we easily
obtain A and B :

Minimization with respect to bvk yields an equation
similar to (24) :

where J:k is the part of Ak orthogonal to 4JkO. Using
(A. 7), we may calculate it explicitly :

It turns out that (A. 9) can be solved explicitly in
the following form :

Collecting the terms that involve bVk in (A. 4), we
find an extra contribution to the energy equal to
half the cross term :

(A. 11) is the first correction to the energy due to the
distortion of the exciton wave function cPkO when the
density increases.

Using the same algebra (more and more tedious),
we may calculate C :

The total free energy (A. 1) is thus

which we must minimize with respect to a. Actually,
in view of (A. 5), we may replace a2 by N in (A. 12)
with an accuracy - N’. We then minimize with
respect to N instead of a, which yields

(A.13) extends our former result (25) to the next order
- in the limited framework of our mean field ansatz
(there are many other corrections of the same order).
The main interest of (A. 13) is to provide a compa-

rison with the simpler variational ansatz (30) used in
section 3. In the dilute limit, we know that 0 = I - q,
where q is small. We thus write

(A. 14) is supposed to interpolate between the known
results in the dilute and dense limits. C and q are the
variational parameters. When vk is small, we may
expand (A. 14) as

We carry (A .15) directly into (A.I) and (A. 2), and
we perform the integrals. We thus find

F2 = Pot 6is the same as in (A. 3). It is then easy to
minimize ( H - JlN &#x3E;, first with respect to C and then
with respect to q. We find
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As compared with (A. 13), the only difference is the
replacement of C by

The first order term 2 AN is unaffected by our
approximation (it does not depend on bvk ! !)’ In the
second order correction, the coefficient C’ - 0.58 C
looks rather far from the exact value C. Indeed, when
combined with the other term BN , it gives the wrong
sign for the net N 2 contribution to by. It should be
realized however that C results from near cancella-
tion of various terms some 50 times larger : the fact
that C’ retains its small order of magnitude is by
itself a fairly accurate result.
A more transparent way of assessing (A. 15) is to

write it in the form (A. 3), by proper orthogonalization
of the correction to ØkO. We replace by its expres-
sion (A. 17), and we note that a = ( + O(C’). We thus
find

The approximate result (A 18) is plotted on figure 11,
as well as the exact result (A. 10). Our approximate
ansatz (A. 14) is seen to represent a rough - yet
reasonable - approximation in the low density limit.

Fig. 11. - The first correction bVk to the bare exciton
internal wave function 0,0, orthogonalized to CPkO’ as a

function of Bk = (1 + k2), in the low density limit. The
full line is the exact expression (A. 10), the dotted line is the
rough ansatz (A. 18) used in section 3.
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