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Resume. 2014 En utilisant une approximation de tension superficielle forte, on établit l’équation d’évolution de
la surface d’un film 03B6 = 03A6(03BE,~, 03C4) tombant le long de la surface d’un cylindre vertical infini. Celle-ci s’ecrit en
utilisant des variables sans dimension

03A603C4 + 03A603A603BE + 03A603BE03BE + (1/03BC2) ~203A6 + ~403A6 = 0,

ou (03BE, ~) sont les coordonnées cartésiennes sur la surface du cylindre, - ~  03BE  ~, 0 ~ ~ ~ 2 03C003BC; 03BC est le

rayon du cylindre. Pour 03BC ~ 03BCc = 1, l’écoulement stationnaire du film est formé d’un train d’anneaux s’écoulant
vers le bas de façon irreguliere. A 03BC &#x3E; 03BCc, la nature unidimensionnelle de l’écoulement disparait, et pour 03BC ~ 03BCc
la surface du film se festonne.

Abstract. 2014 Using the strong surface-tension approximation, an asymptotic equation is derived which describes
the evolution of the disturbed surface of a film 03B6 = 03A6(03BE, ~, 03C4) flowing down an infinite vertical column. In non-
dimensional scaled variables this equation is

03A603C4 + 03A603A603BE + 03A603BE03BE + (1/03BC2) ~203A6 + ~403A6 = 0,

where (03BE, ~) are cartesian coordinates on the surface of the cylinder, - ~  03BE  ~, 0 ~ ~ ~ 2 03C003BC; 03BC is the
scaled radius of the column. For 03BC ~ 03BCc = 1, the steady flow of the film is a one-dimensional train of rings flowing
irregularly downward. At 03BC &#x3E; 03BCc the one-dimensional nature of the flow disappears, and at 03BC ~ 03BCc the film sur-
face is expected to assume the form of down-flowing drops in a state of irregular splitting and merging.
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1. Introduction. - The flow of a viscous liquid film
down a vertical wall seems to be one of the simplest
and best illustratious examples of a deterministic
physical system capable of random-type behaviour [1].
The chaotic nature of the flow manifests itself in the
formation on the film surfaces of a self-fluctuating
wave; this wave sometimes assumes the form of drops
rolling down the film, merging together and splitting
in an irregular manner [2] (Fig. 1). The special feature
of this system is that the irregular self-fluctuations
exist at any Reynolds number (i.e., even at very small
ones). However, the nature of the irregularity may
depend on external geometric factors. For example,
the flow of a film down the surface of a cylindrical
column is, generally speaking, more regular than flow
down a flat vertical wall. In the first case the wave
may even be one-dimensional - a train of rings
flowing irregularly downward [3, 4]. Thus, the curva-
ture of the wall may be regarded as a parameter
controlling the degree of irregularity of the system.
The present paper is devoted to an analysis of the

effect of curvature on the stability of flow of the film.
Fig. 1. - Irregular wave motion on water film flowing
down a vertical smooth plate.
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Before proceeding to the equations for the flow
of a film down a vertical cylindrical column, we recall
the basic indices of flow down a flat wall. The velocity
profile of the undisturbed plane-parallel flow is
shown in figure 2 :

Fig. 2. - Diagram of the undisturbed flow, showing the
velocity profile.

Here 7, Y are dimensional space coordinates, w
is the vertical component of the velocity of the liquid,
g the gravitational acceleration, v the kinematic

viscosity, ho the thickness of the undisturbed film,

is the velocity of the undisturbed film at the gas-
liquid interface (x = ho). The Reynolds number
associated with the flow (1.1) is defined as

It is known that the flow (1. 1) is unstable, instabi-
lity being represented by spontaneous formation of
waves on the film surface (dotted line in figure 2).
The dispersion relation corresponding to the linear

stability problem is [5] :

w is the rate of instability parameter, k the disturbance
wavenumber and p the density of the liquid. Thus, the
flow is always unstable (Re w &#x3E; 0) to disturbances
of sufficiently long wavelength. Short-wave distur-
bances are damped out because of the stabilizing effect
of the surface tension a.
The wavelength corresponding to the maximum

amplification rate of small disturbances (Fig. 3) is

This quantity is usually related to the experimentally
observed wavelengths (Rayleight principle). The ima-
ginary part w of (1 .4) indicates that the wave moves
downward at velocity 2 wo. The structure of (1. 5)
suggests that

Fig. 3. - Rate of stability parameter Re (c5) as a function
of disturbance wavenumber k.

should be taken as the non-dimensional surface ten-
sion. The characteristic formation time of the wavy
structure of the film may be defined as

In order to obtain some idea of the order of magnitude
of the quantities involved, we consider the flow of a
thin film of water : ho = 0.01 cm, Q = 72.5 dyn./cm,
p = 1 g/cm3, v = 0.01 cm2/s.

In this case

These figures are in good agreement with experimen-
tal observations [4, 5]. As we see, if the film is suffi-
ciently thin (y &#x3E;&#x3E; 1), the wave flow is quasi-one-
dimensional (A,, -,,,I-yho &#x3E;&#x3E; ho), while the formation
of the wave structure is a quasi-steady process

This observation is the key to the nonlinear asymptotic
analysis of the flow of the disturbed hlin, presented
below. At 7 &#x3E;&#x3E; 1 (thin-film or large-surface-tension
approximation), it is possible effectively to lower the
dimensionality of the problem, and thereby to derive
an asymptotic quasi-linear equation which directly
describes the dynamics of evolution of the disturbed
film surface. Formally, the situation is largely analo-
gous to that obtaining in the recently developed
nonlinear theories of chemical instability [6] and
cellular flames [7].

2. Fundamental equations and basic solution. -

Taking ho, ho/wo, wo, pwo as the units of length, time,
velocity and pressure, respectively, one can write
the equations for the film hydrodynamics in cylindri-
cal coordinates as follows :
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Momentum equations :

Continuity equation :

The flow takes place in the layer

Here a, h are the non-dimendional radius of the
column and the thickness of the disturbed film, in units
of the thickness ho of the undisturbed film. On the
cylinder surface (r = a) the viscous liquid must satisfy
the adhesion condition

On the gas-liquid interface we demand the kinematic
impermeability condition

If surface tension is ignored, the forces acting on the
free boundaries of both fluids must be equal. In our

problem, the atmosphere surrounding the film is
assumed to be a weightless, non-viscous, stationary
gas at pressure po. Thus (in the absence of surface
tension), the force acting on the free surface of the
liquid film is equal to - po n, where n is the unit
normal vector.
To include surface tension, po n must be augmented

by Y(IIR, 1 + 1 / R2) n, where y is the non-dimensional
surface tension (1.6), IIRI + I/R2 is the sum of

reciprocals of the radii of curvature of the interface.
Thus, in cartesian coordinates, the equilibrium of
forces condition is written as follows (see, e.g. [8]) :

where

In cylindrical coordinates, equations (2. 8) are written
as the following three boundary conditions on the
liquid film surface :

Zero shearing stress :

Condition relating pressure jump to surface tension (y) :
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Here

u, v, w - non-dimensional radia( angular and vertical components of velocity, respectively.

The solution of problem (2.1)-(2.11) corresponding
to undisturbed flow of the film (the basic solution) is

3. Large surface tension approximation (y &#x3E;&#x3E; 1). -
The crucial point in asymptotic nonlinear analysis
of stability is correct choice of the small parameter
and the corresponding space-time scalings. To this
end we appeal to the two-dimensional version of
the dispersion relation (1.4) for the flow of a.film
down a flat vertical wall [9] :

Here y, z are horizontal and vertical coordinates,
respectively, on the wall surface.
The dispersion relation (3.1) shows that at y &#x3E; 1

the instability region (Re úJ &#x3E; 0) is concentrated in
the zone of long-wave perturbations, where

Since the wavelength of the transverse disturbance
(2 n/ I) is of the order of/, we may expect the nature
of the flow to be most sensitive to the curvature of
the column when the number of transverse waves

is finite, i.e., when a - vY. Since Im cv ~ 1/,/y in
the instability zone (i.e., Im cv is less than Re o) in
order of magnitude), our problem involves, as it

were, two characteristic times. However, this compli-
cating factor may be eliminated if we transform to a
coordinate system moving at velocity fl = Im (o)lk)
along the column. In case of a flat wall # = 2 (3.1).
Thus, we apply the transformation

Putting y = l/e2 and relying on the above estimates,
we introduce the following scaled coordinates and
parameters :

The parameter a is thus the scaled radius of the
column.

After transformation to the new variables (3. 3), the
solution of problem (2.1)-(2.9) is sought in the form
of an asymptotic expansion :

The required equation for the disturbed film surface
(principal term) is obtained in the solution of the

third-approximation problem (see Appendix) :

In the process of the solution we also obtain fl = 2.
The second term of this equation indicates the

acceleration of the wave moving down the surface
of the column, in comparison with the case of flat
wall. The wave moves downward with velocity

The fifth term of equation (3.5) implies that the

wavelength corresponding to the maximum velocity
of small disturbances diminishes with increasing
curvature of the wall (cf. Eq. (1. 5)) :
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Thus, at y &#x3E;&#x3E; 1 the wavelength is considerably more
sensitive to the wall curvature than the propagation
velocity.

At a = 0.5, the wavelength is approximately half
the wavelength corresponding to a flat wall (a = oo).
Using the transformations

We bring equation (3. 5) to the following one-para-
meter form, which is more convenient for analysis

Since the problem is periodic with respect to the

angle 0 = q/t4 the following smoothness conditions
must be satisfied on the boundary of the strip

In [1] J a numerical solution was undertaken of the
one-dimensional version of equation (3. 9), 0 = 0(, i) :
it was shown that there exist solutions in the form
of irregularly self-fluctuating waves (Fig. 4). Figures
4a and 4b show the disturbed surface at times close
to the initial disturbance; 4c-4e correspond to the
developed quasi-periodic wavy surface of the film.
The problem was solved in the interval 0  j K 100
with periodic boundary conditions. The initial dis-
turbance was the function Ø(ç,O) = sin (nçj 1 00).
Interesting results in the analysis of these chaotic
solutions were recently obtained by Manneville [10].

Let us see what happens if the disturbance of the
film is assumed to depend only on the transverse
space coordinate (i.e., 0 = 0(il, T)). The nonlinear
term 00, then disappears, and the result is a linear
equation :

This equation admits solutions of the form

At k  1/t4 the solution (3.12) is an exponentially
increasing function of time. At first glance this would
seem to indicate some defect in the asymptotic beha-
viour described by the nonlinear equation (3.9). We
note, however, that the condition I il I  7ry excludes
the possibility of disturbances with k  1/t4 and so
eliminates solutions (3.12) with positive increment cv.
Thus, the fact that the domain of solutions of the

Fig. 4. - Result of numerical solution of one-dimensional
version of equation (3.9) (p = oo). 

’

problem is limited to the strip I il I  nJl is an essential
factor in ensuring that problem (3 . 9)-(3 .10) is well-

posed
At p = oo (i.e., flow down a flat vertical wall)

problem (3 . 9)(3 , 10) assumes the form
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The nonlinear dynamic problem of a disturbed film
flowing down a flat vertical (or inclined) wall has
been considered by many authors, starting from the
pioneering work of Benney [11]. The bifurcational
approach proposed above leads to simpler and more
tractable asymptotic relations than the usual method
of long-wave expansions. Recall that in that last-
named method the amplitude of the disturbance is
assumed to be of the same order of magnitude as the
film thickness.

4. Linear stability analysis. - The dispersion rela-
tion corresponding to linear stability analysis for the
undisturbed film surface (W z 0) is

In view of the periodicity condition,

Analysis of equation (4.1) is made more convenient
by introducing the new parameters

equation (4.1) then becomes

Figure 5 illustrates marginal stability curves (Q = 0)
in the (À, K)-plane for various values of p.

Fig. 5. - Marginal stability curves in plane of scaled
wavenumbers (K, A) for p = 0, 1, 2, 3, 4, 5, 6.

It is readily shown that when

the disturbance cannot contain unstable (increasing)
harmonics of wavelength  2 7ry/n. Thus, when

p /(!)== 1 the flow is one-dimensional (Fig. 6a).
We emphasize yet again that the flow, though one-
dimensional, is nevertheless not a regular periodic
wave.

Fig. 6. - Diagram illustrating varying nature of flow of
film with increasing radius of cylinder. 

When f(l)  f(2) - 3.86, the flow becomes
two-dimensional, in the form of irregularly down-
ward-flowing inclined rings (Fig. 6b). It is to this
case, apparently, that the photograph reproduced in
Binnie [4] corresponds. For water-film thickness

ho = 0.01 cm in the region of inclined-rings instabi-
lity, the wavelength column-diameter ratio ¡c/2 aho
is in the interval 0.5-0.75. This estimate is in good
agreement with the photograph published in [4].
When f(2)  J1  /(3) 5.83 the flow becomes

even more complicated (Fig. 6c).
Thus, the wall curvature has a significant influence

on the transverse disturbance of the film, suppressing
harmonics of high angular frequency. The qualitative
effect of the curvature on the longitudinal harmonics
of the disturbance is considerably lower. Basically, it

appears as a slight decrease in the wavelengths of
the downward-rolling waves.
With increasing p the number of perturbed harmo-

nics increases, and the flow becomes increasingly
irregular with respect to both q and ç.
Of course, these considerations as to the varying

nature of the flow with increasing p are merely plau-
sible assumptions, dictated by the results of the linear
stability analysis. For definitive verification, it would
be very interesting to undertake a numerical solution
of the initial-value problem for tho two-dimensional
equation (3. 9).
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Appendix. - The equation system and boundary
conditions for the first-approximation problem is

The solution of problem (A.I-A. 2) has the form

At this stage, therefore, the solution of the fl(st-ap-
proximation problem is defined up to an a9get
unknown function HI. To determine Hi one must
go on to the next approximation :

The second approximation problem is 
,

The solution of problem (A. 4-A. 5) has the form

As we see the second approximation is still insufficient to determine the function HI.
Proceeding to the third approximation, and rioting that here it is quite sufficient to consider only the conti-

nuity equation (2. 4) and conditions (2. 6), (2. 9), we obtain

and

Hence

and, finally,
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