Thermal properties of K2Ba(NO2)4
M. Chabin, F. Gilletta, Y. Luspin, G. Hauret

To cite this version:

HAL Id: jpa-00209401
https://hal.archives-ouvertes.fr/jpa-00209401
Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thermal properties of $K_2Ba(NO_2)_4$

M. Chabin, F. Gilletta, Y. Luspin and G. Hauret

Laboratoire d'Etudes Physiques des Matériaux (*), Université d'Orléans, 45046 Orléans Cedex, France

(Reçu le 10 juillet 1981, accepté le 21 octobre 1981)

Résumé. — Nous avons mesuré la chaleur spécifique de monocristaux de nitrite de baryum et potassium $K_2Ba(NO_2)_4$ entre 130 K et 435 K. Il apparait deux transitions, respectivement à 208,6 K et 428 K. La transition basse-température présente les caractéristiques d'une transition du second ordre et l'excès de chaleur spécifique est caractérisé par les exposants critiques $\alpha = \alpha' = 0.60 \pm 0.03$. La transition haute-température apparaît à quelques degrés de la décomposition de $K_2Ba(NO_2)_4$ et ne peut être complètement étudiée.

Abstract. — The specific heat of single crystals of potassium baryum nitrite $K_2Ba(NO_2)_4$ has been measured between 130 K and 435 K. There are two transitions at 208.6 K and 428 K, respectively. The low temperature transition exhibits second order features and the excess specific heat is characterized by critical exponents $\alpha = \alpha' = 0.60 \pm 0.03$.

The high temperature transition occurs a few degrees below the decomposition temperature and so cannot be studied in detail.

1. Introduction. — Little [1-6] has been published on the properties of potassium baryum nitrite $K_2Ba(NO_2)_4$. Their crystallographic properties at room temperature were first described a long time ago by Fock [1]. More recently, Ivanov [4] reported optical, dielectric and ferroelastic properties of $K_2Ba(NO_2)_4$ and pointed out that this crystal undergoes a phase transition in the vicinity of 146 °C between a high temperature hexagonal phase 6/mmm (z phase) and an orthorhombic mmm phase (β phase) stable below 146 °C. Moreover, from birefringence measurements, he suggests that a second phase transition takes place in the vicinity of – 70 °C between the orthorhombic β phase and a third phase (γ phase). It is suggested that the high temperature transition ($T \approx 146 ^\circ C$) is second order [4] whereas there is no information relating to the character of the low temperature phase. We have investigated the thermal properties of $K_2Ba(NO_2)_4$ over a large range of temperature, in order to clarify the existence and type of the low temperature phase transition suggested by Ivanov [4].

2. Results. — We have investigated the specific heat C of single crystals of $K_2Ba(NO_2)_4$ with a differential scanning calorimeter (Perkin Elmer DSC2) fitted with a liquid nitrogen subambiant accessory. The values of C are determined during successive thermal cycles scanned at rates of 1.25 K/min., 0.62 K/min. or 0.31 K/min. between 130 K and 435 K.

In addition to the high temperature transition (428 K), another transition clearly appears at 208.6 K in agreement with Ivanov's results on birefringence. For neither transition, we have observed any latent heat of transition within the limit of accuracy of our experiments (1 J/mole). Both transitions can be assumed to be second order. Figure 1 shows the variations of C, measured with an accuracy of 1 %, in the temperature range explored.

In the vicinity of the high temperature transition C exhibits a peak at 428 K, but an anomalous, non reproducible variation of C arises for temperatures above 429 K (Fig. 1). We can explain this anomaly by the decomposition of the sample, according to Protseiko [2]. Note that the maximum of C is at a higher temperature than that of 419 K and 422 K respectively given by Ivanov [4] or Sorge [6].

The low temperature transition is well defined, (Figs. 1 and 2). The maximum of C is obtained at $T = 208.6 K \pm 0.2 K$ on heating but on cooling this maximum is about 1 K lower. This slight difference depends on the cooling rate; we cannot then decide if $K_2Ba(NO_2)_4$ exhibits thermal hysteresis. The increase ΔC in the specific heat associated with
Fig. 1. — Specific heat C of K$_2$Ba(NO$_2$)$_4$ versus temperature. Dashed line : estimated background specific heat (see text).

Fig. 2. — Specific heat of K$_2$Ba(NO$_2$)$_4$ near the low temperature transition. Black dots : experimental values; full line : values plotted according to $\Delta C \propto \left| \frac{T - T_c}{T_c} \right|^{-\alpha'}$ above (a) and below (b) the low temperature transition. $T_c = 208.6$ K.

The transition is usually determined by subtracting from the experimental C the background specific heat obtained by extrapolation of its value far above the transition. Unfortunately, K$_2$Ba(NO$_2$)$_4$ cannot be investigated above the 428 K transition. We have assumed that, far from both transitions, in the β phase, as well as at very low temperatures, ΔC is negligible. The background specific heat is then given by the dashed line in figures 1 and 2.

We have analysed the variation of ΔC as a function of the reduced temperature $t = \frac{T - T_c}{T_c}$, for the low temperature transition ($T_c = 208.6$ K). A Log-Log plot of ΔC versus $|t|$ figure 3, shows that $\ln \Delta C$ is a linear function of $\ln |t|$ over a large range of temperature in the γ phase ($T < 208.6$ K) as well as in the β phase, leading to [7]:

$$\Delta C \propto \left(\frac{T_c - T}{T_c} \right)^{-\alpha} \quad \text{for } T < T_c . \quad (1)$$

$$\Delta C \propto \left(\frac{T_c - T}{T_c} \right)^{-\alpha'} \quad \text{for } T > T_c . \quad (2)$$

The critical exponents α and α' have the values

$$\alpha' = \alpha = 0.60 \pm 0.03 .$$

The values of ΔC computed with these experimental α and α' are reported in figure 2 as a full line in order to show the good agreement of the relations (1) and (2) with the experimental data over a very large temperature range.

3. Conclusion. — The low temperature phase transition ($T = 208.6$ K) has been clearly observed and exhibits second order characteristics. The variations of ΔC in the vicinity of $T = 208.6$ K are accounted for by a power law characterized by the critical exponents α and α'. The values of these exponents are high compared to the values usually predicted by the various theories [7]. Nevertheless analogous values ($\alpha' \approx 0.50$) have already been found in AgNa(NO$_2$)$_2$ [8]. A theoretical understanding of the behaviour of this heat capacity needs more information on K$_2$Ba(NO$_2$)$_4$ especially the space groups of the three phases which are presently not known.

Acknowledgments. — We are grateful to Prof. J. Fripiat for the use of the DSC2 apparatus in his laboratory.
References