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Domains, domain walls and the coercive field of amorphous ferromagnets

H. Kronmüller and B. Gröger

Institut für Physik am Max-Planck-Institut, Institut für Metallforschung, Stuttgart, F.R.G.

(Reçu le 23 avril 1981, accepté le 27 mai 1981)

Résumé. 2014 Les propriétés magnétiques du cycle d’hystérésis des alliages ferromagnétiques amorphes sont essen-
tiellement dues à un couplage magnétostrictif entre l’aimantation spontanée et les contraintes internes. La structure
en domaines et l’épinglage des parois sont gouvernés respectivement par des contraintes à grande et à courte dis-
tance. Nous avons mis en évidence, comme sources de contraintes élastiques, des dipoles de dislocations dont les
champs de contraintes varient en 1/r2. On montre que le champ coercitif est déterminé par 4 types d’interactions :
1) épinglage en volume par les sources de contraintes; 2) fluctuations intrinsèques des constantes matérielles;
3) irrégularités de surface; 4) phénomènes de relaxation.

Abstract. 2014 Magnetic properties of the hysteresis loop of magnetostrictive amorphous ferromagnetic alloys are
predominantly determined by the magnetoelastic coupling energy between the spontaneous magnetization and
internal stresses. Domain structures as well as the pinning of domain walls are governed by long-range and short-
range stresses, respectively. As sources of elastic stresses we have detected quasidislocation dipoles exerting stress
fields which vary as 1/r2. The coercive field is shown to be determined by four types of interactions : 1) volume
pinning by stress sources; 2) intrinsic fluctuations of material properties; 3) surface irregularities; 4) relaxation
phenomena.
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1. Introduction. - Amorphous ferromagnetic alloys
of transition metals (Fe, Co, Ni) and metalloid atoms
(B, P, C, Si, Ge) have been found to exhibit excellent
soft magnetic properties which are suitable for tech-
nical applications [1-3]. Due to the lack of grain boun-
daries and any mobile dislocations originally it has
been suggested that no pinning forces interacting with
domain walls (dws) are present in these materials and
consequently the coercive field He should be rather
small and the permeability, Jl, rather high. Neverthe-
less the real values of He and y are comparable to
those of crystalline soft magnetic materials which
supports the assumption that amorphous materials
should contain defect structures which act as pinning
centres for domain walls. Unfortunately the conven-
tional techniques for the study of defects cannot be
applied to amorphous materials and therefore new
methods must be used in order to obtain informations
on defect structures. It has turned out that in parti-
cular magnetic techniques are suitable for a study of
defect structures. This is related with the fact that the

magnetic ground state of the spins in ferromagnetic
alloys corresponds nearly to an ideal parallel alignment

of the spin in spite of the inhomogeneity of exchange
interaction, dipolar fields and local anisotropies.
Therefore any inhomogeneity in the spin-system may
be connected with a static defect in the amorphous
state. It will be shown in the following sections that
this leads to a simple picture for the defect structures
in amorphous alloys.

2. Domaine and domain walls in amorphous alloys. -
2.1 DOMAIN PATTERNS IN AMORPHOUS ALLOYS. -

By means of the magneto-optical Kerr effect in a
series of amorphous alloys the domain structures have
been investigated [4-8]. Figure 1 shows a characteristic
domain structure of an Fe4oNi4oP 14B6 alloy [8].
Similarly figure 2 represents the domain patterns of
an Fe8oB2o alloy as observed on two opposite surfaces
of an amorphous ribbon which was produced by the
spin-quenching technique [9]. One of these latter view
graphs is rather low in quality because it has been
taken from that side of the ribbon which was in contact
with the roller during the preparation. It is well known
from previous investigations that this surface of the
ribbon is rather rough in comparison to the free
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Fig. 1. - Domain structure of the free surface of an Fe4oNi4OPl4B,,-
ribbon showing narrow and wide domain patterns.

surface of the ribbon. The domain patterns in figure 1
and figure 2 show two characteristic domain arran-
gements :

1. Wide and extended wavy laminae of width
10 gm-100 pm and extensions of 200 gm-500 gm.

2. Islands of rather narrow laminae sometimes

showing zig-zag lines. These islands have diameters
of 50-150 gm.

Comparing both surfaces of the Fe8oB2o alloy the
following conclusions may be drawn :

1. The narrow domains (80 %) on one surface have
a counterpart on the opposite surface.

2. Wide, extended laminae appear in the same

regions on both surfaces showing small deviations
in the detailed arrangement of dws.

The arrangement of domains in general corresponds
to a minimum of the magnetic Gibbs free energy, ql,
of the ferromagnet. Several energies contribute to ql :

Fig. 2. - Domain structures on the free surface and the opposite
contact surface of an FeaoB2o-ribbon. Equivalent domain structures
observed on opposite sites of both surfaces are denoted by the
same letters.

Fig. 3. - Model for the narrow laminae in regions of compressive
stresses with stray field-free closure domains.

1. Magnetostatic stray field energy, 0,,, due to the
demagnetization field.

2. Anisotropy energy, Oa, due to a long-range
atomic pair ordering or resulting from the magneto-
elastic coupling energy. In both cases the anisotropy
energy in a first approximation may be written as

3. Domain wall energy

where YB,i corresponds to the specific wall energy of
the i’th dw-type and FB,i to the area of the i’th wall
type per unit volume.

The role of these différent energies becomes clear
if their anisotropy and their orders of magnitude are
compared with each other. Considering the maximum
values of the different energies we find for Fe8OB20 :

Here we have assumed a magnetization oriented

perpendicular to the ribbon and the material para-
meters for 0. and 0. were taken from a previous
paper [5]. A first step for a minimization of the total
Gibbs free energy is a reduction of 0., by special spin
arrangements where magnetic volume as well as

surface charges are avoided. The minimization of 0.
is obtained if the spontaneous magnetization aligns
parallel to the easy axis. If the easy axis lies within
the ribbon’s plane the domain structure is composed
of wide laminae. If the easy axis lies perpendicular to
the ribbon’s plane the stray field energy would become
large. Therefore a closure domain structure develops

i 
as shown in figure 3. In figure 4 a domain structure

! model is shown where the easy axis changes its direc-
tion within the cross-section of the ribbon. Within

Fig. 4. - Model for the narrow laminae penetrating the ribbon
only partially due to a change of easy direction within the ribbon
(transition from compressive to tensile stresses).
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the closure domains the magnetization aligns perpen-
dicular to the easy axis. This increase of anisotropy
energy, however, is small in comparison to the stray
field energy required for a perpendicular alignment of
M,
The regions of narrow domains are coupled to the

surrounding wide domains completely stray field
free. Within the regions of narrow domains the domain
width is given by

where To corresponds to the thickness of the ribbon
and y. denotes the wall energy 

- 

-

(A = average exchange constant which may be deter-
mined from the spin wave stiffness parameter D).
Equations (3) and (4) may be used for a determination
of the material parameters

and the dw width

, ,

2. 2 MAGNETOELASTIC COUPLING ENERGY. - ln

amorphous ferromagnetic alloys the anisotropy energy
may have two sources : long-range pair ordering
(induced anisotropy) or the magnetoelastic coupling
energy of long-range stresses. The first of these aniso-
tropies can be suppressed by a rapid quenching pro-
cess in the absence of magnetic fields. Due to the rapid
quenching process, however, large internal stresses

are created because the quenching rate is distributed
inhomogeneously over the cross-section of the ribbon.
The elastic stress states are simplified by the fact
that the thickness of the ribbons (To - 50 gm) is
much smaller than their width (2 000 gm). For such
a geometry long-range stresses correspond to planar
stress states with zero stress components perpendicular
to the ribbon. The magnetoelastic energy for a planar
stress state with 63 = 0 may be written as [10]

where Q1 and U2 are the in-plane principal stress

components. If the orientation of the spontaneous
magnetization M, is described by the polar angle 9
between Ms and the ribbon normal, and the azimuthal
angle ô between the in-plane component of M, and
the stress axis Xl we obtain

where the in-plane anisotropy factor a is given by
a = (U2 - (J 1)/ (J 1. Equation (8) defines two types of

easy directions. For positive magnetostriction we
obtain :

1. In-plane easy direction, 9 = n/2, for (J 1,2 &#x3E; 0.
Within the ribbon Mg orients parallel to b = 0 for
a  0 and parallel to ô = n/2 for a &#x3E; 0.

2. Easy direction perpendicular to the ribbon plane,
ç = 0, for compressive stresses Ul,2  0. Dws are
oriented parallel to ô = 0 for a &#x3E; 0 and parallel to
ô = n/2 for a  0.

3. The easy directions lie parallel to the ribbons
plane if the two stress components have opposite signs,
and M. orients parallel to the tensile stress axis.
In the case of negative magnetostriction the situation
for the easy axes is just reversed.

2. 3 DOMAIN WALLS IN AMORPHOUS RIBBONS. -

In the following we consider dws which show only
small curvatures so that we may treat them as planar
dws. The arrangement of dws within the ribbons is
determined by the long-range part of the anisotropy
energy, i.e., by the magnetoelastic energy om. Accord-
ing to the results of the previous section in compressive
regions the dws align parallel to the axis of the smallest
compressive stress component, i.e., for a &#x3E; 0

the dws align parallel to the X1-axis and Q&#x3E; M is given by

which corresponds to a long-range anisotropy cons-
tant Kl-’- = Ko = - i As 0"1. Within the dws of the
regions of narrow domains the angle rotates from
cp = 0 to ç = x. Neglecting local fluctuations of the
anisotropy energy and of the exchange constant A
the angle (p obeys the following differential equation

with the solutions

The parameter bo is related to the dw width according
to

The solutions (11) have been found for constant values
of A and Ko. In a more realistic model we must take
into account spatial fluctuations bA(r) and bK(r)
of the exchange constant and the anisotropy energy.
This leads to modifications of the spin distribution
given by equation (11). Schematically this is shown
in figure 5 where we have indicated the effect of ôK
by small rotations 03B4~(r). It will be shown in section 3
that these intrinsic fluctuations give rise to an intrinsic
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Fig. 5. - Spin structure of an ideal domain wall (upper part), and
modification of the spin structure due to locally fluctuating aniso-
tropy and exchange energy.

coercive field of dws in amorphous alloys. The dw
widths determined for different materials are shown
in table 1.

Table 1. - Material constants and domain wall para-
meters of several amorphous alloys.

2. 4 ELASTIC STRESSES IN DOMAIN WALLS AND ELASTIC
INTERACTION WITH DEFECTS. - As is well known since
the work of Rieder [11] the inhomogeneous sponta-
neous magnetostriction within dws produces an

elastic stress field which may be calculated along the
concepts of the continuum theory of dislocations [12].
In the case of elastic and magnetostrictive isotropy
the elastic strain components in a domain wall with
the X2-axis corresponding to the dw normal are

given by (the coordinate axes Xi and X3 are oriented
parallel respectively perpendicular to the easy axis) .

For the elastic stresses we find :

Defect structures which produce elastic stresses have
an elastic interaction with the elastic stresses of the
dw. The force acting on the dw may be calculated by
the Peach-Kôhler formula [13]. If we deal with a

dislocation characterized by line elements dl and a
Burgers vector b the interaction force is given by

Equation (15) is easily modified for the case of dis-
location dipoles or point-like defects. If we consider
a planar closed dislocation loop with the surface
elements df of the area extending over the dislocation
loop we obtain for the force acting parallel to the
dw normal - - - 

-- - 
--

If the dyadic product dfb is introduced as the diffe-
rential displacement tensor of the defect

the interaction force finally may be written as

Equation (18) may be specified to the case of a straight
dislocation dipole of length L3 lying parallel to the
X3-axis which encloses an area DL3 where D corres-
ponds to the distance between the two dislocations of
antiparallel Burger’s vector as shown in figure 6.
If the dislocation dipole is inclined by an angle e with
respect to the Xi-axis we obtain from (18)

Inserting into (19) the results for (J ik and the spin
distribution (10) we obtain

Fig. 6. - Geometry of a quasi-dislocation dipole interacting with
a domain wall.
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Equation (20) can be written even more explicitly if
our results for sin ç and cos ç (see Eq. (11)) are intro-
duced into equation (20). Equation (20) shows that
the force vanishes if the Burgers vector lies perpendi-
cular to the dw(bi, b3 = 0) and if the dipole loop is
oriented parallel to the dw(e = 0).

Equation (18) also can be applied to point-like stress
centres. If we consider an anisotropic displacement
tensor Q = I.Qo (I = unit tensor) we find

According to this result only anisotropic point defects
interact with dws in amorphous alloys. Considering
a displacement tensor with different components Q 11 
and Q33 we obtain

3. Intrinsic coercive field. - In amorphous ferro-
magnets with zero magnetostriction it may be sug-
gested that intrinsic fluctuations of the exchange
integrals and of the local anisotropy act as pinning
centres for dws. These intrinsic interactions between
the amorphous structure and dws then determine a

lower bound Min of the coercive field. Several authors
have tried to calculate Hcmin by taking into account
anisotropy fluctuations only [14-16]. In a more rigo-
rous calculation however, also exchange fluctuations
must be considered. For a calculation of Hcmin we start
from the locally fluctuating contributions bo. and
ôo,,. to the anisotropy and exchange energy, respec-
tively. Introducing the fluctuations bKi and bei of
the anisotropy ’constant K(ri) and the exchange
energy at position ri we obtain

Here Oi corresponds to the angle between the magne-
tization M,, and the anisotropy axis at position ri.
-Within the dw we have cos Oi(z) = sin 00,i cos (9 - go,j)
where 00,; and (po,i denote the polar angles of the local
anisotropy axes with respect to the coordinate system
of the dw. Now we may define local pinning forces due
to anisotropy and exchange fluctuations

P,--d b P d b . 24a dz d (ô4a) ex d/dz (ô4ex) . (24)

According to the statistical potential theory the coer-
cive field M"’ is given by

The density of magnetic ions, pM, corresponds to the density of pinning centres. The pointed brackets in equa-
tion (28) indicate a volume averaging over the fluctuating quantities ô Ki, ôgi, 0o , and (jpo.r After the integration
and structure averaging of equation (28) we obtain

For soft magnetic materials the fluctuations of the
anisotropy energy can be neglected and  ôe’ &#x3E;
may be calculated on the basis of a simple nearest
neighbour (nn) model. E.g., in the case of NiFePB-

alloys the Ni-atoms behave as non-magnetic ions and
the total exchange interaction between an Fe-atom
and its neighbouring atoms is proportional to the
number, n, of nearest neighbour Fe-atoms. In the
case of a dense random packing model with 12 nearest
neighbour Fe- and Ni-atoms the probability, Wn, to
find n nearest neighbour Fe-atoms is given by

where CF, corresponds to the atomic density of Fe-
atoms. Similarly Wn corresponds to the probability

for the occurrence of the total exchange integral J"
between n pairs of nn Fe-atoms. By means of equa-
tion (27) we may determine the average ( Gcx,i )2
making use of the relation Eex,n = 1/3 r20 Jn, where ro
corresponds to the nn distance. A detailed calculation
gives

Inserting equation (28) into equation (26) gives
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A numerical value of Hm’n - 3 x 10- 5 Oe is then
obtained using FB = 6 x 10-5 cm2, ôo = 10-5 cm,
Ms = 1 030 G, pM = 4.5 x 1022 cm -3, JFeFe = kTe/8,
Te = 1 000 K, (k = Boltzmann constant, Te = Curie
temperature).

This value for He corresponds to the absolute
minimum value which may be obtained for He and
which cannot be fallen below even in materials with

vanishing local anisotropy.

3.1 MAGNETOSTRICTIVE INTERACTIONS WITH QUASI-
DISLOCATION DIPOLES. - The coercive field, H,,, of
crystalline materials is determined by grain boun-
daries and dislocations. In amorphous alloys this kind
of defects probably does not exist and therefore small
coercive fields are expected. Nevertheless the mea-
sured coercive fields are of the order of magnitude.
of 5-100 m0e, i.e., much larger than intrinsic effects.
It is therefore suggested that in amorphous alloys
exist inhomogeneities which act as pinning centres
for dws. These inhomogeneities correspond to larger
defect structures of the amorphous state and it will be
the aim of this paper to give an analysis of defect
structures of the amorphous state. Previous investi-
gations have shown that mainly magnetostrictive
interactions are responsible for finite values of Hc,
i.e., these defect structures are characterized by elastic
stress fields. This is clearly demonstrated by the

dependence of H,,, and other characteristic properties
of the hysteresis loop on the magnetostriction.
Figure 7 represents Hc, the initial susceptibility xo,
and the magnetization work, Kerr, as function of

composition or magnetostriction of the alloying
system Feso-xNixB2o. With increasing Â, the coercive
field increases where as xo decreases as is expected for
the case of magnetostrictive interactions. Only the
H,-value of FeEOB2. is an exception probably because
this alloy came from Allied Chemical whereas the
others were produced by Vacuumschmelze, Hanau.
Figure 7 also contains the results for non-magneto-
strictive Co-alloys with rather small Hc-values.
From measurements of the field dependence of the

high-field magnetization it was derived [5, 17, 18]
that the internal stress centres correspond to quasi-
dislocation dipoles. For a calculation of the coercive
field we use the results of the statistical potential
theory derived previously [19, 20]. According to these
results the côercive field Hc of a random distribution
of quasi-dislocation dipoles of densities Odip is related
to the pinning force PB,2 as given by equation (20) by
the following relation :

whère the last factor takes into account the statistical
fluctuations due to the L2/2 ôo independent positions

. of the dw within the domain width L2. In the special
case of dipoles with e = n/2 and b3 = 0, bl = b,
and length L3 we obtain from equation (20)

where AV = DL3 b corresponds to the volume con-
traction due to the quasi-dislocation dipole. From
equation (31) we derive for the main temperature
dependence of He

For a test of equation (32) in figure 8 we have plotted
the quantity He Ms/Â.s versus K5/4 which leads to

straight lines [18]. This result may be taken as a proof
for the existence of quasi-dislocation dipoles. If the

magnetostrictive interaction would be due to quasi-
dislocations only the quantity He Ms/Â.s would be
prop. to KÕ 1/4 thus leading to a completely different
temperature dependence of Hc. A numerical calcu-
lation of Hc on the basis of equation (31) leads to the
measured Hc-values if the parameters derived for the
quasi-dislocation dipoles from high-field suscepti-

Fig. 7. - The magnetization work, Kerr, HeM and XOIM, for

FeBo-xNixB2o alloys and some Co-alloys as a function of Â..
Fig. 8. - Test of the temperature dependence of He according to
equation (32).
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Fig. 9. - Domain walls in a ribbon with fluctuating thickness
T( y, z) showing a smooth free surface and a rough contact surface.

bility measurements are inserted [17], [18] (Ddip = 100 Â
L3 =500 Á,. b=2 Á, Pdip=2 x 1017 cm-3, £50= 1 000 Á,
L2 = 100 ym).

3.2 EFFECTS OF SURFACE IRREGULARITIES. - Spin-
quenched amorphous ribbons are characterized by
surfaces with a natural roughness due to the quenching
conditions on the rotating roller. As shown schema-
tically in figure 9 amorphous ribbons produced by the
spin-quench technique have a smooth surface on the
free surface ( off-roller surface) and a rather irregular
surface on that side which was in contact with the
roller surface. Therefore the ribbon’s thickness, T,
may be described by a two-dimensional function,
T( y, z). Under the action of an applied magnetic field a
dw moves through regions of varying cross-sections,
i.e., the dw area, Fs, depends on the position of the dw.
Accordingly the total wall energy of a planar dw may
be written as

where L2 denotes the length of the dw and T(z)
corresponds to the spatially varying average thickness
of the ribbon along the dw normal. T(z) may be
defined as 

where the integration is performed parallel to the
trace of the planar dw with the ribbon’s surfaces.

In order to push the dw through the ribbon of
varying cross-sections a coercive field of

is required. Here  T &#x3E; denotes the two-dimensional
average of the thickness,  dT/dz &#x3E; max corresponds
to the statistical average of the maximum surface
gradients. It is obvious then that the surface coercive
field is exclusively determined by the rough side of the
ribbon where values of dT/dz - 0.1 may occur.

With 7B = 0.1 erg/cm2, (Ni4oFe4oP 14B6), Me = 1000 G,
D = 50 gm and  dodz &#x3E; max = 0.1 we obtain

Fig. 10. - The coercive field as a function of the ribbon thickness
after different polishing treatments. _

For Fe8oB2o with yB = 0.6 erg/cm2 we would obtain
6 m0e, i.e., an appreciable contribution to the coercive
field. The coercive field due to surface irregularities is ’
characterized by a 1/( T )-dependence which means
that Hcsurf. increases with decreasing ribbon thickness.
This relation has been tested by thinning a

Fe4oNi4oP14B6-ribbtin by means of different tech-
niques. The results are summarized in figure 10.
Here it becomes evident that the slopes of the

Hc --&#x3E; 1/( T )-plots are largest for a rough surface
treatment and are smallest if the ribbon is thinned

electrolytically. In all three cases, however, we observe
a 1/( T )-dependence as predicted by equation (35).
It should be noted that the slopes of the 1/( T )-plots
are enhanced due to the strong surface irregularities
introduced by the mechanical polishing.

3.3 INFLUENCE OF MAGNETIC AFTER-EFFECTS. -

Since the fundamental work of Snoek [21] and Néel [22,
23] it is well known that in crystalline materials the
mobility of dws is influenced by thermally activated
rearrangements of interstitial impurities, e.g., carbon
or nitrogen atoms, within dws. It is suggested that also
in amorphous materials atomic rearrangements lead
to a structural relaxation giving rise to a stabilization
of the dws. Such relaxations may occur by means of
the so-called free volume which is stored as empty
regions between the ions. The origin of the free
volume is due to the différent ionic radii of the alloying
constituents which prevent the formation of a totally
close packed atomic structure. The relaxation process
may correspond to a reorientation of atom-pair
axes with respect to the spontaneous magnetization
or to a reorientation of metalloid atoms which occupy
positions corresponding to some kind of interstitial
sites. Due to the atomic rearrangements the dw lowers
its wall energy. We may describe this process as a

lowering of the potential minimum within which the
dw is situated. Since the atomic rearrangement occurs
by thermally activated processes the stabilization

energy of the dw becomes time dependent, and

consequently also the contribution of relaxation
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processes to the coercive field becomes also a function
of time. The additional magnetic field required to
push the dw out of its potential minimum is given by

where pp corresponds to the number of mobile atomic
pairs and the relaxation time i obeys an Arrhenius
relation : r = To exp(Q/kT). Equation (36) holds if the
relaxation process can be described by one unique
relaxation time. Actually, however, a spectrum of
relaxation times exists [24, 25] leading in general
to a more complex relaxation function. The effect of
relaxation processes on the unrelaxed coercive field
can be estimated from the fundamental relation :

which holds within the framework of the potential
theory of the rigid domain wall model [5]. According
to equation (37) a relaxation effect, àX, of the initial
susceptibility is related to a decrease, àH,,, of the
coercive field as follows :

The coercive field due to relaxation effects therefore
is given by

where H c(O) corresponds to the unrelaxed coercive
field. Experimentally (-)AXIXO was found to vary
between 0.05 - 1.0 [24, 25] depending on the annea-
ling conditions of the amorphous alloys. Therefore
Hcrel. may give contributions from 5 %-100 % to the
unrelaxed coercive field.

4. Conclusions. - 1. Domain patterns are deter-
mined by long-range stresses. Tensile stresses generate
in positively magnetostrictive materials wide and wavy
laminae. Compressive stresses result in narrow laminae
with an easy direction perpendicular to the amorphous
ribbon.

2. Domain wall pinning is due to short-range stresses
which are produced by quasi-dislocation dipoles.

3. The coercive field is the sum of four terms

Addition of these four terms is possible since the
wavelength of the interactions due to short-range
elastic stresses (Hc6), relaxation processes (H;el.) and
intrinsic fluctuations (HI"’) is 2 bo, whereas the wave-
length of the surface interactions is of the order of
100 gm.
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