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Landau theory of phase transitions in TTF-TCNQ

C. Hartzstein, V. Zevin and M. Weger

Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

(Reçu le 2 mai 1979, révisé le 16 janvier, accepté le 13 mars 1980)

Résumé. 2014 On calcule plusieurs paramètres de l’énergie libre de Landau pour TTF-TCNQ à partir de la struc-
ture cristalline en tenant compte de la position des atomes et des distributions de charge réalistes. En particulier,
on évalue les paramètres qui déterminent le couplage entre les ondes de densité de charge et les rotations (librons)
sur des chaînes voisines. On résoud la fonction d’énergie libre et on obtient un bon accord avec l’observation
expérimentale de la période 2 a entre 53 K et 48 K et sa variation en dessous de cette température. L’interaction
« onde de densité de charge »-libron semble être responsable pour cette période transversale. On étudie le compor-
tement de Cp aux environs des deux transitions de phases voisines. L’énergie libre devrait avoir plusieurs (jusqu’a
quatre) points de Lifshitz, pour des valeurs convenables des paramètres.

Abstract. 2014 Several parameters of the Landau Free Energy Function of TTF-TCNQ are calculated from the
crystal structure taking into account the atomic positions and realistic charge distributions. In particular, the
parameters that determine the coupling between charge density waves and rotations (librons) on neighbouring
chains are evaluated. The Free Energy Function is solved, and good agreement with the experimental observation
of the 2 a period between 53 K and 48 K and its variation below this temperature, is obtained. The CDW-libron
interaction seems to be responsible for this transverse period. The behaviour of Cp in the vicinity of the two close
phase transitions is studied. The Free Energy should possess several (up to four) Lifshitz points, for appropriate
values of the parameters.
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1. Introduction. - It is known that the organic
charge-transfer metal TTF-TCNQ (tetrathiofulvalene
tetracyanoquinodimethanide) undergoes a cascade of
three nearby phase transitions [1-10]. The first two are
second order and occur at the transition temperatures
Tpl = 53 K and Tp2 = 48 K, the third is a first order
phase transition and occurs at 38 K. It is believed that
the two first transitions can be made to coincide by
changing the stoichiometric coefficients in

In TSeF-TCNQ both transitions apparently coincide
at 29 K [11].

In TTF-TCNQ, a charge density wave (CDW)
builds up at Tpl with a longitudinal period of
A = 3.39 b and a transverse period of 2 a. At Tp2
a second CDW appears and the transverse period
begins to increase continuously. At the temperature
of 38 K, TTF-TCNQ undergoes the third phase
transition, where the transverse period jumps to the
commensurate value 4 a [12].

In this study we discuss only the phase-diagram
and other features which are connected with the two

nearby higher temperature phase transitions.
The Landau theory of the phase transitions was

applied to TTF-TCNQ first by Bak and Emery [13],

Schultz and Etemad [14], Bjelis and Barisic [15] and
more recently by several authors [16,17,18,19]. These
authors make use of the symmetry properties of the
lattice, and derive those properties that are an essential
consequence of this symmetry ; namely, the existence
of two transition temperatures, 7pi and Tp2, and the
change in the transverse period only below Tp2.
However, the amount of information that can be
derived from symmetry alone is limited. For example,
TSeF-TCNQ which has the same symmetry as

TTF-TCNQ, has only one phase transition, and
application of small pressure to TTF-TCNQ, which
does not change the lattice symmetry, has a drastic
effect on the phase diagram. Therefore, symmetry
properties alone are not sufficient to give a complete
description of these complicated systems, and nume-
rical calculations of the various parameters in the
LFEF are necessary. A first step in that direction was
made in a previous paper [21] where some of the
parameters were estimated from the lattice structure,
and the importance of the librational degrees of
freedom, already introduced by Morawitz [20], was
stressed.

Weger and Friedel [21] showed that the CDW-
Libron interaction between nearest chains in the a*-
direction should provide the main contribution to the
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effective interaction between nearest similar chains ;
especially when it is realized that the direct Coulomb
interaction (DCI) between nearest similar chains
should be screened by the interposing chains of the
other type.

In ref. [21], 4 order parameters were employed ;
pQ and XQ for the TCNQ’s, and PF and XF for the
TTF’s. The pQ(pF) parameter describes a distortion
which has the symmetry of a longitudinal phonon,
namely symmetry group P2/m for an isolated

TCNQ(TTF) chain ; the XQ(XF) parameter describes a
distortion with the symmetry of a libration in the
molecular plane, or around the long molecular axis,
namely symmetry group P2/b for an isolated

TCNQ(TTF) chain.
When we have a LFEF with a given number of

order parameters : F(x1 ... xn), we can always reduce
the number of order parameters by algebraic elimi-
nation ; i.e. solve the equations :

and derive from them the xi’s (i = 1, ..., m) as func-
tion of the xj’s ( j = m + 1, ..., n), put the values of
the xi back into F, and thus obtain a function

F(xm+ 1, ..., xJ with less variables.
In the present case, we can, for example, eliminate

the order parameters X. and XF, and be left with a
function F(pQ, PF) which appears to be equivalent
to the function used by several authors [13,14,15,16].
If we wish we can go further and eliminate pF, obtain-

ing a function F(pQ), or even further, and eliminate pQ,
obtaining just a number F.
The question here is not whether such an elimina-

tion is mathematically correct, but whether it is useful
and fruitful. When we perform a partial elimination
we obtain a function of less variables, which looks
at first sight simpler. However, we also lose in the
process.

First, the coefficients of the bare LFEF can be
calculated (or at least estimated) from first principles.
We calculate a few parameters in this work. In contrast,
the coefficients of the reduced LFEF must be fitted
to experiment, and be regarded as no more than a
representation of experimental results, or, alterna-

tively, be calculated from the coefficients of the bare
LFEF as we do here. Thus, for any linkage with an
ab-initio calculation, the bare coefficients are essential.

Second, the coefficients of the reduced LFEF
become complicated functions of temperature, pres-
sure, and the other variables. They may even be
non-analytic functions. The coefficients of the bare
LFEF are much more nearly constant. Thus, if we
try to take into account the complicated temperature,
pressure, etc., dependence of these coefficients, say
by some power series expansion, we actually end up
with more adjustable parameters than there are in the
bare LFEF, and the description is much more compli-
cated.

Third, the order parameters of the bare LFEF are
very simply related to measurable quantities such as
molecular translations and rotations, phonon fre-

quencies [22], etc. Thus we can make use of available
experimental data, and we can make predictions that
could not be made from the reduced LFEF. For

example the detailed theory of the conductivity in the
metallic state [23] is a direct outcome from the bare
LFEF, which demonstrated the importance of the
libron degree of freedom.

Because of the very large number of order para-
meters, the LFEF contains, in principle, a very large
number of terms. Even if only nearest neighbour
chain interactions within the a-b plane are included
(Fig. 1), and only one type of translation and one
type of rotation in each chain are considered, there
are about 50 terms up to the 4th order. Therefore, by
appropriate choice of the parameters, just about any
result can be obtained. In order that the results be

meaningful, the parameters in the LFEF must be
estimated from ab-initio considerations (i.e. the crystal
structure, the various microscopic constants, etc.)
rather than arbitrarily fitted by experiment. Of course,
it is a very hard task to fulfill such a program for as

complicated a system as TTF-TCNQ in a rigorous
way. Here we limit ourselves to the monopole-mono-
pole electrostatic interactions and the simple mean
field (MF) approach as the first step to more compre-
hensive ab-initio calculations.

Fig. 1. - a) A view of the crystal packing in TTF-TCNQ. The
shaded molecules .have their centroids at x = al2 (from Kisten-
macher et al. [56]). b) Definition of the molecular axes.

In our preliminary short report [24] we used the
CDW-libron interaction model of Weger and Frie-
del [21] in which the extra charge of the



679

molecule was located only on the nitrogens (the
sulphur and end carbon) atoms. In this paper we also
use another model with the more realistic picture of
the charge distribution, based on the charge distribu-
tion calculations of Ladik et al. [25] for the TCNQ,
TCNQ-, TTF+ and TTF molecules. The two models
are compared in section 5 and the importance of the
intramolecular screening for the case of the second
model is discussed.

The paper is organized as follows :
In section 2 we discuss the elementary solutions of

the LFEF and show the temperature dependence of
the order parameters, the transverse period and the
heat capacity for various sets of the LFEF interaction
parameters.

In section 3, we estimate the value of the LFEF
parameters for the CDW-libron [21] model and the
direct Coulomb interaction parameters are considered
in section 4. In section 5 the values of the parameters
used in the numerical calculations are compared with
the estimates of the preceding sections. The validity
of these estimates is discussed. In section 6 we show
that two (or four) Lifshitz points [26] may appear on
the phase diagram of the TTF-TCNQ system and
discuss some features of this phase diagram. Details
of the calculations are presented in Appendices I and II.

It is worthwhile to note that TTF-TCNQ is one of
the several systems in which phase transitions occur
at very nearby temperatures. For example, in V3Si,
a displacive phase transitions occurs at TM = 22 K
and a superconducting one at Tc = 17 K [27]. Under
pressure, TM and Tc approach until they coincide at
about 35 kbar [28, 29]. Tm is, strictly speaking, a first
order transition, however, its latent heat is very small,
and it is close to a second-order one.

In dichalcogenides, like NbSe2, a CDW builds up at
a 7p = 26 K and superconductivity at Tc = 7 K,
under pressure, Tp and Tc can be made to coin-
cide [30]. In all these systems, we deal with two order
parameters which are weakly coupled. In the two
above-mentioned cases, this is because they charac-
terize different physical properties. The closeness of
the two transition temperatures may either be acci-
dental (due to appropriate choice of external para-
meters-like pressure, for instance), or due to some
complicated physical reason, such as the degeneracy
of Tp and Tc in quasi-ld-systems suggested by Bychkov
et al. [31]. The closeness of the two phase-transitions
Tpl and Tp2 in TTF-TCNQ and their interdependence
is discussed here.

2. Elementary solution of the free energy function. -
In this section we discuss the general picture of the
phase transitions in TTF-TCNQ as it follows from the
solutions of the LFEF suggested by Weger and
Friedel [21] and completed here with the nearest
similar chains DCI.

The simplified LFEF has the form :

where the indices 1, 2, 3 and 4 correspond to the order
parameters pQ, pF, XQ and XF respectively ;

where qa is the wave number in the a direction trans-
verse to the stack direction. A 12 is the CDW-CDW

coupling parameter between nearest chains, A 14 and
A 2 3 are the coupling parameters of the CDW-libron
interaction for nearest chains and A11[a] and A22[a]
are the direct coupling parameters for nearest similar
TCNQ and TTF chains respectively. The LFEF
represents a two-dimensional model of quasi one
dimensional conductors composed of weakly coupled
chains. The order parameters fields are of the form

The interactions in the c*-direction are neglected [21].
We do not include in eq. (1) the libron-libron interac-
tion term (oc A 34 XIQ XF)’ Several fourth order terms
are also neglected.
The second order phase transitions found in TTF-

TCNQ are of the Peierls type [32-34] whose order
parameter may be defined in several ways. It may be
defined as the gap in the one-electron spectrum ;
it may be defined as the amplitude of the charge
density wave, i.e., the variation in the charge of the
molécules ; or, it may be defined as some specific
displacement of the molecules. All these definitions
are equivalent, however, in order to assign well-
defined numerical values to the parameters of the
LFEF, we have to agree on some convention. In the
present work, we define the order parameters pQ
and PF as the molecular centre of gravity displacement
in the b-direction in units of 1/100 Á. Some of the
condensation energy of the Peierls transition is due to

coupling with intramolecular modes, such as CN, CC,
and CS stretching modes [35]. However, we still do
not know the relative contribution of these modes to
the condensation energy. Also, transverse phonons
polarized in the c*-direction, are coupled strongly to
the Peierls distortion, in addition to longitudinal
ones [36] (polarized in the b-direction). In an ab-initio
calculation of the Peierls transition temperature,
all these modes must be taken into account. Howevër,
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here we use the experimental value of Tpi, i = l, 2
and estimate from it the effective electron phonon
.coupling constant À. Therefore, we express the order
parameter of the Peierls transition in terms of one
mode only - say the longitudinal phonon - since
this is the mode that (probably) couples most strongly
with the conduction electrons. The actual amplitude
of displacement should not be too different (within a
factor of 2 or 3) from that calculated on the basis of
exclusive coupling with this mode. Since the definition
of the order parameter is a matter of convention, the
value of the free energy, its derivatives (i.e. specific
heat), etc., will not depend on this choice.
Weger and Friedel [21] pointed out that the ri-

librations (i.e. librations in the molecular plane)
are most effective - from the geometrical point of
view - in producing the N-S and the N-C distance
modulation, but we show in section 3 that for TCNQ
molecules the (-libration (i.e. a libration around the
long molecular axis) (see Fig. lb) must also be taken
into account. Therefore in this paper XF is a pure ri-
type libration and XQ is a linear combination of il and Ç
librations, as defined in section 3.
To establish the appropriate phase diagram for

our system, we use here the usual mean field approach
and neglect the temperature dependence of all the
coefficients in eq. (1) except for All(T) and A22(T).
(See, however, the discussion concerning the tempe-
rature dependence of the A 14 and A 2 3 parameters
in section 3 and section 5.) For these two coefficients
we assume that in the vicinity of the unrenormalized
Peierls transition temperature Ti (i = 1, 2) of the

uncoupled chains

We use the minimum conditions

to find the transition temperatures Tpl and Tp2 of the
weakly interacting subsystems (PQ XF) and (PF XQ)
into which the LFEF naturally divides when A 12 = 0,
and the temperature dependence of the order para-
meters ili = Yli(T) and of the transverse period
u = u(T ).
The solution of eq. (3) gives the following connec-

tion between the order parameters and the parameter u

Using eq. (4a) and eq. (4b) the libration order para-
meters may be eliminated from eq. (1) and eq. (1)
may be cast in the form

which is valid when the conditions

are fulfilled (with 82 Fj8x;, a2F/axQ &#x3E; 0). Eq. (la)
has the same form as the equation used, for instance,
by Bjelis and Barisic [15]. Thus, their formulae for the
phase temperature renormalization and for the phase
transition lines (see eqs. (6)-( 10) in ref. [ 15]) apply also
here with the following correspondence between the
parameters of LFEF

Here the first column corresponds to the DCI between
nearest similar chains only, the second - to the
CDW-libron nearest different chains only and the

third column corresponds to the case when both
interactions are significant. Thus, we see that the

CDW-libron interaction between the nearest chains
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provide an efi’ective coupling between the next-nearest
chains. The question arises : which coupling is domi-
nant ?
We show further that if the screening effect some-

what diminishes the DCI terms A11[aJ and A22[a]
the only mechanism which is responsible for the
transverse ordering in TTF-TCNQ is the CDW-
libron interaction. In any case, the renormalization
of the next nearest chains interaction due to the
CDW-libron coupling is an important factor in

building up the transverse period (see section 5).
The neglect of the interaction between the CDW in

one type of chains with transverse phonons in the
chains of the second type was justified by Weger and
Friedel (see Table 1 of reference [21]). Transverse
phonons polarized in the x-direction do not couple
with a CDW in the neighbouring chain for a quarter
filled band (the interaction coefficient includes a

factor cos (qb b) that is zero for such a filling) and the
coupling must be small for a 0.59 electron per atom
filling. The opposite is true for the interaction between
transverse phonons polarized in the z-direction with
CDW in the neighbouring chains. Its interaction
coefficient is proportional to sin (qb b) which is
maximum for a quarter filled band. Moreover, the
corresponding term in the LFEF contains a factor
cos (qa al2) instead of the sin (qa al2) appearing in the
CDW-libron interaction terms. The former would
lead to an « a » period instead of a « 2 a » period in
the 48 K-53 K temperature range. In order to fully
justify the neglect of the transverse phonon (z-pola-
rized)-CDW interaction we estimated its coefficient

A 1 Z in the same way as we did with A 14 and we obtain-
ed A 1z = 0.011 meV/(10- 2 Á)2. The right compari-
son must be done between

(Azz = 0.062 meV/(10- 2 Á)2 is the force constant

obtained from reference [55]) and (see Table VI)

The former is 30 times smaller than the latter and its

neglect is fully justified. This argument does not apply
to coupling with the transverse phonon polarized in
the c*-direction on the same chain since this phonon
has the same symmetry as the longitudinal one, the
coupling is strong, as seen by the diffuse X-ray and
neutron diffraction work.
For the sake of simplicity and because of the corres-

pondence relation, eq. (5), in the following we shall
use the second column of eq. (5) only.
From eq. (la) and eq. (3) we obtain for the tempera-
ture range Tp2  T  Tpl

For the temperature range T  Tp2  Tpl we
obtain

Eq. (7a) is only valid to first order in (Tp2 - T).
dC22 is a renormalization of the fourth order term
in PF. Eq. (4c) which is exact, shows us that the sta-
bilization of the parameter u at zero in the temperature
range Tp2  T  Tpl is due to the CDW-libron
interaction (the A 14 term in eq. (1)) and that the
deviation of the parameter u from zero is caused by the
inter-subsystem interaction (the A 12 term in eq. (1)).
The neglected bilinear libron-libron parameter
(a A 34 UXQ xF term in the energy) has the same role as
the CDW-CDW parameter A 12, thus it can be absorb-
ed in this parameter, as long as it is not too strong.
The transition temperatures, for the region where

Tpl &#x3E; Tp2 [15] are equal to :

Eq. (8a) gives us the renormalization of the first
transition temperature due to the CDW-libron interac-
tion. This renormalization is always positive. Eq. (8b)
contains, in addition to the CDW-libron renormaliza-
tion AT2, a second renormalization AT2’ &#x3E; 0 due to
the inter-subsystem coupling. From eq. (8)

. and depends therefore upon the electron-libron
renormalization in the first sybsystem. Generaliza-
tion of eq. (8) to the case of the A14(A23) parameter
depending upon T is discussed in section 3 (eq. 27)).
A feature of the phase diagram follows from the

fact that u must be less or equal to one. If for some set
of parameters of the LFEF a u &#x3E; 1 solution is obtained
from eq. (3), those equations must be replaced by

These equations may define a new phase for which
u = 1, xQ = XF = 0 and the PLD amplitudes (pp and
PF) are non-zero. The zero of the libron order para-
meters follows from eq. (1) in which the electron-
libron coupling disappears for u = 1. We discuss this
case in section 4.
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Fig. 2. - The longitudinal displacement amplitudes of the PLD
in each type of chains versus temperature obtained by solving the
minimum conditions for the LFEF. with the corresponding sets of
interaction parameters listed in table VI.

The numerical solution of the LFEF for the CDW-
libron interaction only (eq. (1) with A 11 [a] = A 2 2 [a] = 0)
is presented here for three sets of parameters A 12,
A 14, and A 23. These three sets (see Table VI) fit the
temperature dependence of the transverse period but
they give different results for the order parameter
amplitudes and for values of the spécifie heat jump
at Tpl = 53 K. A more detailed comparison between
these sets of parameters is made in section 5.

Figure 2 represents the temperature dependence
of the longitudinal order parameters. pQ behaves
according to classical Landau theory. The experi-
mental value, derived from the intensity of neutron
diffraction lines, shows some saturation, probably
due to higher order terms. We feel that the agreement
between the present crude theory and experiment is
about as good as could be expected. We note that p2
has a pronounced non-linear component near Tp2
due to the closeness of Tpl, Figure 3 illustrates the
temperature dependence of the libron order para-
meters. We note that the value of XF at 38 K means
a linear deviation of the sulphur atom in the TTF-
molecule ôRs z 1 x 10-2 A which is comparable
with the longitudinal displacement PF. The magnitude
of the rotation at 0 K is smaller by a factor of 10 from
the values measured by Johnson and Watson [37]
inTTF7l5.

Figure 4 shows the good fit of the transverse period
qa = 2 nj2 as function of temperature to the experi-
mental points.
The heat capacity was also calculated and figure 5

shows its temperature dependence. Between 53 K
and 48 K we have the usual mean field behaviour,
but under 48 K Cp increases with decreasing tempera-
ture and a broad maximum (Fig. 5c) appears. This
unusual behaviour can be readily understood if

eqs. (4a), (4b) and (4c) are used to rewrite the free
energy of eq. (la) in the following form :

where

are the classical free energies of the (pQ XF) and (PF XQ)
subsystems respectively. The third term in eq. (10a)
represents an effective interaction between those
two subsystems. In the 48 K-53 K temperature range
PF = 0, F = Fl (pQ) and the classical solution is

obtained for the free energy. Below 48 K the series
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Fig. 3. - The rotational (libronic) order parameters versus tem-
perature for the corresponding three sets of interaction para-
meters.

expansion of the free energy in powers of (Tp2 - T)
may be obtained for the case 

where Fo(T) is the free energy for T &#x3E; Tp2. The
coefficient of the quadratic term may be obtained with
the help of eqs. (7) and (lob) and (10c). This coefficient
is equal to

and is small when Tpl and Tp2 are close (see eq. (7b))
and the third order term becomes important. The
specific heat below the second phase transition is

where Cpo(T) is the specific heat above the phase
transition.

Fig. 4. - Transverse period versus temperature. The experimental
points are from Ellenson et al. [58]. The continuous curve corres-
ponds to the parameters of the set a of table VI and the broken,
line to those of the set c.
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Fig. 5. - The heat capacity Cp versus temperature calculated from
the minimum conditions for the LFEF with the corresponding
sets of parameters listed in table VI.

From eq. (13) we conclude that the heat capacity
jump Cp(Tp2) at the second phase transition is

equal to

and it is small when Tp2 is close to Tpl’
Below the second phase transition when the a-term

in eq. (13) is sufficiently small the derivative of Cp
at Tp2 is negative and a broad maximum appears due
to the third term in eq. (13). We note that two above-
mentioned facts are not specific for our particular
model but are the peculiar features of the MF model
for two nearby second order transitions.

In the recent measurements of the heat capacity [38]
an additional maximum was found at T N 46 K.
The origin of the maximum may well be identified
with the closeness of the two successive phase transi-
tions in TTF-TCNQ (see Fig. 5). However, we were
not able to obtain a maximum at 46 K by changing
three interaction parameters only (see discussion in the
end of section 5). 

Recently, Craven et al. [3] noted that MF theory
does not account quantitatively for the jump of the
specific heat at T = 53 K. They measured

while the MF theory predicted

The enhancement of LBCp can be readily understood if
we note that the quartic coefficient Cl 1 oc T- 2,
and that Tpl = Tl + LBT1 rather than Tl must be
used in its evaluation. When the corresponding
changes are made in the ACp formula, we get

and a bare transition temperature Ti - 27 K can
account for the ACp enhancement.

3. Estimation of the parameters of the free energy
function. - In this section we present the calculations
of the parameters of the LFEF of eq. (1). As was
already mentioned, the microscopic theory of the
Peierls transition for the specific case of TTF-TCNQ
must include the interaction between conduction
electrons and at least four phonon modes.
We aim to express all the parameters in eq. (1)

via a set of the microscopic quantities such as longi-
tudinal phonon and libron frequencies wi (i = 1, 2 for
the longitudinal phonons and i = 3, 4 for the librons),
the electronic density of states N(EF), appropriate
matrix elements of the interaction, etc. Up to now,
however, such a theory has not yet been developed
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and we approach the problem using the mean field
approximation [33, 34, 39, 40, 41, 42] to estimate the
parameters aji, Cu (i = 1, 2) and we generalize these
theories to estimate the CDW-libron coupling A 14 and
A 23 and the CDW-CDW A 12 coupling. The elastic
libron parameters A33 and A44 are estimated using
the experimental data on the X-ray Debye-Waller
factor [23], the unrenormalized transition tempera-
tures Tl and T2, eq. (2), are obtained from eqs. (8a),
(8b) using the experimental values Tpl = 53 K and
TP2 = 48 K.
To describe the high-temperature phase transition

in TTF-TCNQ (an ordering of the (pQ, XF) subsys-
tem) we add to the Frohlich Hamiltonian the electron-
libron interaction with the TTF il-libron mode [21].
The Hamiltonian which leads to the Peierls transi-

tion of the (pQ XF) subsystem has the form

where the first two terms are the kinetic energy of the
electrons and the energy of the phonons. The essential
part of the last two terms may be written as follows

where the q-components are 2 kF along the chains and
qa along the x-direction (alternating chains). g11 and
914 stand for the electron-longitudinal phonon and the
electron-libron coupling constants, respectively.
03C8(x, y) is the electron wave fields, the operators bq
and aq destroy a longitudinal phonon and a libron,
respectively.
We define now the order parameter as half the gap

in the electronic spectrum of the TCNQ chains

This order parameter replaces the ABB [39] order
parameter (our A11). Further, we may follow the
previous work [39, 40] and obtain for the free energy
the expression

where the first two terms are the elastic energies and
the other terms appear from the expansion of the
electronic part of the free energy in powers of the
order parameter. The dimensionless interaction para-
meters are

and Wl(4) is the phonon (libron) frequency, N1(EF)
is the density of states for one spin direction.
We assume that the conduction electron coupling

to the longitudinal phonons is much larger than to
librons so the longitudinal phonons go soft first and
drive the Peierls transition. In the absence of librons
the Peierls temperature Tl would be the solution of the
equation

where Kl = 2 : 4 depending upon the electron band
model [39, 40, 41, 42] (Kl = 2.28 for the one-half
filled band and K, = 4 for the free-electron model),
and the interference term in eq. (19) renormalizes
this temperature (see eq. (8a)). To compare eq. (19)
with eq. (1) we note that the displacements p. and
XF are connected to the order parameters by the equa-
tions

where Ml is the TCNQ molecular mass and 14 is the
moment of inertia of the TTF molecule around the

1-axais and N is the number of cells along the y-axis.
Noting that

N1 (EF) 
ae(T) = _ N 1(eF) In il- [39 4003BB11 
+ ae(T) = - N1(EF) ln T [39, 40] , &#x3E;

11 1 1

we obtain for the coefficients of the LFEF, eq. (1) :

where the coefficient K2 depends upon the electron
band mode!. Eq. (24) follows from the explicit expres-
sion for be, eq. (17) in ref. [39] where K2 = 0.106.
The PQ XF term in eq. (1) appears in eq. (19) in the

form 2 ae(T ) Re (4 1 1 d*14). In the first approximation

we ut a T N a T - - 
N1 (EF) 

see e . 19we put ae(T) = ae(T1) = -,--- (see eq. (19)).p e( ) e( 1) 
03BB 11 see q

Using eq. (22) we obtain by comparison with eq. (1) :
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The parameter A 14 determines the renormalization
of the transition temperature, eq. (8a). If the renorma-
lization AT, is large, the temperature dependence of
A 14 in the interval Ti  T  Tpi cannot be neglected.
In this case we obtain instead of the eq. (25) the follow-
ing expression

where ae(T) is a known function (essentially for

T  EF, ae (T) - In EF/T [39, 40, 42]). For the phase
transition temperature Tpl we now have a transcen-
dental equation

where A14(Tpl) is defined in eq. (25a). For a given
renormalization of the phase transition temperature
A7B we may make a crude estimate of the

ratio where A o 14 now is for the value of A 14 from
eq. (25). With the approximation

we obtain the crude estimate

and conclude that 1 A 14(Tp1) 1  1 A 4 1. We use
eq. (27) in our discussion on the parameters of the
LFEF in section 5.
For numerical estimâtes we use for g 14 the explicit

expression

where M14(q) is the matrix element of the potential
on one electron produced by the libration of a TTF
molecule

The calculation of the matrix element M14 was
performed for the two above mentioned models of the
charge distribution. In the first one we assumed the
TCNQ molecular wavefunction of the conduction
electron to be localized on the nitrogens, while the net
charge of TTF+o.6 molecule was concentrated at

the sulphurs [21]. When the nearest neighbour interac-
tion is taken into account the matrix element is given 

.

by

where

is the electrostatic potential at the nitrogen atom
due to the net charge of the sulphur atom, cN is the
LCAO coefficient of each of the nitrogens atoms in
the molecular wavefunction (1 cN 12 = 0.25), zs is the
net charge at the sulphur atoms (zs = 0.6 x 0.25),
RNS is the distance between nitrogen and sulphur

atoms, sin (203C0b ) = 1 and the factor 4 appears when ,

summing over the four bridges with the four nearest
TCNQ molecules (see Fig. 12). This NS contribution
leads to a rather small value of the A 14 interaction
parameter because the centre of the TTF molecule,
the N and the S atoms are almost colinear and the
motion of the sulphur is almost perpendicular to
the NS distance. Therefore, also the end carbon atoms
must be included and the A 14 parameter is determined
by the electrostatic potential

The value of A 14 (NS only) appearing in table IV
was calculated supposing that the net charge in TTF
is equally distributed between sulphurs and end
carbons (zs = zc = 0.6 x 0.125).
We also calculated the M14(q) matrix element

taking into account the interaction between the sul-
phurs and end carbons of the TTF molecule with all
the nitrogens in the four nearest TCNQ chains. The
summation along these chains diminishes the A 14
parameter in comparison with the nearest neighbour
calculation scheme by 20-30 % (See Appendix 1

and table IV).
In the second model we allow the charge to be

spread over the entire molecule. Eq. (30a) is readily
generalized and it becomes

where ci are the normalized expansion coefficients of
each atomic function in the LCAO molecular wave-

function and

is the electrostatic potential at the i-th atom of the
TCNQ molecule due to net charges

of the atoms of the TTF molecule. We note the diffe-
rence between the orbital charge density, which is the
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Table 1. - Physical constants appearing in different equations of this paper.

(*) Calculated with data from ref. [56].
(**) Calculated with data at 100 K from ref. [22].

charge density of the additional 7r_, electron (or hole)
on a given atom (represented by 1 Ci I2), and the total
charge density on a given atom, which also includes the
polarization of the cores, and a-bonds. For example,
in neutral TCNQ, the sum of the orbital charges on all
atoms vanishes, however, the CN groups have dipole
moments (with the nitrogen negative). In TCNQ-,
the orbital charge density on the nitrogens is only
- 0.061 e while the total charge density is - 0.251 e.
If we approximate the net charge of the nitrogen in
TCNQ-o.6 by the linear interpolation between the
TCNQ’ and TCNQ- charges, then ZN = - 0.21 is
obtained. The values of the orbital charge densities
1 Ci 12 and the atomic total charges densities both for
the TTF and TCNQ molecules were calculated with
data from ref. [25] and are listed in table II. The M14
matrix element was also calculated including the
interaction between a TTF molecule and all four
nearest TCNQ chains. These results are summarized
in table III and IV, and detailed calculations are pre-
sented in Appendix I.
The dimensionless electron-libron interaction para-

meter

is found to be equal to 0.02 and 0.13 for the first and the
second models, respectively. From eq. (19) 03BB11= 0.2
so À,14/À,11 = 0.1-O.bS. Note that A14 depends on the
Fermi Energy eF and on the transition temperature Tl

K1 e 1 /2
only through A 14 oc ln K1  EF 1/2 (see eq. (19) andT1)

Table II. - The LCAO coefficients ci of the n-elec-
tron of. the TTF and TCNQ molecules and the net
charge density zi of the TTFo.6 and TCNQ-o.6 ions.
1 ci 12 are the differences between the charge densities
of the neutral and the once ionized molecules (Fig. 13)
and zi the linear interpolation between them as explained
in the text.

eq. (23)), and therefore this quantity is not sensitive
to the precise values of EF and Tl .

In the same way we estimate (X22, C2 2, and A 23
from eq. (1). The estimate of A12 may also be obtained
by including a longitudinal phonon in the second
chain. This phonon produces change of potential on
the conduction electron of the first chain by modulat-
ing the RNS and RNC distances. The result of this
calculation is analogous to eq. (21) for A 14 [43]. We
obtain
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Table III. - Matrix elements in the nearest neighbours approximation for some chosen pairs of atoms

(*) The first (second) atom in each pair belongs to the TCNQ(TTF) molecule,and the nearest of all the pairs bearing the same symbol
is meant.

(**) The values of the CDW-libron matrix elements are given in meV/deg. and the charge densities are those of table II.
(***) The values of the CDW-longitudinal phonon matrix elements are given in meV/(10-’ A).

Table IV. - Theoretical estimations of the CDW-
libron LFEF parameters.

NN and chain stand for nearest neighbours calculation and sum-
ming along the chain calculation respectively.

where Â12 = Â’12 u, Â21 = Â’21 U, M2 is the TTF
molecular mass, and the matrix element that deter-

mines the Â12 coupling constant (see eq. (20), i = 2,
and eq. (28)), is :

The explicit expression for M12(q) in the tight binding
approximation follows from eq. (30a) by replacing
(1 - u2)1 j2 by u and XF by PF. The numerical estimate
of A 12 is presented in table IV (Â’2 - 1 Â’21 - 10- 3).

All our numerical estimates of the interaction para-
meters in eq. (1) are based only on monopole-mono-
pole nearest neighbour interactions between TTF and
TCNQ molecules. Polarization leads also to mono-
pole-dipole, dipole-dipole interactions [21], etc. It is
worthwhile to note that the effective charge zN
(and zs) is also somewhat modulated by the phonons
(librons), (see ref. [21], section 2). The modulation
of the effective charge by the phonons also contributes
to the Frohlich coupling constant. This effect follows
directly from the phonon (libron) modulation of the
expansion coefficients of the LCAO wave function
of the chain [44]. We do not consider that effect here.
We have also neglected the intramolecular screen-

ing of the interaction between the charges localized
on atoms which do not lie on the periphery of the
molecules. That is why the more simpler first model
which uses only the charges on the periphery of the
TTF and TCNQ molecules is useful as a kind of
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limiting case. We return to this question in section 4.
The values of some physical quantities needed for the
calculations of the different interaction parameters
are listed in table I.
We note that all interaction parameters above

estimated are of the interference nature. But the A 12
parameter has another contribution which follows
from the direct CDW-CDW Coulomb interaction of
two different stacks. Therefore we can write

where the first is the CDW-CDW contribution and
the second is from eq. (31). We estimate the first term
in the next section (see also Appendix II). Here we
note that these two parts differ in their dependence
upon the charge transfer

So the A 12 interaction vanishes not exactly for the
1/4 filled band but for qb = 2 03C0/A which depends
upon the ratio A "2/A 12. Our estimate (see next section)
shows that the interference mechanism (eq. (31))
contributes àbout 5 to 10 % to the A 12 interaction
parameter (see Table IV).

In view of all the approximations used for the
estimate of the interaction parameters we believe that
they are accurate within a factor of about two.
The parameters A 33 and A44 follow from experi-

ment [22] where the mean square amplitude of the
TTF and TCNQ librations were measured. The

experimental uncertainties are about 30 % and our
choice of the A44 and A33 parameters corresponds
to the values of the force constants for a temperature
of 100 K. The experimental data [22] for the TCNQ
molecule show that the elastic restoring force for
the il-libration is much larger (11 eV/rad.2) than
for the 03BE-librations (1.4 eV/rad.2). This fact leads to
the redefinition of the libron coordinate XQ. Indeed,
geometrically the il-libration is the most important
factor in the modulation of the S-N distance [21] but
because of the relative small amplitudes of this
libration and the large amplitude of the 03BE-librations,
the last must be included in the electron libron free

energy. The straightforward inclusion of the addi-
tional order parameter in eq. (1) would complicate
the free energy. Therefore, we redefine the XQ-libra-
tions as rotations around an intermediate axis between

the n and 03BE ones, and find the direction cosines fl and y
by minimizing the part of the free energy that depends
only upon xQ.

This procedure gives A23 = A’n213 + Ai3 Y and

A33=A33 03B22+A33 y2 with y/P=(Aj3/Ai3)j(Ai3/Aj3)’
Taking [22] Aj3 = 11 eV/rad.2, Ai3 = 1.4 eV/rad.2
and estimating A2 3I A2 3 N 5.5 we get = 0.57 and
y = 0.824 which lead to the parameters A 23 and A 33
in table IV.

Similarly, PF is a linear combination of a longitu-

dinal phonon and a transverse phonon (polarized
in the c*-direction), as found from experiment in
TTF-TCNQ [36], but in the present estimates of the
LFEF parameters, we took the pF as a pure longitu-
dinal order parameter.

4. Direct Coulomb interaction model. - In this

section we calculate the CDW-CDW interaction

parameters for the nearest and the next nearest chains,
A12 and All[a] (A22[a]) respectively. (See also Ap-
pendix II.) These parameters were estimated by Bjelis
and Barisic [15] but for the continuum model of the
CDW (a linear CDW along the b-axes). We develop
here a method of calculation of these parameters
which takes into account the geometry of the mole-
cules. For the nearest chain parameter A 12 the geo-
metry factors are essential (we obtain an order of
magnitude reduction of the A 12 parameter compared
to the results of ref. [15]). To be closer to the papers
which treat the phase transitions in TTF-TCNQ [13,
14, 15] we use here instead of the displacement order
parameters pQ and pF the order parameters K. and

xF related to them. The latter are the CDW amplitude
relative to the average charge transfer v. To be specific
we’use in the case of the x order parameters the small
letters for labeling the LFEF parameters in eq. (la)
(e.g. a12, a11[a], ci l and so on). We first determine the
relation between the CDW parameter x and the

displacement parameter p used in eq. (1).
If we expand the electron density on a chain,

n(y) = ¿ I 03C8ka(Y) 2, in a Fourier series
k,«

th 
2 03C0 (n.integer )appear components K q With q # n2 -03C0 (n integer) appear in

the case of a non-commensurate CDW. We define
the CDW parameter x in the case of the usual Peierls
transition by the equality rc = x2kF 1.
To calculate a one-chain parameter aji and Cii,

i = 1,2, it is sufficient to calculate the ratio T = KI P
for a chain. With given r the one-chain parameters
may be obtained by the simple scaling of eq. (23) and
eq. (24). In the frame of the one-electron MF-theory
[33, 34, 39, 40], it is a simple matter to prove that

where vN is the number of electrons in a chain and Li
is defined by eq. (18) with g 14 = 0. From eq. (22)
and eq. (32) we obtain

where w is the longitudinal phonon frequency. For
the values of the constants listed in table 1,
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Eq. (32) has a simple meaning. Because

we see that k 03B1c 1 2 d . For free 1 d électrons03BB Sp

and from eq. (32) and table 1 we obtain k = 1.4.
Table V presents the LFEF parameters aji and cü as
scaled from the related parameters of table IV of
the LFEF of eq. (1).

Table V. - Parameters of the free energy function
for the direct Coulomb interaction model.

The calculations of the CDW-CDW interaction

parameters using the discrete CDW model and taking
into account the atomic structure of TTF-TCNQ,
are explained in Appendix II. Also in this calculation,
we use two models for the charge distribution. The
next nearest chains parameters a11[a] and a22[a] are
not sensitive to the actual charge distribution over
the molecules (and the continuum model is not too
bad for them) but the a12 parameter increases about
20 times for the second model compared with the
first one. This is not an accidental effect. As shown
in ref. [21] the a12 interaction in the first (NS) model
is weak mainly because the sum of the projection of
the nitrogen-nitrogen distance in the TCNQ mole-
cule along the b-axis and the sulphur-sulphur dis-
tance in the TTF molecule is approximately equal
to half the wavelength of the CDW (A = 2 rc/2 kF).

Because of the effect of the intramolecular screening
much of the non-nearest neighbour pair interactions
are screened. Thus the true value of the a12 CDW-
CDW interaction parameter must lie between these
estimates. Because of the large difference between
them we took this parameter as a fitting parameter
(see next section).
Table V presents the results of the calculations of

the DCI parameters. The CDW-libron interaction
parameters A 14 and A 23 are much less sensitive to
the charge distribution model than the CDW-
CDW A 12 interaction parameter (see Table IV). This
is due to the fact that the relative tilting of the TTF
and TCNQ molecules nearly cancels the NS and NC

(end carbons) interactions in A 12 while there is no
such a cancellation in A14 and A23 (a factor

appears in the A 14 and A 23 calculations and

in the A 12 one).

5. The fitting procédure (which mechanism is res-

ponsible for the 3d ordering in TTF-TCNQ ?). - As
follows from the previous sections (section 3 and
section 4) our estimations of the interaction para-
meters are not sufficiently precise to expect them to
fit the available experimental information exactly.
Therefore, we try to find a best set of three interaction
parameters (for instance, A 14, A23 and A 12 or a11 [a],
a22[a] and a12) to fit some experimental measurements
and then we compare this best set (set a in table IV)
with our theoretical estimates. Note that we fix the
other parameters of the LFEF, (eq. (1)) at their
theoretical estimates (see table IV). Along with the
best set we also solve the LFEF, eq. (la), for two
other sets of three interaction parameters and com-
pare the results. We first discuss the CDW-libron
mechanism and then the DCI model.
The available experimental evidence is scarce ; the

measured phase transition temperatures [6, 11, 58]
(Tpl and TP*2), the temperature dependence of the
transverse period qa(T) [4, 12, 58]. and the specific
heat anomaly [3, 38].
The jump of the specific heat LBCp(Tpl) at the high

temperature phase transition détermines with the

help of eq. (15) the unrenormalized phase transition
temperature Tl and this via eq. (8a) determines the
interaction parameter A 14. Two other parameters,
namely, A 23 and A12 were chosen to fit the initial 1

slope and the curvature of the qa(T) dependence [58],
Thus, set a (Table VI) is chosen to fit both the ACp(Tp1)
jump (see Table VI) and the qa(T ) dependence (see
Fig. (4)). At first sight the correspondence between the
parameters A 23 and its theoretical estimate A 023 is

very poor. But if we pay attention to the large renor-
malization of the transition temperature (see Table VI,
. Tp2 - T2 = 39 K) we conclude that the temperature
dependence of the A 23 parameter between Tp2 and
T2 is not negligible. As was explained in section 3
in this case A23(Tp2)  A23(T2) = Ao23. We can

estimate A 230. with the help of eq. (27) for the given
value of the A23. For the coupling constant Â = 0.2
and OT2 = 39 K we obtain

which is close to our theoretical estimation of Af3’
The A 14 parameter value from the set a is not very
different from the theoretical estimate for the case
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Table VI. - Sets of interaction parameters which
were used in the numerical calculations. Set a is the
best fit, sets b and c are for illustrative purposes. The
unrenormalized transition temperatures, order para-
meter amplitudes and the specific heat jump at 53 K
are also listed.

(*) Corresponding to unrenormalized values A 4 N 0.38 and
A23 - 0.97 as explained in the text (see eq. (27)).

(**) To be compared with the expérimental value [3]

of the chain integration (see Table IV). The renor-
malization of the Tpl temperature is not as large as
in the previous case (OTp1 - 20 K) and we obtain
for the same Â = 0.2

Thus the libron-CDW parameters from the set a

are in good agreement with the theoretical estimate.
As was discussed at the end of the previous section,

it is rather difficult to obtain a precise theoretical
estimate of the CDW-CDW interaction parameters.

In fact, the first (N-S) model and the second (the
unscreened all pairs interactions) model give the

lower and upper bound, respectively. The value A 12
appearing in the set a (Table VI) falls in between
these two estimates.
The temperature dependence of the order para-

meters, the transverse qa wave vector and the specific
heat anomaly ACp are shown in the figures 2a, 3a,
4 and 5a and were discussed in section 2. 
As was mentioned in section 2 it was not possible

to reproduce the maximum of the heat capacity
at 46 K, for the parameters of the set a it appears at
a certain temperature below 38 K. The smallness of
the jump AC(T p2) at the second phase transition is
due to the proximity of the two transition tempe-

ratures as was already explained in section 5. It is

important to investigate if it is possible to obtain
both the maximum at 46 K, the experimental values
of the jumps ACp and the qa(T) dependence simul-
taneously in the frame of the LFEF, eq. (1). Because
all the CP(T) behaviour depends upon the renorma-
lization of the phase transition temperatures it is

better to postpone this investigation until the interac-
tion in the c*-direction will be included. Of course,
additional experimental measurements of the Cp(T )
are very desirable.
We have also solved the LFEF for illustrative pur-

poses for another two sets of interaction parameters.
These two sets and some results are listed in table VI

(column b and c), and the corresponding graphs
appear in figures 2b and c, 3b and c, 4 and Sb and c.
The set b consists of large interaction parameters
while the set c consists of small ones. Both fit the

temperature dependence of the transverse period.
The set b is characterized by large transition tempe-
rature renormalizations which enhance the specific
heat jump at 53 K and diminish the pF/pQ ratio

(see eqs. (6a and b)). Rather large libronic amplitudes
are obtained. The set c shows the effects of smaller
interaction parameters.
The LFEF was also solved in terms of the DCI

model alone (i.e. the CDW-libron interaction para-
meters A14 and A23 were taken equal to zero). Our
results showed that if a12 were chosen to be half of
the estimated value summing over all the possible
pairs (a12 = 10 meV) and the direct interaction
between similar chains were the same as calculated

(see Table V) then the temperature dependence of
the transverse period could be fitted. This set of

parameters is equivalent to the above mentioned
set b in the sense of the correspondence relations of

eq. (5a) and eq. (5b) i.e. 2 A 11 [a] = 0.16 meVeq 5a and eq (5b) A11[a]=o.16 (10- 2 Â)2
plays the same role as A 214/A44 = 0.17 meV inplays the same role as A241/A44 = 0.17 (10- 2A )  2
in the set b and analogously for

The difference between the DCI model solution and
the CDW-libron solution (set b) appears in the
unrenormalized transition temperature Tl which is

larger in the former because only

enters in the renormalization eq. (5a). Therefore, the
specific heat jump in the DCI model (ACp = 0.5 kB)
is closer to the experimental value than that obtained
in set b.
To complete this discussion we show in figures 6a

and 6b the contour lines and the three dimensional
view of the CDW-libron LFEF with the best set of
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Fig. 6. - The LFEF of eq. (1) with the parameters of the set a
as function of PF and u = cos (qa al2) for T = 35 K and

a) Contour lines graph. The energy levels are shown in meV.

b) Three dimensional view.

parameters (Table VIa) at a temperature T= 40 K.
We feel that figure 6a and 6b deserve some detailed
considerations. When we go along the line PF = 0
the free energy has a minimum at u = 0 (qa=2 n/2 a),
i.e., a 2 a period. Similarly, when we go along the
u = 0 line the free energy has a minimum at PF = 0.

Therefore, it is frequently argued that this is a theore-
tical proof that the point u = PF = 0 is a minimum
of the free energy and explains the experimental
observation of this state in the temperature range
48 K-53 K. Inspection of figures 6a and 6b shows
that this proof is fortuitous. The point u = 0, PF = 0
is a saddle-point of the free energy and for a diagonal
line it is maximum.
From the present numerical estimates it is not

possible to decide unambiguously whether the CDW-

libron or the DCI mechanism or both are responsible
for the 3d ordering. But the screening effects (dielec-
tric constant of the material) diminish the next

nearest chain interaction parameters A 11[a] and A 22 [a]
significantly.
The nearest chain interaction parameters A 14, A 2 3

and A 12 are not influenced by the screening very
much. Thus when screening effects upon the All[a]
and A12[a] parameters are significant, only the CDW-
libron mechanism can provide the coupling which
drives the 3d ordering in TTF-TCNQ.

However, the main différence between the CDW-
libron and the DCI model manifests itself in the

pressure dependence, since A33, A44 increase rapidly
under pressure, while Aii[a], i = 1,2 should not be
strongly pressure dependent. This point will be
elaborated in a subsequent publication.

6. The possible phase diagrams for TTF-TCNQ
systems. Lifshitz points. - To obtain a theoretical
phase diagram from first principles, the T, P depen-
dence of the parameters of the LFEF must be known
in detail. At this stage, we discuss qualitatively some
possibilities for the phase diagram in the T-P plane
(or in a T-external parameter plane). Somewhat

analogous phases (without the libronic order para-
meter) were already mentioned by Bjelis and Bari-
sic [15]. The complexity of the observed phase dia-
gram [7, 8, 45] is probably a result of the complicated
pressure variation of several terms in the LFEF. At
this preliminary stage, we discuss an idealized situa-

Fig. 7. - Two possible phase diagram of the decoupled (PQ XF)
and (PF XQ) subsystems. a) Divergent transition lines. b) Conver-
gent transition lines with quadruple point.



693

tion, where only one or two terms in the LFEF are
varied arbitrarily. 

In the case when A12/(A 214/A44)  1 it is natural
to start from the decoupled subsystems (Pq XF) and
(PF XQ) (see section 2). If A 12 = 0 we would expect
two topological distinct cases. In one case, the Tpl(P)
and T,2(P) lines are divergent (see Fig. 7a). In the
second case (Fig. 7b) there is a crossing point,
Tpl = T,2, where the disordered and three ordered
phases coexist. According to the Gibbs phase rule [46]
r  2 + f at equilibrium where r is the number of
the phases and f is the number of the components.
For TTF-TCNQ, f = 1, so the quadruple point
violates the Gibbs phase rule. In reality, a coupling
between the two subsystems (through A12 # 0 in
our case) splits the quadrupole point into two triple
points. Two topologically different possibilities for
this splitting are shown in figures 8a and 8b. In

figure 8a, the AB line which *divides the disordered
phase and the completely ordered phase III is a Â line
of second order phase transition points. The A’B’
lines in figure 8b dividing the (PQ XF) and (PF xQ)
phases must be a first order transition line because
of the different, symmetry of these two phases.

Fig. 8. - Two possibilities for the quadruple point, figure 9b
being split by a weak inter-subsystem coupling. a) Attractive
renormalization. b) Repulsive renormalization.

In the region of the phase diagram where T,2 &#x3E; Tpl
(the (PF XQ) phase) we can use eqs. (4)-(8) by changing
index 1 for 2. It is obvious that phase I (see Fig. 8a)
may appear when

and phase II may appear only if

where W is given by eq. (8c).
It is clear that the inter-subsystem interaction

renormalizes the second transition temperature
towards the first as is shown in figure 8a. So we are
now in the position to argue, that for our model

(eq. (1)), only the phase diagram of the type shown
in figure 8a is possible. Indeed, for obtaining the
diagram of figure 8b from the diagram of figure 7b
one needs a negative inter-subsystem renormalization
(for instance, in the Tpi &#x3E; T,2 case one needs

Tp2 = T2 + AT2 - 1 AT2’ I). It is possible to obtain
such renormalization if a term like C1122(u) P2Q P2F
with Cl122(U) &#x3E; 0 is included in eq. (1). But at the
quadruple point all the order parameters are zero
and therefore the renormalization of the transition

temperature by the biquadratic term is negligible
in the vicinity of the quadruple point. So a splitting
of the quadruple point into two multi-critical points
A’ and B’ (as in figure 8b) is unlikely.
As was mentioned in section 2 (eq. (9)) a fourth

phase is possible for u = 1 (XQ = Xf = 0, PQ PF =1= 0).
The line dividing regions of phase III and this new
phase IV may intercept the AB line of figure 8a at
two new multi-critical points C and D (see Fig. 10).
Because phase III is a phase with no commensurate
transverse period, the four multi-critical points A,
B, C and D can be identified as of Lifshitz type which
were introduced by Homreich et al. [24] in connection
with magnetic systems. We note that point A (Fig. 8a)
is consistent with the group theoretical considerations
of E. Abrahams and I. Dzyaloshinskii [17].

It is interesting to note that in the vicinity of the
Lifschitz point A the quadratic (Tp2 - T)2 contri-
bution is essential in p2 . This may be seen from
eq. (7b) where the renormalization AC22 of the fourth-
order constant in eq. (1) becomes very large near
the point A (p2 Q (T p2) &#x3E; 0 when Tp2 --&#x3E; Tpl).
Concerning the first uncoupled case (Fig. 7a), we

may expect here several possibilities when the inter-
action A 12 is switched on. In the first one, the strong
renormalization of the T2 temperature leads to the
monotonic increase of Tp2 with the external para-
meter (say, pressure) so that the Lifshitz point is
reached (Fig. 9a). The other alternative is the fall of
the Tp2(P) line. In this case, the Lifshitz point also
may be reached after the initial divergence of the Tp 1
and Tp2 lines (see Fig. 9b). Theoretically, the renor-
malization may be so weak that the topological
character of the picture, figure 7a will not change.
To illustrate the general picture we present in

figure 10 the numerical calculations of Tpl and Tp2
as function of the difference (T2 - Tl) for a highly
idealized case when Ti (i = 1, 2) were changed only
in the differences (T - Ti) to which the parameters Au
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Fig. 9. - Two possible phase diagrams of the coupled (pQ xF)
and (PF XQ) subsystems which follow from the divergent case,

figure 9a. a) Strong attractive renormalization. b) Crossover from
the pronounced divergent regime to the convergent one.

Fig. 10. - The illustrative phase diagram of the TTF-TCNQ-like
systems. The full lines are the second order transition lines dividing
the following phases : I-(PQ XF) phase, II-(PF xQ) phase, III-

(PQ XF PF XQ) phase, IV-(PQ pF) phase with u = 1, X = 0. The
broken lines correspond to constant transverse period (Â = 2 n/qa).

are proportional, and the other parameters were kept
fixed. Figure 11 presents another phase diagram in
which only the inter-subsystem interaction parameter
is changed and the rest of the parameters are the
same as those listed in table I. In this graph two
Lifshitz points appear.
Retuming to the P-T phase diagram, we note that

extensive experimental work on the phase diagram
of TTF-TCNQ under pressure has been carried out

Fig. 11. - The two high temperature transition temperatures of
TTF-TCNQ as function of A 12 showing two Lifshitz points.

in Orsay [7, 8, 45]. The phase diagram is found to be
rather complicated. The upper transition tempera-
ture Tpl (the Peierls transition of the TCNQ stack)
increases with pressure from 53 K, at first slowly
(0.7 K per kbar), and around 20 kbar there is a

sharp maximum of about 70 K, followed by a drop,
and than a plateau at about 65 K. The second tran-
sition temperature Tp2 (the Peierls transition of the
TTF stack) seems to fall rapidly at low pressures, as
manifested by a rather low resistivity, which is only
weakly temperature dependent (see figure 2 ofRef. [45],
and figure 1 of Ref. [8] for example). At 15 kbar,
and above, there seems to be only one transition, so
that Tp2 must have risen sharply with P in this region.
There is a first order transition at 38 K [8, 12] which
falls rapidly with pressure (about 1 K per kbar [7]).

Since all parameters of the LFEF can be expected
to be pressure dependent, this rather complicated
behaviour is not surprising. At this stage, we do not
attempt a quantitative calculation, mainly since the
parameters

have not yet been calculated, and they seem to be
essential for a quantitative calculation. However, we
can point out at this stage that a particularly strong
pressure dependence is expected for A33 and A44
(- d In A33/d In b z 21 for a Lennard Jones poten-
tial [47]). The pressure variation of A44 is expected
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to be even stronger, since the TTF il-libration at

40 cm-1 is particulary soft. This frequency is deter-
mined from the Debye-Waller factor [22], which
shows also that the analogous mode in TCNQ is
much harder ( - 60 cm-1). Raman effect measure-
ments by Kuzmany and Stoltz [48] verify the presence
of modes at these frequencies in TTF-TCNQ. Measu-
rements of the Bordeaux group show that in the

analogous compounds TTTF-TCNQ [49], HMTTF-
TCNQ [50] and HMTSF-TCNQ [51], the donor

il-libration is much harder ( N 60 cm-1).
Also, A 12[a/2] is expected to increase rapidly with

pressure, because of the change in charge transfer [52],
and the vanishing of this term for a charge transfer
of approximately 0.5. Thus, at 20 kbar, where the
charge transfer increases from 0.59 to 0.66 [45],
A 12[a/2] may increase by a factor of 2 or so, while’
A2414/A44, Af3jA33 may be expected to decrease by a
factor of 2 or so. A 11 [a] and A22[a] should be much
less affected, since they do not depend critically upon
the charge transfer. Since the 2 a period, and the
existence of two separate phase transitions, depend
on A 214/A 44 to overwhelm A 12, this condition no

longer exists above 15 kbar, and therefore, only one
transition (possible with qa = 0) should be present in
agreement with experiment. According to our previous
discussion it is plausible that the transition from

the qa = nla, separate Tpl and Tp2 state, proceeds
via two Lifschitz points. However, a quantitative
calculation has yet to be carried out. The commen-

surability term proposed by Friend et al. [45],
increasing Tpl and giving rise to a first order transi-
tion there, must also be included.

7. Discussion. - We have shown here that because
of the large number of parameters in the LFEF,
symmetry considerations alone are not sufficient to
determine the phase transitions since virtually an
infinite range of possibilities exists. Therefore, ab-
initio calculations of the parameters of the LFEF are
essential for an understanding of the phase transi-
tions of TTF-TCNQ.
We demonstrated that there is ground to believe

that Coulomb coupling between CDW’s cannot

account for the two successive transitions at 48 K
and 53 K, while the CDW-libron coupling accounts
immediately for the existence of the two separate
transitions, and the temperature dependence of the
transverse period.
The crucial point in the CDW-libron model is the

existence of the libron order parameters x. Our
estimations give for T - 38 K, XF - 0.34 deg. and
XQ = 0.17 deg. The question arises about the experi-
mental evidence for such rotations. We note that in
the TTFS-I7 salt Johnson and Watson [37] detected
rotations with an amplitude of the order of x - 50.
The reason why in the scattering experiments up to

date these rotations were not detected lies partially
in the smaller value of x in TTF-TCNQ in compa-
rison with TTF7-I-I5 , also the measurements on

TTF7-I5 involved intensity measurements of a few
thousand Bragg spots ; no such detailed work has
been done on TTF-TCNQ. The careful search for
the libron order parameter in TTF-TCNQ is very
desirable.
The CDW-libron model predicts various possible

phases; one disordered phase, and four ordered

phases : PQ xF; PF xQ PQ XF OP xF PF, PQ, XF = XQ = 0.
The realization of these phases depends upon the
values of the LFEF parameters. It is interesting to
note that it is possible to influence these parameters
not only by external pressure but also by chemical
substitutions (i.e. replacing S by Se).
The TTF-TCNQ system may be an appropriate

system for the realization of the Lifshitz point. This
is interesting because the critical behaviour near this
point is peculiar.
We note also the interesting behaviour of Cp near

the second phase transition (see Fig. 5). The maximum
of the CP(T) curve is due to the A 12-interaction. Its
realization is due to the closeness of the two succes-
sive phase transitions. This CP(T) behaviour exists
also in the frame of the CDI model.
We developed here a method for estimating the

various interaction parameters. This method may be
easily generalized for more realistic wave functions
of a TCNQ(TTF) molecule.
The present work is a first step of an ab-initio cal-

culation of the phase transitions in TTF-TCNQ and
analogous systems. Further work must include :

1) Calculation of the interaction parameters in the
c*-direction, and perhaps the [101] direction [19, 53] (1).

2) Calculation of fourth-order terms ; in particular,
the term C34 xQ2 xF2 which is responsible for the first
order transition at 38 K, the locking to the 4 a period,
and the peculiar properties of the state below 38 K.

3) Calculations of the interaction parameters in
more realistic models to account for various screening
effects, polarizability of molecules, etc.

4) The redistribution in charge of the molecules
brought about by the translations and rotations. This
redistribution changes the electron-phonon coupling
constants considerably. Also, non-rigid distortions

(intra-molecular phonons) must be considered.

5) The variation of the various parameters with
volume, that should account for the rather compli-
cated phase diagram observed.

6) The microscopic theory of the Peierls transi-

(’) Recent calculations show that the interaction between similar
chains in the c* direction is strong (all(cl2), a22(cl2) - 50 meV).
This interaction should be responsible for the decreasing of the
fluctuations and the restoring of the mean field transition tempe-
rature.
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tion, for the case when several phonons go soft

simultaneously.
7) The effect of electron hopping between the

chains on the various parameters.

8) The effect of the finite lifetime of thé’electronic
states on the various parameters.

APPENDIX 1

Calculation of the A 14 interaction parameter. -
The one electron tight-binding TCNQ chain wave
function

is built of the molecular wave function which we

approximate by the LCAO w.f.

where 03C8i(r - Rni) is the atomic wave function of
atom i belonging to the n-th TCNQ molecule.

Substituting eq. (A .1 ) and (A. 2) into eq. (25) we
get

where aV(r) I5XF is the potential change due to a
XF

libration 03B4XF of one TTF’O-" molecule. When the
net charge distribution on the TTF+o.6 molecule is
taken in the form e 03A3 Zj 03B4(r - Rj) we obtain

j

where zj is the net charge (in units of the electron
charge e) of the j-th atom of the TTP+O.6 molecule
and Rij is the distance between the i and j atoms. If
we neglect the spread of the charge around the

atoms (03C4i(r - Rni) = 03B4(r - Rnl)) then

The summation over n can be broken into four
summations over the four bridges shown in figure 12.
For the first bridge (see Fig. 12)

Fig. 12. - The interaction bridges for the nearest neighbours
chains.

where

where 03BE0, n°, 03BE° are the coordinates of the corres-
ponding atom in the coordinate system of the mole-

Fig. 13. - Net charge on each atom of the TTF(TTF+) and
TCNQ(TCNQ-) from reference [25]. These values were used in
the calculations of the charge densities listed in table II.
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cule (see Fig. lb). For the other three bridges we
obtain

Performing in eq. (A. 5) the summation over the four
interaction bridges we obtain

The nearest neighbour approximation is obtained
when only p = 1 is taken (the p = 0 contribution is
zero because of the symmetry of the configuration as
can be seen in eq. (A. 9)). To perform the summation
in eq. (A. 9) we write the derivatives from eq. (A. 6)
in the form (for simplicity, we omit the indices i, j)

where

and use the integral representation

where Kn(x) is the modified Bessel function of the n-th order with the asymptotic behaviour

For n = 0 this representation was used by Saub, Barisic and Friedel [54]. After some calculations we obtain
from eq. (A. 10) and eq. (A. 12) that

where = 2b1t n is a reciprocal lattice vector. The

substitution of (A. 13) into eq. (A. 9) gives the final
result for the M14(q) matrix element. The series

converges very fast, and two terms are sufficient. The
geometrical factors, A, B, dl and 8 depends upon
the tilting angles and coordinates ÇO, il’, C’ of corres-
ponding atoms.

In the second model where all the pair interactions
between atoms of the TTF and TCNQ molecules are
taken into account in the summation of eq. (A. 5), a
total of 20 x 14 pair interactions must be calculated.
All of these calculations were performed with the
help of the computer.

APPENDIX II

A. Calculation of the A 12-parameter. - 1. The
contribution to A 12 from the interference effect is
obtained from eq. (31). The calculation of this contri-
bution is the same as in the previous case of the A 14-

parameter. Instead of oRiJ 1/axF now appears the
derivative oRiJ- 1/ ap. The latter has the same form as
eq. (A. 10), only the parameters A and B of eq. (A. 10)
will be different. The results of calculation are given
in table IV. Some matrix elements calculated in the
NN approximation are listed in table III.

2. The CDW-CDW contribution to the A 12 para-
meter is the sum of the Coulomb interaction between

corresponding pairs of CDW’s on the TCNQ and
TTF stacks. The charge distribution in a chain is

supposed to be

where ci is the LCAO coefficient of the molecular
wave function, v is the charge transfer (v = 0.6) and
Rni is the position of the i-th atom in the n-th molecule.
In the presence of a CDW this charge distribution is
modulated :
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Eq. (A. 15) defines the discrete CDW model with the
assumption that the amplitude x and the phase ç is
the same for each atom of the molecule. This equa-

tion defines K as the CDW amplitude relative to the
average charge transfer. The CDW-CDW interaction
energy per cell is equal to

Using eq. (A. 12) for n = 0 we transform eq. (A 16) into a sum over the reciprocal lattice wave numbers [54].
After summation over four interaction bridges, we obtain in full analogy with the above described A 14 calcula-
tion that the CDW-CDW interaction energy per (cell) between neighbouring TCNQ and TTF stacks is equal to :

where

cos Q 12 = - 1 in eq. (A. 17) according to the mini-
mum conditions for the free energy.
The first (gn = 0) term in eq. (A .18) gives the

quasi continous CDW approximation where the dis-
crete stacks of molecules are replaced by continuous
threads passing through each atom of the molecules.
Additional terms contribute about 25 % of the total
value depending on the value of dl. For d &#x3E; 6 À
terms other than the first can be neglected.

B. Calculation of the next nearest neighbour inter-
action parameters. - The CDW-CDW interaction
between similar chains was calculated in the same

manner as in the NN CDW-CDW interaction.
For example, the TCNQ-TCNQ interaction is

where i and j refer to atoms in a pair of neighbouring
TCNQ stacks. Terms with gn other than zero were
neglected due to the large distances between similar
chains. The values of a12, a 11 (a) and a22(a) are listed
in table V.
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