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Résumé. 2014 La théorie hydrodynamique unifiée, non linéaire réversible des cristaux liquides nématiques, des
cristaux, des smectiques A, des cholestériques et des smectiques C est présentée.
A côté des contributions convectives qui sont attendues mais néanmoins nouvelles, des termes non linéaires
sont obtenus dans le tenseur des contraintes et dans l’equation pour les variables hydrodynamiques qui carac-
térisent les symétries dérangées.
Un bref résumé est donné pour les nématiques. Les résultats sont conformes avec les théories données plus tôt.
Après cela nous discutons le cas des cristaux. Après les smectiques A, nous recherchons les termes qui décrivent
les rotations du directeur. L’influence d’un champ magnétique extérieur est discutée aussi. Le traitement hydro-
dynamique des cholestériques est décrit en insistant sur les différences entre les cristaux liquides smectiques A
et les cholestériques respectivement.
Finalement la théorie hydrodynamique non linéaire des smectiques C est donnée. Les équations montrent des
contributions non lineaircs nombreuses reflétant les symétries brisées différentes des smectiques C et l’interaction
entre elles. Comme un fait remarquable la dépendance de ces coefficients non linéaires sur toutes les quantités
scalaires qui sont présentes dans les smectiques C est établie, Ceci a été fait également pour les autres systèmes
présentés, mais ceux-ci possèdent moins de quantités scalaires ce qui montre encore une fois le rôle spécial joué
par les smectiques C comme un système biaxial. 
Pour une application de la théorie présentée sur des problèmes spécifiques il est, naturellement, nécessaire d’ajouter
des contributions irréversibles, calculées par exemple par Martin, Parodi, Pershan, de Gennes, Moritz et Franklin
aux équations hydrodynamiques non linéaires revcrsibles.

Abstract. 2014 The unified nonlinear reversible hydrodynamics of nematics, crystals, smectics A, cholesterics and
smectics C is presented.
Besides the expected but nonetheless new convective terms, additional nonlinear contributions are obtained in
the stress tensor and in the equation for the hydrodynamic variables characterizing the broken symmetries.
A brief section treats nematic liquid crystals. The results found are in agreement with previously derived theories.
Then we discuss crystals. Next smectics A are considered including the examination of terms which describe rota-
tions of the director. The influence of an external magnetic field is discussed as well. The hydrodynamic treatment
of cholesterics is described, where special emphasis is laid on the investigation of the differences between smectics A
and cholesterics.

Finally the nonlinear hydrodynamics of smectics C is given. The equations show numerous nonlinear contribu-
tions reflecting the different broken symmetries of smectics C and the interplay between them. As a quite remar-
kable fact the dependence of these nonlinear coefficients on all scalar quantities present in smectics C is established.
This has been done for the other presented systems as well but those have less scalars illustrating once more the
special role played by smectics C as a biaxial system.
In order to apply the presented theory to specific problems it is, of course, necessary to supplement the nonlinear
reversible hydrodynamic equations by irreversible contributions derived e.g. by Martin, Parodi and Pershan ;
de Gennes; Moritz and Franklin.
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1. Introduction. - During the last years there has
been an increasing interest from the experimental [1-6]
as well as from the theoretical groups [7-14] in the
study of hydrodynamic instabilities in liquid crystals,

especially in nematics but more recently also in
smectics A and cholesterics.

Up to now the theoretical treatments of the several
instabilities in liquid crystals (convective instabilities
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under the influence of electric fields, magnetic fields,
shear torques and thermal gradients) have mainly
dealt with the discussion of the linear regime far
below the critical point. Therefore it was sufficient
to use the linearized hydrodynamic equations for the
description of the dynamic behaviour of the systems
under investigation [8, 11, 15, 16]. The linearized

phenomenological hydrodynamics of nematics [17,
18], smectics A [19, 20], smectics C [19], cholesterics [21,
22], crystals and solids [19, 23, 24-26] has been given
previously. (For a discussion of linearized hydro-
dynamics in terms of correlation functions applied
to simple fluids and nematics compare refs. [27-29].)

In addition to these rigorous hydrodynamic appro-
aches to the study of liquid crystals and other system
there also exist continuum type theories for liquid
crystals [15, 30-35] which deal with more variables
thus containing nonhydrodynamic contributions, and
it were mainly these theories which have been applied
to the study of hydrodynamic instabilities in liquid
crystals up to now.

If one is interested in the nonlinear dynamics of
hydrodynamic instabilities one has to use the fully
nonlinear hydrodynamic equations as is well known
from the study of the Benard and Taylor instabili-
ties [36-43] occurring in simple fluids. In this case
the relevant hydrodynamic equations are the Navier
Stokes equations supplemented by an equation for
the temperature. It is familiar from the study of these
systems that the nonlinear reversible terms in the

equations are crucial for the understanding of the
dynamical properties near the threshold of the insta-
bility. The nonlinear irreversible terms are less impor-
tant and can be neglected without harm (for a discus-
sion of this point for the Benard instability cf. e.g.
ref. [44]).

In the case of liquid crystals the situation is more
complicated. Up to now it seems to be an open ques-
tion which nonlinear terms are the most important
ones near the threshold of hydrodynamic instabilities.
This question has to be discussed for each instability,
separately.

Because the condition of vanishing entropy pro-
duction (for the reversible terms) is much more strin-
gent than the requirement of positivity of the entropy
production (for the irreversible terms) it is less diffi-
cult to set up a systematic approach for the reversible
nonlinearities.

Concerning the nonlinear irreversible terms in

liquid crystals it should be noted that there occur e.g.
for nematics, besides the director dependent viscosi-
ties and thermal conductivities [15], numerous addi-
tional terms (compare ref. [45]).

Therefore we focus our attention in the present
paper on a study of the nonlinear reversible terms in
the hydrodynamic equations of liquid crystals.
A second motivation for the present work is a

genuine interest in the formulation of the nonlinear
hydrodynamics for ordered systems (systems with

broken symmetries). The present study is to our

knowledge the first attempt to give a nonlinear for-
mulation of the complete reversible hydrodynamics
of liquid crystals (except for the case of nematics
where theories have already been given).
The paper is organized as follows :
In paragraph 2 we describe the derivation of the

nonlinear reversible hydrodynamics of ordered sys-
tems. The hydrodynamic method reviewed there
is based on refs. [46, 47, 27, 48]. In the next para-
graph we present the application of the general
theory to the nonlinear reversible hydrodynamics of
nematics (3.1), solids (3.2), smectics A (3.3), chole-
sterics (3.4) and smectics C (3.5).

2. Phenomenological hydrodynamics. - 2.1
HYDRODYNAMIC REGIME. - It is the aim of hydro-
dynamics to give the time evolution of variables
which vary on time scales where many collisions
take place. If i denotes a characteristic time for micro-
scopic interactions, the hydrodynamic regime is confin-
ed to frequencies (M satisfying the condition wT  1.

Or to phrase it differently : any disturbance which
maintains local thermodynamic equilibrium must

have temporal variations which are slowly on a scale
of i.

Similar arguments apply to the consideration of
spatial variations. If I is a characteristic microscopic
length the wave number k of the hydrodynamic
excitations must satisfy kl  1. This condition may
yield a rather stringent restriction on the region of
validity of hydrodynamics. For cholesteric liquid
crystals, e.g. the pitch 2 nqo ’ is usually of the order
of 5 000 A, and has to be considered as a microscopic
length. Thus the wavelength of any hydrodynamic
excitation must be much greater, which implies for
example that light scattering experiments have to be
carried out in cholesteric liquid crystals in the IR
if one wishes to deal with the hydrodynamic regime.
For the other hydrodynamic systems to be discussed
here the restrictions on the hydrodynamic regime are
less stringent.

In the case of smectics A, e.g., we find a spacing of
the smectic layers of the order of 10 A and therefore
it is possible to carry out light scattering experiments
in smectics in the hydrodynamic regime in the visible
region of the spectrum.

2.2 HYDRODYNAMIC VARIABLES. - The first pro-
blem we have to face when we formulate the hydro-
dynamic equations for a given system is the determi-
nation of the hydrodynamic variables, i.e. we have to
find out those variables having variations that are
slow in time and space. First of all there are local
densities of conserved quantities. The temporal evo-
lution of these densities is given by local conservation
laws which follow from the continuous symmetries
of any nonrelativistic system. These are the most
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familiar hydrodynamic variables : density p, energy c,
momentum density g.

Following Martin, Parodi, Pershan [19] g is the
total momentum density and not only the momentum
density associated with the centre of mass. Theories
of liquid crystals distinguishing between momentum
due to rotation about the centre of mass and momen-
tum due to centre of mass motion would require the
introduction of additional variables and an additional
equation of motion for an angular-momentum type
quantity. But such a treatment inevitably yields modes
which decay in microscopic times and therefore it is
not possible to justify the inclusion of these additional
variables in a purely hydrodynamic theory.

In addition to the variables discussed up to now
there is another class of hydrodynamic variables

occurring in systems with spontaneously broken
continuous symmetries.

In such systems there exist variables { xa } describ-
ing the broken symmetries, for example in nematics
{xa} = n, the director, or in antiferromagnets
{xa} = N, the staggered magnetization. Since homo-
geneous changes of these additional variables cause no

restoring forces, gradients { xa} will enter the free

energy F. Their restoring forces ðF/ðViXX’ will tend
to zero with wave number k, leading to hydrodyna-
mic, long wavelength and low frequency excita-

tions [21, 29]. For a free energy of the form

which depends explicitly on { xa }, e.g. the Frank
free energy for nematics, not only dVix(X, but also
dxa changes the free energy. The restoring force on
the latter, however, tends to zero with k2 and is
nonlinear in {Vix(X}. In the following we will take
into account both types of energy changes. There is
even the possibility that higher order derivatives of
{ x(X} (Vi Vj,-e) have an influence on the dynamics.

2.3 FUNDAMENTAL RELATION. - The hydrodyna-
mic description is based on the assumption of local
thermodynamic equilibrium. Therefore, we can apply
conventional thermodynamics, locally. Choosing the
energy density G as a thermodynamic potential we
have

where V is the volume and Vix’ is assumed to be an intensive variable (i.e. a mass density not a volume density).
Latin indices characterize vector and tensor components, while greek indices denote the various spontaneously
broken symmetries of the system. Summation over repeated indices is always implied if not states otherwise.
With the help of Euler’s relation we obtain for bulk hydrodynamics

and

It should be noted that the observables in eq. (2.2) vary in space and time. The changes d... refer to distinct
points in space and time (x(t), t). If specialized to temporal changes, d... is, therefore, the material derivative
d/dt = ajat + vk Vk-

The thermodynamic conjugates or generalized forces are given by

where Vi, h" tend to zero in the homogeneous limit;
they are derived from the same gradient energy (cf.
the last section).

If { y" } is an extensive variable, the chemical

potential is replaced by 

in (2.2) and the pressure is given by

The Gibbs relation (2.2) is the fundamental starting
point of all hydrodynamic theories.
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2.4 EQUATIONS OF MOTION. - The equations of
motion for the conserved quantities can be written
in the form

or

As it is obvious from the structure of these equations
the terms which are already present in simple fluids
have been split off and Galilei invariance has been
taken into account explicitly (gi = pVi for liquid
crystals and crystals).

For the variables characterizing the broken sym-
metries the dynamic equations read (1), (2)

or

Eqs. (2.6) or eqs. (2.7), respectively, are not inde-
pendent of each other, but they are connected by the
Gibbs relation (2.2). The currents qi, ji-’, aii and Zx
and the dissipation function R (which acts as a

source term) consist in the most general case of rever-
sible as well as irreversible and linear as well as non-
linear contributions.

Because the quantities qi, jf, aij and Za contain
the terms which account for the { xa } and thus reflect
the symmetries of the specific hydrodynamic system
under consideration they cannot be considered for
all materials simultaneously. Therefore we must

discuss the explicit structure of qi, ji8, aij and Za
for each system separately. Nevertheless the currents
have to satisfy a number of constraints which will
be discussed in the next section.

2. 5 CONSTRAINTS ON THE CURRENTS. - In general
the additional terms appearing in eqs. (2.6), (2.8)
will be connected with phenomenological parameters
(reversible and irreversible transport parameters),
which are subject to the following constaints on the
possible structure of the currents :

i) Entering the Gibbs relation (2.2) with eqs. (2.6) and (2.8) we obtain

where

In the reversible case eq. (2. 9) simplifies further

where

the superscript R denotes the reversible part of the corresponding currents.

ii) In the equations for the conserved variables
we have already taken into account Galilei invariance.
Thus the additional currents (Jij and are not allow-
ed to contain terms proportional to v whereas terms
proportional to Vv are still possible. For the equations
of the nonconserved variables Galilei invariance
will be discussed for each hydrodynamic system
separately.

iii) In order to guarantee conservation of angular

(’) One could also obtain d v;x« = - v;z«. However, this

convective term Vk k ViX0152 implies that there are more than a

independent dynamical equations and that Vix’ is not always a gra-

dient field (ðjðt(V x Vx0152) # 0). For both reasonsdVix’ = - viz,
has to be rejected.
e) When dealing with extensive variables { ya } instead of the

intensive ones {xa}, eq. (2.8a) must be replaced by
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momentum locally, the total stress tensor and, thus,
aij must satisfy [49, 19, 50]

with

3. Nonlinear reversible hydrodynamic equations.
- 3.1 NEMATIC LIQUID CRYSTALS. - In this chapter
we rederive concisely the nonlinear reversible hydro-
dynamics of nematic liquid crystals. Although the
results are already well known [15, 16], we present
them here for tutorial reasons and since we can transfer
some of the considerations to our treatment of smec-
tic liquid crystals in the following chapters.
From a macroscopic point of view nematic liquid

crystals are liquids with spontaneously broken rota-
tional invariance. This broken symmetry shows up
in the existence of a preferred axis, whose direction
is described by the unit vector n According to the
discussion in paragraph 2.3, the Gibbs relation (2.2)
takes the form

where øij and hi have to vanish in the homogeneous
limit k ---&#x3E; 0 like k and k2, respectively; higher gra-
dient terms - dVj Vkni can be neglected in nematics.
However, since fi2 = 1, only those 6n; for which

enter the hydrodynamic description. The constraint
(3.2) projects out the components of n, which are
not connected with a broken symmetry. Indeed, the
rotational symmetry is not completely broken, since
rotations about n, which are described by 6iiflk,
are still possible.
By choosing the vector ; for the description of the

nematic state, we lost the fact, that for the preferred
axis head and tail are undistinguishable [15]. Thus,

we have to postulate, that all hydrodynamic equations
are invariant under the transformation

Now we have to specify the yet unknown current Zi
in the hydrodynamic equation for ni

n is even under time reversal as well as under spatial
inversion (parity). With the help of these symmetry
arguments and taking into account the constraints
(3.2) and (3.3) we find the following reversible
contributions to Zi :

with

which is a straightforward generalization of the
linearized expression [29]. Note that the phenome-
nological parameter a may yet be a function of the
scalar variables of the system (e.g. p, 6 or p, T).
As a second term in the expression for Zi we get

with w = 1/2 curl v In linearized theories it is argued,
that fl must be equal to 1, since a rigid rotation of a
nematic sample as a whole is not allowed to contri-
bute to the hydrodynamics of n [15]. The subtraction
of this global rotation is just achieved by fl = 1 (or by
the replacement :t --+ :t - w x in eq. (3. 4) . In non-p Tt i-t 

w

linear theories the result = 1 can strictly be derived
from angular momentum conservation. We proceed,
therefore, in deriving the stress tensor with the para-
meter f3 yet unspecified.

Vanishing entropy production requires counter terms to Zll) and Z!2) in (Jij and jf, which are easily found
by eq. (2 .10) 

The antisymmetric part of (lij must be zero or a total divergence in order to preserve angular momentum (cf.
eq. (2.11)). However

This equality holds since the energy s is rotational invariant, i.e.

for any antisymmetric matrix Oij [15, 16].
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Thus, only fl = 1 fulfills condition (2.11). In conclusion, the reversible currents read

For the irreversible contributions to Zi, (1 ij, it and
qi we refer to existing linear and nonlinear theories [15,
17, 28, 45].
The set of hydrodynamic eqs. (2.6), (3.4) and

(3.8) has to be closed by equations of state linking
the generalized forces with the variables :

and

with

where the partial derivatives are performed while
keeping the appropriate variables of g, p, a, ni and
V jf/ constant. The expression 8 = 1/2 Kijlm(V jni) (Vnl)
corresponds to the well-known Frank free energy and
K1, K2 and K3 are the Frank elastic constants [15, 29].

It should be stressed, that nowhere in the above
derivation of the hydrodynamic equations the director
n was restricted to be constant in equilibrium. Thus,
we may apply equations (3.4) to (3.10) to hydro-
dynamic motions in inhomogeneous textures, as well.

3.2 CRYSTALS. - In this section we will derive
the nonlinear reversible hydrodynamics for a crystal,
which is the simplest example of a system with spon-
taneously broken translational symmetry. We only
specify the occurring tensors (susceptibilites, trans-
port parameters) for the case of isotropic solids ;
a generalization to the various lattice structures is

straightforward. We deal with imperfect solids in the
sense, that in equilibrium it is not required that each
lattice site is occupied by one atom [19].

Translations are described by the Galilei invariant
vector R, which characterizes displacements of the
lattice sites [19, 23, 29]. In solids the translational

invariance in all three space directions is sponta-
neously broken. ,

Then, the Gibbs relation takes the form

where øij = ø ji as can easily be seen from the struc-
ture of the elastic energy.
A translation of the solid as a whole does not contri-

bute to the hydrodynamic motion. Therefore, unlike
R, R is not a Galilei invariant quantity and one arrives
at the following dynamical equation for R

I 
The existence of the term - Vi in the equation of

; motion for Ri has already been discussed by Martin,
Parodi and Pershan. It can also be justified in a

microscopic framework. Using Mori’s projector for-
malism one obtains for the elements of the frequency
matrix coupling Ri and

In the isotropic case on can choose (Xij = bij without
loss of generality (cf. ref. [29] for a detailed discussion
of this point). The phenomenological current Zi
which is determinated by symmetry considerations
(Zi transforms like a velocity) reads

This term can contain Ri (and not VjRi) since it is
not derived from a free energy. Of course, for a

homogeneous translation this term vanishes

(Vi Vj = 0).
Vanishing entropy production requires then (cf.

eq. (2.10))

and

while angular momentum conservation is guaranteed
by (cf. eq. (2.11))

The a-tensor is less symmetric than the elasticity
tensor in Hooke’s law, since (Xijkl =t= (1., jikl in general.
Hence, o.jki will contain, as a rule, more phenomeno-
logical parameters, generally.
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For isotropic solids, however, the tensor CXijkl
contains two independent phenomenological para-
meters CXijkl = (Xl bij bkl + (X2(bikbjl + bil bjk), where
al and a2 are still allowed to be functions of the scalar
variables (p, Q or p, T ; and R2).
The unusual and new nonlinear terms provide a

(reversible) coupling of the linear modes e.g. trans-
verse and longitudinal sound. They allow for instabi-
lities and they will play an import role in the melting
process as well.

Finally, the equations of state close the set of equa-
tions

where the susceptibilities y, ,1" Cv, Xij/d and yg) (v = 1, 2) are, as usual, defined as second partial derivatives of
the energy density. Especially we have

where Xijkl and Vi) are the corresponding susceptibilities of linear elasticity (3), (4). The fact that there occur no
additional phenomenological parameters with the nonlinear contributions is due to the structure of the non-
linear elastic energy.

For isotropic solids yU,2) = y(1,2) ðij and

In general the susceptibility tensor has the same
structure and contains the same number of indepen-
dent phenomenological parameters as the elasticity
tensor, since

1 Eqs. (3.12)-(3.15) and eq. (2 . 6) constitute the com-
plete nonlinear reversible hydrodynamics of imper-
fect crystals to order k2 (1).

3.3 SMECTICS A LIQUID CRYSTALS. - Smectic A

liquid crystals are characterized macroscopically by
a spontaneously broken translational symmetry in
one direction [15]. This preferred direction is denoted
by the unit vector it Consequently, smectics A liquid

(3) The necessity to take into account nonquadratic contribu-
tions in the elastic energy has been pointed out to the authors by
one of the referees.

(4) If one considers in the free energy terms which are cubic
in the strain (e(3) = i jklmn i j Eld emn), one gets further contributions
to Ojj

which are quadratic in OR : Usually the t/Jijklmn are very small and
therefore we refrain from including them.

(5) When expanding the currents and the dynamic equations
in k, the multiplication of the highest order terms (in k) in these
expansions yields contributions which are not systematic. There-
fore the terms proportional k3 in (3.14) must be discarded.

crystals are similar to crystals in the n-direction, and
to ordinary liquids in the plane perpendicular to n

Like in nematics the state of the system is equally
well described by - n instead of n ; thus the hydro-
dynamic equations have to show a n H - n inva-
riance.
The translation is described as in the last chapter by

the displacement of the layers R.
Since the translational invariance is broken only

in the n-direction we have to impose the constraint

Clearly, for a linearized theory the quantity Ei-vjpi
reduces to the usual variable Vix, with x = n.R [19].

i) Smectics A without external fields. - When
orientating effects on n (external fields, walls, etc.)
are absent, the dynamics of smectics A consists of
several contributions. First there are fluctuations of
the layers parallel n which would even be present if
n could be completely fixed, thus leading to øij dVjRi
in the Gibbs relation. Second, the direction of n can
fluctuate as well, i.e. there occur rotations of n
Like in nematics, homogeneous rotations of n do
not change the free energy. Thus the Gibbs relation
contains terms i/Jij dvjni, where Oij is proportional
to V,nk’ However, there is also a term proportional
dni present in the Gibbs relation, since the gradient
energy E, (cf. ref. [51]) of the R’s depends on n lead-
ing to a contribution to de = hi dni with hi depend-
ing on (ViRj) (V,Rm) and vanishing with k2. From
simple geometric considerations one finds

for infinitesimal changes 6n; [15],
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Replacing bnl by gradients of R via this linearized
relation is sufficient to give the terms cubic in ViRj
and quadratic in (Vi VjRk) in the free energy. In the
following n means always its equilibrium value, which
we assume to be constant. Thus the Gibbs relation
can be written 

There is no term proportional to dRi in the Gibbs
relation since the gradient energy depends not on Ri.
Furthermore it should be noticed that in the linearized

theory only gradients,.// i; enter the description because
of the condition

which excludes rotations.

In the nonlinear theory both, rotations and trans-
lations, enter the Gibbs relation.
The thermodynamic force øij splits up into a longi-

tudinal and a transverse (with respect to iÎ) part

For the term dVi VkR¡ it is sufficient to keep only
transverse gradients because longitudinal gradients
are already present to lower order in k ; nonlinearities
would be of even higher order in k.
Thus qlijk can be written

with

The equations of state which express the thermodynamic forces in terms of the variables read

The b’s denote deviations from the equilibrium values. A static linear coupling between 0 and 6p has already
been introduced by de Gennes [15]. 

The equation of motion for R reads

with fld = f 6k] + 12 nk nl where the phenomenological parameters f l, f2 may still depend on the scalar
quantities p, (J or p, T and R 2. Reversibility requires via eq. (2 .10) for the stress tensor

and

The symmetry condition (2 .11 ) for the total stress
tensor and thus for Gij remains to be demonstrated.

There are terms symmetric by construction (e.g.
fij-tenns). Furthermore all t/!ijk-terms together can
be brought into the required form. The remaining part

is symmetric up to order k2, thus guaranteeing angular
momentum conservation for the lowest three orders
in k : :ko,k’ and k2. Higher order terms in k in (Iij
would be symmetrized by higher order terms in k
in the current Zi, which we have discarded, since we
are discussing a hydrodynamic theory.

ii) Influence of a magnetic field. - We will now
discuss the influence of an external, low frequency
and homogeneous magnetic field. As usual [15] the
magnetic field is taken into account perturbatively.
The following considerations are equally valid for an
electric field. The magnetic field couples to the director
via an energy EH = - I Za(H. n)2 [15, 16,29].

There are two possible equilibrium states :

and for and

respectively. In the former case fluctuations bni (with
n, b ni = 0) give rise to energy fluctuations
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This additional contribution to the Gibbs relation
is incorporated into our hydrodynamic equations by
the replacement (l5n = - nk ViRk)

with

In the latter case H -.L n, there are fluctuations 6n;
normal to n and normal to H. They are taken into
account by

The transverse gradients of Ri occur in the same k-
order as the longitudinal gradients (cf. eqs. (3.22),
(3.20)), but are of lower k-order than the transverse
gradients considered in the last section. However,
h7 is proportional to H2.

If H is sufficiently strong and k small enough, hi
of eq. (3.22) (Za &#x3E; 0) can be neglected in comparison
with hq of eq. (3.25); in that case the t/Jijk-contribu-
tions are superfluous as well. Then the equations of
motion are identical to those of section 3.3i) with
the interpretation ø.. = n. n. ø + ni hq.

In the case H 1 n, however, hq of equation (3.26)
(Za  0) contains only transverse gradients with res-
pect to n, which are parallel to H, while hj of eq. (3.22)
contains as well gradients of R, which are transverse
to both, n and H. Hence, hj (and t/Jijk) cannot be neglect-
ed completely even in strong magnetic fields. In addi-
tion the replacement (3.25) is not the only effect of
magnetic fields. The biaxiality leads to a more compli-
cated form of the tensors involved, e.g.

This biaxiality will show up in scattering experi-
ments. In addition, for both cases there is the possi-
bility, that all transport parameters, which are not
explicitly denoted as constants, may depend on n2
and (77..

3.4 CHOLESTERIC LIQUID CRYSTALS. - From a

macroscopic point of view smectics A and cholesterics
are quite similar to each other, since the broken

symmetry is the same in both cases. Indeed, the lineariz-
ed hydrodynamics of smectics A and cholesterics
turned out to be isomorph to the lowest order in k [19].
The rather different range of the hydrodynamic
regime in both systems, however, was already men-
tioned above. In cholesteric liquids the director
n is arranged in a helical structure in such a way, that
n is parallel in each layer, but changes from layer to
layer. The helical axis (pitch axis) p, normal to the
layers, denotes the direction, in which the translational
symmetry is spontaneously broken. Thus, p is the

analogue to n in smectics A.
Because of the close analogy between smectics A

and cholesterics we can take over the Gibbs relation

(3.18) and the equations of state (3.22) and (3.19) [51] 
of smectics A to cholesterics by the simple replace-
ment rc -. p However, there is a difference between
smectics A and cholesterics with respect to the symme-
tries. The mirror symmetry with respect to the

layers in smectics A is not present in cholesterics,
since left and righthanded helices are distinguable
from each other. Therefore, the hydrodynamic equa-
tions of cholesterics have not to show a p H - p
invariance. For the same reason there exists a pseudo-
scalar qo, connected with the equilibrium pitch po
of the helix by qo = 2 npo 1 and defined by

or

[15, 21, 22], where (p is the twist angle (w - qop.r;
r = position vector). The quantity qo is constant,
since the equilibrium pitch is constant. The tempera-
ture and pressure dependence of the non-equilibrium
pitch is contained in our description by the static

coupling between VjRi and 6T and by (cf. eq. (3.22)
with n --. p) via the susceptibilities T2 and y 1 1 respec-
tively.
The lack of this invariance and the existence of qo

allows for certain terms in the hydrodynamic equa-
tions having no analogues in smectics A. In detail
we find

where ZA, 6A (andjfA) are the appropriate expressions
for smectics A (cf. eqs. (3.23), (3.24) with n replaced
by A. The tensors fij and gij are of the axial form
Aij = A (ðij - PiPj) + A2PiPj thus containing four
phenomenological transport coefficients 11’ 12’ g l’

g2, which may still depend on all scalar variables (6, p
or p, T and R 2). In the structure of the tensor fij
we disregard the term f3 Gijk Pk, which is allowed by
symmetry, but violates angular momentum conserva-
tion. The analogous term 93 gijkpk is contained in
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equation (3.27) with g3 = - 1/2 qÕ; this equality
is obtained by the observation, that

describes a hydrodynamic motion only,,if it exceeds
the homogeneous rotation -’ pj pi (curl V)i, which has
therefore, to be subtracted [21].
The phenomenological transport parameter fl is a

constant; this term can be rewritten as

thus, conserving angular momentum. In this term
we have omitted a term of even higher order in

k( flJij  Oij - Vk4fijk)-
It is the only term, which discrimininates between

right and lefthanded helices.
If linearized, eq. (3.27) agrees only in lowest order

in k with Martin, Parodi and Pershan [15] and in
addition with Lubensky [21] with respect to the
curl V term. However, there is a further term, not

vanishing by linearization, namely ’1kl qo pi VKVI which
is of higher order in k than - PiPj Vj, but of the
same order as the curl V-term and the additional,
purely nonlinear terms. While the curl V term couples
R to the shear diffusion [21 ], the gkl-terins contribute
to the first sound spectrum, although in higher order
in k than the Pi Pj Vj-term. In the nonlinear case

(qkl depending on T or p) these gkl-terms cause a
coupling among all modes of the system (including
heat conduction). In the terms containing qo and in
the f3-term of aij the difference between the hydro-
dynamics of smectics A and cholesterics is shown up.
For the influence of an external, static and homo-

geneous magnetic field H we can discriminate bet-
ween two cases :

with

In the former case in equilibrium H/n is favoured,
which destroys the cholesteric phase, since n is not ,
uniform in equilibrium J15]. In the latter case

H .1 n which implies H// p. This corresponds to the
case xa &#x3E; 0 or H//n in smectics A. As was discussed

there, the influence of the magnetic field can be des-
cribed by the replacement

3.5 SMECTIC C LIQUID CRYSTALS. - Smectic C

liquid crystals are, like smectics A, characterized by
the existence of a layer structure. In the direction
normal to the layers, denoted by the unit vector

p, the translational symmetry is spontaneously bro-
ken [19, 15]. The associated hydrodynamic variable
is the displacement vector R, with the constraint

Like in smectics A rotations of p (which is analogue to
n in smectics A) will be expressed by gradients of R.
In the following p always denotes its equilibrium
value, which we assume to be constant.

Smectic C liquid crystals differ, however, from
smectics A, because there the averaged direction of
the axes of the molecules is parallel to the layer normal
p, while in smectics C the axes of the molecules are
arranged parallel to a direction n, which is tilted from
flby a polar angle 0o = cos-1 (n.jJ).
On account of the existence of the second preferred

axis n, rotational symmetry with respect to axes

normal to n is spontaneously broken. But only those
rotations bni enter hydrodynamics, which are normal
to n (like in nematics) and normal to p, since a homo-
geneous rotation of k about ¡ does not change the
energy of the system (there is a degeneracy with respect
to the azimuth angle). Therefore, inhomogeneous
rotations Vjn, (with 0 = pi Vjni) experience a restoring
force vanishing in the homogeneous limit k - 0.

Thus, the additional hydrodynamic variable connect-
ed with the broken rotational symmetry in smectics C

is m under the constraints [19]

The constraints (3.30) guarantee, that the polar
angle 00 is always constant, since fluctuations of 00
are associated with an elastic energy not vanishing
in the homogeneous limit and thus, leading to non-
, hydrodynamic modes.

By the equilibrium structure of smectic C liquid
crystals it is obvious, that only a simultaneous inver-
sion of n and p does not change the configuration.
Thus, all hydrodynamic equations must be invariant
under the simultaneous replacements

and

The Gibbs relation for smectics C can be written (cf. eq. (3.1) and (3.18))

with
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where

The gradient energy up to cubic nonlinearities and up to fourth order gradients in the quadratic terms reads

with

For its linear part (3. 33) agrees with de Gennes [15]. Since 00 is held constant, ni ViRj = 0.
In order to set up the equations of motion we can take over the results obtained for smectics A and for

nematics (under the stronger constraint (3.30)).
In addition, however, we must allow for the biaxiality of smectics C and we must look for terms coupling Ri

and ni directly. Finally we get

with

Comparing eq. (3.34) with the analogous equa-
tions for nematic and smectics A we notice the follow-

ing differences. Because of the constraint pi 6n; = 0
not present in nematics, there occur 61 (instead of
ðkm - nk n,,,) in various terms of eq. (3. 34). For the
solid body rotation term (t x n-), this has the effect,
that only a parallel to p, occurs in the equation of
motion. This is obvious, since in smectics C nk des-
cribes rotations only about p and, therefore, the solid
body rotation only about p has to be subtracted from
ni. The biaxiality of smectics C shows up in the form
of the tensor Ikl(/l = f3 and f4 = 0, for smectics A)
and in the existence of the phenomenological para-
meter a2, which is zero in nematics (al = a, there).
The purely nonlinear terms with the phenomenolo-
gical parameter f5 describe a new, direct dynamical
coupling of Ri and his, i.e. a inhomogeneous coupling
of translational fluctuations along p and rotational

fluctuations about p in the presence of a velocity
v perpendicular to - and to n. It should be noted, that
all seven phenomenological reversible transport para-
meters f l, f2, f3, f4, f5, (Xl’ a2 may still depend on the
scalar variables of the system, i.e. p, T or p, a and , 
R2, and especially on the scalar product n.p.
The yet unspecified part of the stress tensor (J ij is

obtained with the help of eq. (2.10).
By means of the relation

which reflects the fact, that homogeneous rotations
about p do not change the energy, and which is the
analogue to eq. (3.8) in nematics, we can cast (Jij into
a form, required by eq. (2.11).

Finally, (Jij reads
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and

An external magnetic field leads to the occurrence
of the nonhydrodynamic variable ni with pi bni 0 0
and to modes with a gap. In that case other non-

hydrodynamic variables (e.g. 600) would have to be
included. Such a treatment is beyond the aim of the
present work.
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