

Les bandes de différence des molécules tétraédriques. Application : les bandes chaudes 2 ν 4 - ν 4 et ν 2 + ν 4 - ν 2 de 12CH 4

Charles Pierre, G. Pierre, Jean-Paul Champion, J.C. Fontanella, M.

Delplanque

▶ To cite this version:

Charles Pierre, G. Pierre, Jean-Paul Champion, J.C. Fontanella, M. Delplanque. Les bandes de différence des molécules tétraédriques. Application : les bandes chaudes 2 ν 4 - ν 4 et ν 2 + ν 4 - ν 2 de 12CH 4. Journal de Physique, 1980, 41 (5), pp.393-402. 10.1051/jphys:01980004105039300 . jpa-00209259

HAL Id: jpa-00209259 https://hal.science/jpa-00209259

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 33.10 — 33.20E

Les bandes de différence des molécules tétraédriques. Application : les bandes chaudes 2 $\nu_4 - \nu_4$ et $\nu_2 + \nu_4 - \nu_2$ de ¹²CH₄

C. Pierre, G. Pierre, J. P. Champion

Laboratoire de Spectronomie Moléculaire (*) 6, bd Gabriel, 21100 Dijon, France

J. C. Fontanella et M. Delplanque

O.N.E.R.A., 29, avenue de la Division-Leclerc, 92320 Châtillon, France

(Recu le 23 novembre 1979, révisé le 11 janvier, accepté le 28 janvier 1980)

Résumé. — Cet article présente une méthode générale, basée sur le formalisme tensoriel dans le groupe T_d , pour le calcul des bandes de différence des molécules tétraédriques XY₄. Ce travail est appliqué aux bandes 2 $v_4 - v_4$ et $v_2 + v_4 - v_2$ de ¹²CH₄. Dans le cas de la bande 2 $v_4 - v_4$ nous avons également traité le problème dans le formalisme sphérique qui met plus nettement en évidence les règles de sélection. 295 transitions du spectre IR du méthane enregistré à l'O.N.E.R.A. dans la région de 1 216 à 1 355 cm⁻¹ ont été attribuées aux bandes 2 $v_4 - v_4$ ou $v_2 + v_4 - v_2$. Parmi celles-ci 79 concernent le sous-niveau $v_4 = 2$, $l_4 = 0$ (A1). 49 d'entre elles ($J \leq 7$) ont été utilisées pour une nouvelle détermination des paramètres relatifs à ce sous-niveau.

Abstract. — This article presents a general method, based on the tensorial formalism in the T_d group, for the computation of difference bands of tetrahedral XY₄ molecules. This work is applied to the 2 $v_4 - v_4$ and $v_2 + v_4 - v_2$ bands of ${}^{12}CH_4$. In the case of 2 $v_4 - v_4$ we treated also the problem using the spherical formalism which yields more directly the selection rules. 295 transitions of the IR spectrum of methane recorded at O.N.E.R.A. in the region from 1 216 to 1 355 cm⁻¹ have been assigned to the 2 $v_4 - v_4$ and $v_2 + v_4 - v_2$ bands. Among them 79 are concerned with the $v_4 = 2$, $l_4 = 0$ (A1) sub-level. 49 of them ($J \le 7$) have been used in a new determination of the parameters of this sub-level.

1. Introduction. — Les spectres du méthane [1], enregistrés sur un spectromètre à grille de type Girard, comportent un grand nombre de raies non attribuées. Les auteurs [1] suggèrent que ces raies appartiennent soit à la bande v_4 de ${}^{12}CH_4$ (raies *interdites*), soit à la bande chaude $2v_4 - v_4$, soit à des bandes de la molécule H₂O, sans toutefois les attribuer. Les niveaux $v_4 = 1$ et $v_4 = 2$ étant maintenant mieux connus [2-5], une étude permettant de vérifier l'hypothèse précédente (bande chaude $2v_4 - v_4$) était donc possible.

De même dans la région de la bande v_3 du méthane, Toth *et al.* [6, 7] n'attribuent pas un certain nombre de transitions observées qu'ils supposent appartenir, entre autres, aux bandes $v_2 + v_3 - v_2$ et $v_3 + v_4 - v_4$. Seulement certaines transitions de cette dernière bande ont été identifiées par Hunt *et al.* [8] grâce aux résultats de l'analyse de $v_3 + v_4$ par Bobin et Guelachvili [9].

Sur le plan théorique, à notre connaissance, seule la bande chaude $v_3 - v_4$ a été calculée par Pascaud et Dang-Nhu [10] à partir de la connaissance précise des niveaux d'énergie $v_3 = 1$ et $v_4 = 1$ et de celle du moment de transition de la bande $v_3 - v_4$ (les coefficients vibrationnels, réf. [10], $k_{v_3+v_4}$ et $k_{v_3-v_4}$ sont égaux). Cette étude avait pour but de susciter un travail expérimental dans la région de 1 700 cm⁻¹ afin d'obtenir des données IR sur le niveau $v_1 = 1$ $(v_1$ est inactif en IR). En effet, dans cette région, les bandes les plus intenses sont les bandes chaudes $v_3 - v_4$ et $v_1 - v_4$. L'identification de $v_3 - v_4$ puis l'analyse de $v_1 - v_4$ conduiraient alors à la détermination du niveau $v_1 = 1$.

^(*) Equipe de recherche associée au C.N.R.S.

D'une manière générale, dans l'état actuel des connaissances du méthane, l'étude des bandes chaudes, indispensable pour dépouiller complètement les spectres, est particulièrement intéressante pour atteindre certains niveaux d'énergie grâce à des règles de sélection plus généreuses que celles relatives aux transitions issues du niveau de base. Les premiers états vibrationnels du méthane étant généralement connus avec une assez bonne approximation, le calcul des bandes chaudes se ramène au calcul des intensités des transitions.

Dans cet article nous donnons l'expression générale des éléments matriciels, entre des états vibrationnels quelconques, des termes du développement du moment *n*-polaire, en détaillant le cas du moment dipolaire électrique. Ce travail nous a permis d'attribuer 295 nouvelles raies rovibrationnelles du spectre du méthane dans la région de 1 216 à 1 355 cm⁻¹ et d'améliorer sensiblement l'analyse du sous-niveau A1 ($l_4 = 0$) de l'état $v_4 = 2$ à partir de la bande chaude 2 $v_4 - v_4$.

2. Calcul théorique des bandes de différence. — Le calcul des fréquences des transitions des bandes de différence est direct dès lors qu'on connaît les niveaux d'énergie mis en jeu déterminés par l'analyse des bandes correspondantes issues du niveau vibrationnel de base. L'objet de ce travail est d'établir une méthode générale pour le calcul des intensités des transitions.

En désignant par φ'' et φ' les fonctions propres caractérisant respectivement les états E'' et E', la probabilité d'une transition entre ces états, sous l'effet d'une interaction avec un champ électromagnétique extérieur, est proportionnelle au carré du module du moment de transition $|\langle \varphi'' | \mathcal{M} | \varphi' \rangle|^2$. \mathcal{M} est une composante totalement symétrique dans le repère du laboratoire (L) d'un tenseur dont les composantes s'expriment dans le repère lié à la molécule (m) sous la forme d'un développement en série en fonction des coordonnées normales de la molécule. On passe des composantes ^(m) \mathcal{M}_x dans le repère de la molécule aux composantes ^(L) \mathcal{M}_X dans le repère du laboratoire par l'intermédiaire d'un tenseur affine d'ordre Ω : C

$${}^{(\mathrm{L})}\mathcal{M}_{\chi} = \mathcal{C}_{\chi}^{x} {}^{(\mathrm{m})}\mathcal{M}_{x} . \tag{1}$$

Le tenseur C peut s'exprimer sous forme tensorielle dans le groupe des rotations O(3) par

$$C^{\Omega(K\tau)} = [\underbrace{C^{(1u)} \times C^{(1u)} \times \cdots \times C^{(1u)}}_{\Omega}]^{(K\tau)}$$
(2)

où les composantes du tenseur $C^{(1u)}$ sont les 3 cosinus directeurs liant les 2 repères ; Ω et $K\tau$ désignent respectivement le degré et le rang tensoriel dans O(3) ($\tau = u$ ou g) du tenseur C.

Comme pour les opérateurs de l'hamiltonien de vibration rotation, la méthode la plus directe pour

• . •

construire l'opérateur \mathcal{M} consiste à effectuer des couplages d'opérateurs tensoriels élémentaires. De tels couplages peuvent être réalisés soit dans le groupe O(3) sous certaines conditions (formalismes de Hecht [11] et Moret-Bailly [12]) soit dans le groupe de recouvrement de la molécule T_d (Champion [3]). En adoptant le même schéma de couplage pour les fonctions d'onde et pour les opérateurs, on peut calculer simplement les éléments matriciels par application dans O(3) ou T_d du théorème de Wigner-Eckart.

Par une similitude appropriée, il est toujours possible d'exprimer ^(m) \mathcal{M} sous forme tensorielle dans T_d :

est un produit tensoriel dans T_d de α coordonnées normales, $\theta_{\{s\},r}$ est un coefficient qui fait intervenir les dérivées partielles du moment de transition par rapport à ces coordonnées.

D'une manière similaire, dans certaines conditions particulières, il est parfois possible d'exprimer $^{(m)}\mathcal{M}$ sous forme tensorielle dans le groupe des rotations O(3)

$${}^{(\mathbf{m})}\mathcal{M} = \sum_{\{s\},K\tau} \theta_{\{s\},K\tau} \mathfrak{V}_{\{s\}}^{(K\tau)} .$$
(4)

Dans cette dernière expression, la représentation irréductible Γ de T_d de l'équation (3) est remplacée par le rang tensoriel $K\tau$ dans O(3). En général, le formalisme tensoriel dans O(3) permet une formulation analytique particulièrement simple des intensités des transitions. Le formalisme tétraédrique présente quant à lui, l'avantage d'être applicable directement à toutes les bandes, quelle que soit la symétrie des sousniveaux vibrationnels impliqués. Il est particulièrement adapté au calcul sur ordinateur.

Dans ce travail nous développons en détail le calcul général des bandes chaudes dans le formalisme tétraédrique. Auparavant, dans le cas particulier de $2v_4 - v_4$ nous envisageons les deux schémas de couplage. Pour cette bande en effet, le formalisme sphérique permet d'introduire des nombres quantiques appropriés et d'établir des règles de sélection simples. D'autre part il était intéressant de tester l'exactitude des calculs par des méthodes différentes.

2.1 LE FORMALISME TENSORIEL DANS O(3). — Conformément aux remarques précédentes, nous n'envisageons ici le formalisme tensoriel dans O(3) que pour le calcul des bandes chaudes IR vérifiant les hypothèses suivantes qui correspondent en particulier au cas de la bande $2v_4 - v_4$:

— Les fonctions propres de l'hamiltonien sont proches des fonctions de base dans lesquelles sont calculés les éléments matriciels.

— Les niveaux mis en jeu sont tels que $v_2 = 0$ et $\Delta v_s = 1$ (s = 3 ou 4).

Dans ces conditions le terme prépondérant du développement du moment dipolaire électrique ^(L)M est donné sous forme de tenseur sphérique par :

^(L)
$$\mathcal{M} = \theta_s(\mathbf{C}^{(1u)} \times \mathbf{Q}_s^{(1u)})_{A1}^{(0g)}$$
. (5)

$$\left\langle \left(\Psi_{r}^{(J'')} \times \Psi_{v}^{(l'')} \right)_{p''}^{(R'')} \mid \mathcal{F}_{A1}^{(0g)} \mid \left(\Psi_{r}^{(J')} \times \Psi_{v}^{(l')} \right)_{p'}^{(R')} \right\rangle =$$

$$= (-1)^{1+R''+J'+l''} \frac{1}{\sqrt{3}} \begin{pmatrix} J'' & J' & 1 \\ l' & l'' & R'' \end{pmatrix} \left\langle \Psi_{r}^{(J'')} \parallel \underline{C}_{r}^{(1u)} \parallel \Psi_{r}^{(J')} \right\rangle \left\langle \Psi_{v}^{(l'')} \parallel \underline{C}_{s}^{(1u)} \parallel \Psi_{v}^{(l'')} \right\rangle$$

R est le nombre quantique de rotation pure :

$$|J-l| \leq R \leq J+l; p = (n, C, \sigma)$$

est un triple indice caractérisant les composantes tétraédriques des tenseurs sphériques [3]. Les symboles de Kronecker $\delta_{p'p''}$ et $\delta_{R'R''}$ indiquent les règles de sélection $\Delta R = 0$, $\Delta n = 0$ et $\Delta C = 0$.

L'élément matriciel réduit $\langle \Psi_n^{(l'')} \parallel Q_s^{(1u)} \parallel \Psi_n^{(l')} \rangle$ est caractéristique de la bande étudiée. Il a pour valeur :

— Cas de la bande v_4 :

$$\langle \Psi_{v_4=0}^{(0)} \| \mathbb{Q}_4^{(1u)} \| \Psi_{v_4=1}^{(1)} \rangle = \sqrt{\frac{3}{2}}$$

— Cas de la bande $2v_4 - v_4$:

$$\langle \Psi_{v_4=1}^{(1)} \| \mathbb{Q}_4^{(1u)} \| \Psi_{v_4=2}^{(0)} \rangle = 1 \langle \Psi_{v_4=1}^{(1)} \| \mathbb{Q}_4^{(1u)} \| \Psi_{v_4=2}^{(2)} \rangle = \sqrt{5} .$$

Le tableau I donne l'expression du carré de l'élément matriciel de l'opérateur $\mathcal{F}_{A1}^{(0g)}$ (éq. (6)) pour les bandes v_4 et 2 $v_4 - v_4$.

Les éléments matriciels de l'opérateur

$$\mathcal{F}_{A1}^{(0g)} = (\mathbb{C}^{(1u)} \times \mathbb{Q}_{s}^{(1u)})_{A1}^{(0g)}$$

dans la base des fonctions d'onde couplées dans O(3)sont donnés par le théorème de Wigner-Eckart :

$$+ R'' + J' + l'' \frac{1}{\sqrt{3}} \begin{pmatrix} J'' & J' & 1 \\ l' & l'' & R'' \end{pmatrix} \langle \Psi_{r}^{(J'')} \parallel \mathbb{C}^{(1u)} \parallel \Psi_{r}^{(J')} \rangle \langle \Psi_{v}^{(l'')} \parallel \mathbb{Q}_{s}^{(1u)} \parallel \Psi_{v}^{(l')} \rangle \delta_{p'p''} \delta_{R'R''}$$
(6)

2.2 Le formalisme tensoriel dans T_d . — La méthode de construction des opérateurs de l'hamiltonien et des fonctions de base par couplage dans le groupe T_d a fait l'objet de plusieurs articles récents [3], [13]. Dans ce travail nous étendons le formalisme tensoriel dans T_d au cas général du calcul des intensités des transitions multipolaires entre deux états vibrationnels quelconques.

Par réduction dans le groupe T_d on peut décomposer le tenseur $C^{\Omega(K\tau)}$ (éq. (2)) en somme directe de tenseurs tétraédriques notés $C^{\Omega(K\tau,n\Gamma)}$ où Γ désigne une représentation irréductible de T_d , et *n* distingue les tenseurs de même symétrie lorsque la multiplicité de Γ dans la représentation irréductible $\mathfrak{D}^{(\overline{K}\tau)}$ de O(3) est supérieure à 1. Dans la suite l'indice n sera le plus souvent omis.

Par couplage dans T_d on peut alors construire les opérateurs $\mathcal{F}_{\{s\}}^{\Omega(K\tau,\Gamma)}$ associés à chaque terme du développement (3)

$$\mathcal{F}_{\{s\}}^{\Omega(K\tau,\Gamma)} = (\mathbb{C}^{\Omega(K\tau,\Gamma)} \times \mathfrak{V}_{\{s\}}^{(\Gamma)})^{(A1)} . \tag{7}$$

Les éléments matriciels dans la base des fonctions d'onde couplées dans T_d sont donnés par le théorème de Wigner-Eckart (cf. appendice de la réf. [13])

$$\langle (\Psi_{r}^{(J''\tau'',n_{r}^{\mu}C_{r}^{\nu})} \times \Psi_{v}^{(C_{v}^{\nu})})_{\sigma}^{(C)} | (\mathbb{C}^{\Omega(K\tau,\Gamma)} \times \mathbb{V}_{\{s\}}^{(I)})^{(A1)} | (\Psi_{r}^{(J'\tau',n_{r}^{\mu}C_{r}^{\mu})} \times \Psi_{v}^{(C_{v}^{\nu})})_{\sigma}^{(C)} \rangle =$$

$$= (-1)^{J''} (-1)^{\Gamma+C+C_{r}^{\nu}+C_{v}^{\nu}} [\Gamma]^{1/2} \mathbf{K}_{(In''C_{r}^{\mu}n'C_{r}^{\nu})}^{(K\tau)J''\tau'J'\tau'} \begin{pmatrix} C_{v} & C_{r} & C \\ C_{r}^{\nu} & C_{v}^{\nu} & \Gamma \end{pmatrix} \times$$

$$\times \langle \Psi_{r}^{(J''\tau'')} \| \mathbb{C}^{\Omega(K\tau)} \| \Psi_{r}^{(J'\tau')} \rangle \langle \Psi_{v}^{(C_{v}^{\nu})} \| \mathbb{V}_{\{s\}}^{(I)} \| \Psi_{v}^{(C_{v}^{\nu})} \rangle$$

$$(8)$$

Tableau I. — Expression du carré de l'élément matriciel de l'opérateur $\mathcal{F}_{A1}^{(0g)}$ intervenant dans le calcul de l'intensité des transitions des bandes v₄ et $2 v_4 - v_4$.

[Squared matricial element expression of the $\mathcal{F}_{A1}^{(0g)}$ operator used to calculate the transitions intensity of the v_4 and $2v_4 - v_4$ bands.]

BRANCHE	BANDE V4	BANDE $2v_4 - v_4$						
$\Delta I = \pm 1$	$1'_{4} = 1$	$l'_{4} = 0$		$1'_{4} = 2$				
$\Delta R = 0$	R' = J''	R' = J'	R' = J'' + 1	R' = J''	R' = J''-1			
$\Delta J = -1$ P	$\frac{(2J''-1)}{18}$	<u>(2J"+1)</u> 27	<u>(2J"-1)</u> 9	<u>(J"-1)(2J"-1)</u> 18 J"	$\frac{(J''-1)(2J''-3)}{54 \ J''}$			
$\begin{array}{l} \Delta J = 0\\ Q\end{array}$	<u>(2J"+1)</u> 18	<u>(2J"+1)</u> 27	$\frac{(J"+2)(2J"+1)}{18 (J"+1)}$	<u>(2J"-1)(2J"+1)(2J"+3)</u> 54 J" (J"+1)	<u>(J"-1)(2J"+1)</u> 18 J"			
$\begin{array}{l} \Delta J = 1 \\ R \end{array}$	<u>(2J"+3)</u> 18	<u>(2J"+1)</u> 27	$\frac{(J"+2)(2J"+5)}{54 (J"+1)}$	$\frac{(J"+2)(2J"+3)}{18 (J"+1)}$	<u>(2J"+3)</u> 9			

où $[\Gamma]$ désigne la dimension de la représentation Γ , K est un facteur isoscalaire de la chaîne de groupe $O(3) \supset T_{d}, \begin{pmatrix} C'_{v} & C'_{r} & C \\ C''_{r} & C''_{v} & \Gamma \end{pmatrix} \text{ est un symbole } « 6 C »$ de recouplage dans le groupe T_{d} (cf. appendice de la

réf. [13]).

 $\langle J'' \tau'' \| C^{\Omega(K\tau)} \| J' \tau' \rangle$ est l'élément matriciel réduit dans O(3) de l'opérateur $C^{\Omega(K\tau)}$.

 $\langle C_{v}'' \parallel \mathfrak{V}_{\{s\}}^{(I)} \parallel \hat{C}_{v}' \rangle$ est l'élément matriciel réduit dans T_d de l'opérateur $\mathfrak{V}_{\{s\}}^{(\Gamma)}$. Il est caractéristique de la bande étudiée.

Les deux termes prépondérants du développement du moment dipolaire sont en $Q_3^{(F2)}$ et $Q_4^{(F2)}$. Les éléments matriciels réduits des $Q_s^{(C)}$ se déduisent directe-

 $g_{\rm c}$ est le poids statistique de la transition dans lequel interviennent la dégénérescence rovibrationnelle et le

spin nucléaire. M' et M'' sont les nombres quantiques magnétiques dont ne dépendent pas les énergies E"

La sommation sur M' et M'' ne concerne que l'élé-

ment matriciel réduit rotationnel

ment de ceux des opérateurs $a_s^{(C)}$ et $a_s^{+(C)}$ donnés à la référence [3].

Pour les bandes telles que $\Delta v_s = 1$ on obtient les valeurs suivantes :

$$\langle \Psi_{v_{s}=0}^{(F2)} \| \mathbb{Q}_{s}^{(F2)} \| \Psi_{v_{s}=1}^{(F2)} \rangle = \sqrt{3/2} \langle \Psi_{v_{s}=1}^{(F2)} \| \mathbb{Q}_{s}^{(F2)} \| \Psi_{v_{s}=2}^{(C)} \rangle = -\sqrt{[C]/2}$$
(9)
 $\langle \Psi_{v_{s}=0,v_{s}''=1}^{(C'')} \| \mathbb{Q}_{s}^{(F2)} \| \Psi_{v_{s}=1,v_{s}''=1}^{(C)} \rangle =$
 $- - - - = (-1)^{C} \sqrt{[C]/2}$
 avec $s'' \neq s$.

2.3 EXPRESSION DES INTENSITÉS. — La probabilité totale de transition entre les états d'énergie E'' et E'est donnée dans le formalisme tétraédrique (1) par

$$I_{E'' \to E'} \sim g_{c}(E' - E'') e^{-E''/kT} \times \sum_{M'M''} \left| \sum_{\{s\},\Gamma} \theta_{\{s\},\Gamma} \langle \Phi_{\alpha}^{\prime\prime(C)} | \mathcal{F}_{\{s\}}^{\Omega(K\tau,\Gamma)} | \Phi_{\alpha}^{\prime(C)} \rangle \right|^{2}$$
(10)

 $\langle J'' \tau'' \parallel \mathbb{C}^{\Omega(K\tau)} \parallel J' \tau' \rangle.$

Hilico et al. [14] ont montré que

$$\sum_{M'M''} |\langle J'' \tau'' \| C^{\Omega(K\tau)} \| J' \tau' \rangle|^2 =$$
$$= \frac{1}{(2K+1)} (2J''+1) (2J'+1). \quad (11)$$

L'expression (10) peut alors se mettre sous la forme

$$I_{E'' \to E'} \sim g_{c}(E' - E'') e^{-E''/kT} \left| \sum_{\{s\}, \Gamma} \mathbf{X}_{\{s\}, \Gamma} \langle \Phi_{\alpha}^{\prime\prime(C)} | S^{\Omega(K\tau, \Gamma)} | \Phi_{\alpha}^{\prime(C)} \rangle \right|^{2}$$
(12)

où $S^{\Omega(K\tau,\Gamma)}$ est un opérateur purement formel dont les éléments matriciels dans les fonctions de base sont donnés par :

$$\langle (\Psi_{r}^{(J''\tau'',n_{r}^{w}C_{r}^{w})} \times \Psi_{v}^{(C_{v}^{w})})_{\sigma}^{(C)} | S^{\Omega(K\tau,\Gamma)} | (\Psi_{r}^{(J'\tau',n_{r}^{*}C_{r}^{*})} \times \Psi_{v}^{(C_{v}^{*})})_{\sigma}^{(C)} \rangle =$$

$$= (-1)^{J''} (-1)^{\Gamma+C+C_{r}^{*}+C_{v}^{w}} \frac{1}{\sqrt{[\Gamma]}} \left[\frac{(2J''+1)(2J'+1)}{(2K+1)} \right]^{1/2} \mathbf{K}_{(\Gamma n''C_{r}^{w}\Gamma'C_{r}^{*})}^{(K\tau J''\tau''J'\tau')} \begin{pmatrix} C_{v} & C_{r}^{*} & C \\ C_{r}^{*} & C_{v}^{*} & \Gamma \end{pmatrix}.$$
(13)

En comparant les expressions (8) et (13), il vient :

$$\mathbf{X}_{\{s\},\Gamma} = \theta_{\{s\},\Gamma} \langle \Psi_v^{(C_v')} \parallel \mathfrak{V}_{\{s\}}^{(\Gamma)} \parallel \Psi_v^{(C_v')} \rangle.$$
(14)

Enfin, les fonctions propres se déduisent des fonctions de base par la similitude U qui diagonalise l'hamiltonien :

$$\varphi_{\alpha}^{(J,C)} = {}^{(J,C)} \mathfrak{U}_{\alpha}^{\sigma} (\Psi_{r}^{(J,n_{r}C_{r})} \times \Psi_{v}^{(C_{v})})_{\sigma}^{(C)} .$$
(15)

Dans le formalisme tensoriel dans T_d les états rovibrationnels sont caractérisés seulement par les indices quantiques J et C vis-à-vis desquels l'hamiltonien est rigoureusement diagonal et par un numéro a qui distingue les différents états d'un bloc J, C (on choisit par exemple de numéroter les niveaux dans l'ordre des énergies croissantes).

En pratique, le calcul des intensités (éq. (12)) se fait en deux temps : calcul de la matrice du moment

de transition dans les fonctions de base (éq. (13)) puis changements de base (éq. (15)).

3. Données expérimentales. — La région de la bande v_4 du méthane a suscité de nombreux travaux expérimentaux dont les plus récents sont ceux de Restelli et Cappellani [21] et, Pinson et Dupré-Maquaire [22].

Nous avons utilisé les spectres enregistrés sur un spectromètre à grilles de type Girard couvrant la région 1 213-1 369 cm⁻¹ [1]. Les conditions expérimentales sont les suivantes : parcours d'absorption 10 m, pression de méthane naturel de l'ordre de 10 torrs et température ambiante. La résolution est de $0,06 \text{ cm}^{-1}$.

et E'.

⁽¹⁾ Dans le formalisme tensoriel dans O(3) on a évidemment une relation analogue.

Parmi les raies observées, on distingue les raies permises de la bande v_4 de ${}^{12}CH_4$ qui sont fortement saturées et celles de la bande v_4 de ${}^{13}CH_4$ présent pour 1,1 % dans le méthane naturel. Ces dernières ont été identifiées par Dang-Nhu *et al.* [1]. On observe également des raies interdites de la bande v_4 de ${}^{12}CH_4$.

D'après l'équation (10), un calcul approché de l'intensité des raies de la bande $2 v_4 - v_4$ de ${}^{12}CH_4$ à la température ambiante rapportée à l'intensité des raies de la fondamentale v_4 donne (cas $v_4 = l_4 = 2$) :

$$\frac{I(2 v_4 - v_4)}{I(v_4 - v_0)} \simeq e^{-E_4/kT} \left[\frac{\langle \Psi_{v_4=1}^{(1)} \parallel \mathcal{Q}_4^{(1u)} \parallel \Psi_{v_4=2}^{(2)} \rangle}{\langle \Psi_{v_4=0}^{(0)} \parallel \mathcal{Q}_4^{(1u)} \parallel \Psi_{v_4=1}^{(1)} \rangle} \right]^2 = 5 \times 10^{-3} .$$
(16)

Ce résultat est du même ordre de grandeur que l'intensité relative estimée pour les raies du ¹³CH₄. En effet si l'on considère que les coefficients d'intensité θ_4 (éq. (5)) des deux variétés isotopiques sont identiques, le rapport des intensités des fondamentales v_4 est celui du rapport d'abondance des isotopes

$${}^{3}CH_{4}/{}^{12}CH_{4} = 11 \times 10^{-3}$$
. (17)

Ainsi les raies de la bande chaude $2v_4 - v_4$ à température ambiante ont des intensités du même ordre de grandeur que celles des raies observées de la bande v_4 de ¹³CH₄.

4. Calcul des bandes chaudes de la région de v_4 . — Comme nous l'avons indiqué précédemment le formalisme tensoriel dans O(3) est bien adapté au calcul de la bande chaude 2 $v_4 - v_4$. En effet dans les états $v_4 = 1$ et $v_4 = 2$, les fonctions de base construites par couplage dans O(3) $(\Psi_r^{(J)} \times \Psi_v^{(l)})_p^{(R)}$ sont une bonne approximation des fonctions propres. Les règles de sélection $\Delta R = 0$, $\Delta n = 0$, $\Delta C = 0$ (éq. (6)) sont schématisées sur la figure 1. En particulier le

Fig. 1. — Diagramme des transitions permises de la bande $2v_4 - v_4$. [Allowed transitions diagram of the $2v_4 - v_4$ band.]

sous-niveau A1 $(l_4 = 0)$ peut être atteint par des transitions permises de type PQ et R provenant du niveau fondamental $v_4 = 1$.

Grâce à ce calcul nous avons vérifié la présence effective de la bande chaude $2v_4 - v_4$ dans le spectre expérimental. Il est apparu alors indispensable de généraliser le calcul pour d'autres bandes chaudes et en particulier pour $v_2 + v_4 - v_2$. Pour ce faire, nous avons réalisé un programme général basé sur le formalisme tensoriel dans T_d décrit au paragraphe précédent. Ce programme calcule les éléments matriciels du moment de transition puis, à partir des paramètres des niveaux vibrationnels impliqués, déterminés préalablement, calcule les fréquences des transitions et effectue le changement de base qui conduit directement aux intensités.

Afin de dépouiller le spectre, nous avons été amenés à calculer à l'aide du même programme les 4 bandes suivantes : v_4 de ${}^{12}CH_4$, v_4 de ${}^{13}CH_4$, $2v_4 - v_4$ et $v_2 + v_4 - v_2$ de ${}^{12}CH_4$. Pour cela nous avons utilisé pour le ${}^{12}CH_4$ les paramètres du niveau de base déterminés par Tarrago *et al.* [15], ceux des états $v_2 = 1$ et $v_4 = 1$ par Champion [3], ceux de l'état $v_4 = 2$ par Lepage et Saint-Loup [5] enfin ceux de l'état $v_2 = v_4 = 1$ par Champion *et al.* [16]. La bande v_4 de ${}^{13}CH_4$ a été calculée à partir de l'étude effectuée par Dang-Nhu *et al.* [1].

Les coefficients d'intensité θ_4 des deux variétés isotopiques ont été pris égaux. Ainsi le rapport des intensités des raies correspondantes du ¹²CH₄ et du ¹³CH₄ est égal au rapport des abondances des deux variétés.

585 transitions calculées des bandes $2v_4 - v_4$ et $v_2 + v_4 - v_2$ pour lesquelles J' est au plus égal à 11 sont données dans le tableau II. La liste est limitée aux transitions dont l'intensité est au moins égale à 4 dans l'unité arbitraire pour laquelle la raie P1 de v_4 de 12 CH₄ est 925. 295 transitions sont attribuées, les nombres d'onde observés sont ceux du spectre de l'O.N.E.R.A. [1], les autres sont masquées par les raies saturées de la bande v_4 de 12 CH₄. En particulier la branche Q de cette bande occulte complètement la région de 1 292 à 1 306 cm⁻¹.

La figure 2 montre l'accord entre les spectres expérimentaux et calculés. Un certain nombre de raies du spectre expérimental demeure pourtant, sans attribution. La comparaison avec un autre spectre expérimental semble suggérer que ces raies sont en Tableau II. — Liste des raies des bandes chaudes $2v_4 - v_4$ et $v_2 + v_4 - v_2$ de ¹²CH₄. I. Transition : XJ" C" n" l' R' ou XJ" C" *; X = P, Q, R si J' - J" = -1, 0, 1; J", C", n" = nombres quantiques du niveau $v_4 = 1$; l', R' = nombres quantiques du niveau $v_4 = 2$ (R' = R"); J", C", * transition de $v_2 + v_4 - v_2$. II. Nombre d'onde calculé avec les paramètres du tableau III. III. Nombre d'onde observé (B = raies masquées). IV. Intensité calculée des raies en unité arbitraire dans laquelle l'intensité calculée de la raie P1 de ¹²CH₄ est de 925.

[Transitions of the hot bands $2v_4 - v_4$ and $v_2 + v_4 - v_2$ of ¹²CH₄. I. Quantum numbers : XJ'' C'' n'' l' R' or $XJ'' C'' * ; X = P, Q, R \text{ if } J' - J'' = -1, 0, +1; J'', C'', n'' : v_4 = 1$ quantum numbers ; $l', R' : v_4 = 2$ quantum numbers (R' = R''); $J'', C'', * : v_2 + v_4 - v_2$ transitions. II. Calculated wave number using the parameters of table III. III. Experimental wave number (B = blended lines). IV. Calculated intensity of lines with arbitrary units (a.u.); P1 of v_4 line intensity of ¹²CH₄ is 925 a.u.]

I II	III IV	I	II	III IV	I	II	III IV
P10 A1 0 0 9 1220 349	1220 347 8	P 8 F 0 2	9 1250 031	1250 115 8	P 4 47 0 7	4 1777 LLL	1777 457 10
D11 A2 A 2 12 1220 401	1220 747 4	P Q E 2 1 2	9 1250 049	1250 115 7	P & F2 1 2	5 1272.000	1273 413 26
PIL HZ V Z IZ IZZV.+VI	1220.347 0	P 9 42 1 2	8 1250 344	1250 420 12	P & F2 0 2	1273.499	1273 457 11
PIO FI I V 7 1220-750	1220.700 4	P 8 F1 0 2	7 1250.947	1251 005 4	P # F 0 2	4 1273.910	1223 844 7
P10 02 2 0 7 1221.	k 7	P 5 42 0 0	A 1252.328	1252 358 21		5 1274 251	1274 215 17
P10 H2 V V 7 1221.000	1222.873 6	P 5 F2 0 0	4 1252.622	B 13	P 5 41 #	1274.454	1274.623 7
	1225.005 5		A 1757 450	D 0	1 9 11 -	1274 045	12/71020 /
F 7 H2 V V 0 122J.1/7	1223.003 3	P75100	9 1252 000	1757 707 10	07 HL V V D A E7 x	1775 770	
	122/1/10 0	F 7 F1 V 2	1252 010	1252 703 10	P 1 A2 A A	12/3.327	1775 507 12
P 7 F2 V V 0 1220.JJ7	1220.002 0	F 0 HZ ×	1202.010	1252.705 4		107/ 004	12/ J. J72 12
P10 F2 2 2 11 1229.238	B 0	P 8 A2 4	123.22	1203.227 4	P 3 F2 *	12/0.074	12/6.08/ 4
P 7 F1 1 0 8 1227.202	B J		8 1233-272	B 12	U 6 A2 V V	3 12/0.1VJ	12/0.08/ 8
PIVE 1 2 11 1229.782	. B 4	PSFLOO	4 1203.000	B 12	P4F1V2 3) 12/0-304	12/6.332 2/
P10 F1 2 2 11 1230.851	B 6	P8F102	9 1253.549	1253.4/8 13	P 4 A2 #	12/6.61/	12/6.692 /
P 8 F1 0 0 / 1232./96	1232./18 5	P 8 F2 0 2	9 1253./49	B 13	P 4 F2 *	1277.094	<u> </u>
P10 F2 1 2 11 1233.868	1233.961 6	P 7 F2 0 2	8 1254.647	1254.669 18	Q6F200	5 1277.245	1277.257 6
P10 A2 0 2 10 1234.212	1234.116 6	P 7 A1 *	1254.814	B 5	P 4 F2 0 2	5 1277.453	B 27
P 8 F2 1 0 7 1234.533	1234.614 6	P7E 02	7 1255.211	1255.218 6	Q7F110	/ 1277.525	B 5
P 8 E 0 0 7 1234.812	1234.855 5	P7F212	7 1255.235	1255.218 9	P4F102	1277.556	B 11
P 8 F1 1 0 7 1235.228	1235.299 7	P7A1 *	1255.367	1255.387 5	P 4 F1 *	1277.756	1277.78 4
P 8 A1 0 0 7 1235.497	1235.581 12	P7F112	7 1255.559	1255.589 9	Q11 F2 0 0 1	1277.893	B 4
P11 A2 1 2 12 1236.174	B 6	P7F102	7 1255.677	1255.704 9	Q11 F1 0 0 1	1277.934	1277.980 4
P10 E 1 2 11 1236.423	B 4	P7F202	7 1256.021	B 9	Q 8 F1 1 0	1278.295	1278.363 5
P10 F1 1 2 11 4236.811	1236.82 6	P 7 A1 0 2	7 1256.193	1256.139 15	Q 5 F2 1 0	i 1278.338	1278.363 5
P 9 F1 0 2 10 1237.389	B 9	P7F112	8 1256.465	1256.463 18	Q6F110	5 1278.419	1278.480 7
P10 A1 0 2 11 1237.396	B 9	P7A102	6 1257.595	1257.641 6	P 3 F2 0 2	5 1278.489	1278.480 9
P 9 E 0 2 10 1238.205	B 6	P 7 F1 1 2	6 1257.692	1257.737 4	P 4 A2 *	1278.875	1278.941 7
P10 A1 0 2 10 1238.298	B 6	P 4 F2 0 0	3 1258-491	1258.497 14	Q5E00	5 1278.93	278.941 6
P 9 F2 0 2 10 1238-924	1238,998 9	P 4 F1 0 0	3 1258-547	1258.541 14	07A100	7 1278.994	1279.060 13
P 9 A1 0 2 9 1239-186	1239.207 8	P 4 A1 0 0	3 1258.749	1258.750.25	Q10 E 1 0 1	1279.232	1279.060 4
P 9 F1 1 2 10 1239.514	1239.505 5	P7F 12	8 1259 343	1259.292 12	010 F1 2 0 10	1279.232	1279.060 6
P7F00 6 1239 657	1239.645 5	P 7 F2 1 2	8 1259 491	R 18		1279 278	1279 040 11
P 7 E1 0 0 6 1239 666	1239 645 7	P 7 42 0 2	8 1259 730	R 70	0 4 F1 0 0	1079 470	R 10
P 7 AL A A & 1770 010	1237-043 7	P 4 52 1 2	7 1250 054	ער פ 17 פ		1 12//. 1/2	B 10
	1237.700 IJ	F 0 7 2 1 2	7 1237.007	B 20	074102	1 12/7.000	D 23
F 7 M2 V 2 7 1240.178	1240-100 7	POL VZ	/ 1200.723	B 13	U 3 HL V V .	12/7./24	100 A TO
P 7 F2 2 2 9 1240.236	1240.165 4	P 6 AL V 2	0 1201.302	1261.284 19	U 9 F1 0 0 1	/ 1280-139	1280.179 8
P / A2 0 0 6 1240./0/	1240./24 20	P 6 F1 V 2	/ 1261.062	B 22	U 9 F2 0 0 1	/ 1280.192	1280.179 9
P / F2 0 0 6 1241.0/2	1241.113 11	P 6 F1 1 2	6 1261.667	B 11	Q3F100	1280.435	1280.420 10
P 9 A2 0 2 10 1241.199	1241.244 15	P6E 02	6 1261.793	1261.783 7	Q4E 00 4	1280.513	1280.512 8
P 7 F1 1 0 6 1241.427	1241.481 9	P 6 F2 ¥	1261.925	1261.874 4	Q 6 A1 0 0	1280.553	
P 9 F2 1 2 9 1241.800	1241.79 4	P 6 F2 0 2	6 1262.669	1262.640 11	Q8E108	1280.606	1280.633 6
P10 F1 0 2 11 1241.918	B 6	P 6 F1 0 2	6 1262.721	1262.681 11	Q 5 F1 0 0 5	i 1280 . 654	1280.633 13
P10 F2 0 2 11 1242.014	B 6	P6A202	6 1262.804	1262.795 18	Q8F2108	1280.739	1280.767 11
P 9 F2 1 2 10 1242.868	1242.889 9	P6A102	7 1263.064	1263.039 37	Q 2 F1 0 0 2	1280.816	B 10
P 9 F1 1 2 10 1243.556	1243.548 9	P6F102	5 1263.888	1263.882 4	07F1007	1280.836	B 12
P 9 A2 0 2 8 1244.031	1244.073 6	P3E 00	2 1264.349	1264.354 9	08A2008	1280.855	B 20
P 9 F1 0 2 10 1244.132	1244.132 5	P 6 F2 0 2	5 1264.388	1264.385 4	Q 4 F2 0 0 4	1280.961	B 14
P 9 F2 0 2 9 1244.332	1244.28 5	P 3 F1 0 0	2 1264.412	1264.385 13	Q6F100	1281.002	B 13
P 8 A1 0 2 9 1244.947	1245.051 23	P 6 A1 *	1264.668	1264.732 6	Q7F2007	/ 1281.039	B 9
P 8 F1 1 2 9 1245.571	1245.67 13	P 6 F1 0 2	7 1265.134	1265.100 22	Q 3 F2 0 0 3	1281.069	B 13
P 6 F2 0 0 5 1246.109	1246.167 7	P6F202	7 1265.494	¥ 22	Q2E 00 2	1281.090	B 7
P 8 F2 2 2 9 1246.322	1246.35 13	P 5 A2 0 2	6 1266.365	1266.312 44	Q1F2001	1281.100	8 7
P 6 F1 0 0 5 1246.411	B 11	P 5 F2 0 2	6 1267.247	1267.204 26	Q 5 F2 0 0 5	1281.163	B 10
P 6 F2 0 0 5 1246.958	1247.021 5	P 5 F1 0 2	6 1267.484	1267.471 12	P 3 F1 0 2	1281.227	8 8
P 6 F2 1 0 5 1247.238	1247.286 8	P 5 F2 0 2	6 1267.495	1267.471 12	Q6E000	1281.244	B 10

I II	III IV	I	II	III IV	I II	III IV
P6E 00 51247.404	1247.431 8	P 5 F1 0 2	6 1268.173	1268.143 26	Q 7 F2 1 0 7 1281.29	5 B 4
P 8 F1 0 2 8 1247.442	1247.431 7	P 5 A2 *	1268.450	B 7	Q 4 A2 0 0 4 1281.35	7 1281.370 26
P 9 AI 0 2 10 1247.672	1247.594 15	P6A2 *	1269.924	B •7	0 5 F2 1 0 5 1281.44	3 1241.482 5
P 8 E 1 2 8 1247.728	B 4	P5E 02	5 1269.957	B 8	Q11 A1 0 2 10 1281.74	3B 5
P 8 A2 0 2 9 1247.767	B 22	P 5 F1 #	1269.973	B 4	P 2 A1 # 1281.93	1 1281.932 5
P 9 F1 2 2 10 1247.814	B 9	P 2 F2 0 0	1 1270.070	1270.045 11	P 3 E 0 2 4 1281.98	2 1281.932 16
P9E 1 2 10 1247.877	B 6	P 5 F2 1 2	5 1270.076	1270.045 12	P 2 A1 0 2 3 1282.31	5 1282.259 29
P 8 F2 0 2 8 1247.937	B 7	P 5 A1 0 2	6 1270.301	1270.266 43	P 4 F1 # 1282.33	4 B 4
P 8 F1 1 2 8 1249.250	1249.296 7	P 5 A2 0 2	4 1271.138	1271.152 7	P 3 F2 0 2 4 1282.91	1 B 24
P 8 F2 1 2 9 1249.647	B 13	P 5 F1 1 2	6 1271.195	1271.152 26	Q 9 F1 2 2 10 1283.17	7B5
P8E 02 8 1249.897	B 5	P5E 02	6 1271.425	B 17	0 7 A1 0 2 10 1283.28	8 B 9
P 3 A2 0 2 4 1283.929	1283.894 41	Q 8 F2 0 2	8 1293.356	B 13	Q 5 F1 0 2 6 1298.73	B B 18
Q10 F2 0 2 9 1284.412	B 5	Q7E 02	7 1293.536	B 14	Q 6 E 0 2 5 1298.76	D B 10
Q10 F1 0 2 9 1284.527	1284.554 5	Q6F202	6 1293.633	B 25	0 8 F2 2 2 9 1298.84	5 B 6
Q 8 A1 * 1284.949	1284.978 4	Q 4 A1 *	1293.636	B 9	Q 4 F1 # 1298.85	1 B 5
P 3 A1 0 2 3 1285.616	1285.566 15	Q 8 F1 1 2	8 1293.693	B 13	Q10 F2 2 2 9 1298.87	B B 5
	8 8	U 5 F2 1 2	5 1293.//0	B 28	02E 02 21298.93	9 B 12
0 8 F1 0 2 9 1285.831	8 8	U 6 F1 0 2	5 1293.797	B 15	Q 7 F1 0 2 7 1298.98	B B 12
F 3 F1 * 1200.102	P 4		/ 1273.04/	B 19		B B 17
W 7 H2 V 2 0 1200-002	D 12		7 1273.71/	16 J		
	B /		4 1273.747	B 28		2 B 23
0 2 F1 0 2 2 1207.140	R A	0 4 51 0 2	£ 1273.733	D 10		4 D J 7 D 11
Ω & Δ2 ¥ 1287.813	R R	0 8 52 1 2	9 1273.771	D 20 D 2	0 4 5 2 1 2 5 1200 77	/ D 11 7 D 15
0 2 F1 0 2 3 1287-914	R 15	0 Å F1 0 2	5 1294 059	2 O	075212 31277.33	τη Ο 2 Β 13
0 7 A2 0 2 8 1288.010	B 19	0 A F1 0 2	6 1296 319	B 24	05 F2 0 2 4 1299 75	5 5 6 7 R 17
0 7 F2 1 2 8 1288.099	1288,112 11	05F 02	5 1294.393	N 18		, <u> </u>
07E 02 8 1288.170	1288,196 7	02F202	3 1294.430	R 19	05 F2 0 2 5 1299 44	2 k 21
F 1 F1 0 2 2 1288.445	B 6	03F1 #	1294.432	8 5	09F0281299.48	4 B 5
Q 6 F2 # 1288.489	B 4	010 F2 1 2	9 1294 484	B 4	0 8 F1 1 2 9 1299-51	2 8 8 2 8 7
P 3 F2 # 1289.230	B 4	Q 7 A1 0 2	7 1294 489	B 30	07E1281299.53	8 8 8
Q 8 F2 0 2 7 1289.245	B 10	Q 8 A2 *	1294.760	B 4	0 7 A1 # 1299.56	5 B 6
Q 8 F1 0 2 7 1289.559	B 9	Q 3 F2 0 2	4 1294.776	B 20	Q 4 A1 0 2 3 1299.56	5 B 27
Q 5 F2 * 1289.637	B 5	Q 5 F2 0 2	4 1294.908	B 16	Q 8 A2 0 2 8 1299.70	3 B 13
P 2 F2 0 2 3 1289.821	B 17	Q6F1 *	1295.200	B 4	Q 6 F1 * 1299.75	5 B 4
Q10 A1 0 2 11 1287.852	B 6	Q8A202	9 1295.253	B 14	Q10 F1 1 2 9 1299.78	5 B 5
Q 6 F2 0 2 7 1290.028	B 15	Q7F112	8 1295.429	B 11	Q 5 F2 0 2 6 1299.92	L B 19
Q 2 A2 # 1290.156	.B 8	Q5E 02	4 1295.536	B 10	Q 9 F1 0 2 9 1299.92	3 B 4
Q 6 F1 0 2 7 1290.256	B 14	09F112	8 1295.537	B 7	Q 9 F1 0 2 10 1299.97	7 B 5
Q11 F2 1 2 11 1290.484	B 4	010 A2 0 2	9 1295.576	B 8	2 8 F2 1 2 7 1300.00	5 B 10
Q 5 F1 # 1290.671	B 5	Q 4 F2 0 2	3 1295.618	B 16	9 7 F1 0 2 8 1300.01	7 B 7
Q7E 02 6 1291.250	1291.274 8	Q 2 F1 0 2	2 1295.793	B 18	Q 7 F1 0 2 8 1300.09	5 B 12
Q10 A2 0 2 10 1291.271	1291.274 12	Q3E 02	4 1295.913	B 13	Q 9 F2 0 2 9 1300.10	4 B 4
Q 7 F1 1 2 6 1291.490	1291.437 12	Q 5 A1 #	1295.932	B 8	Q4E 02 5 1300.13	5 B 14
Q11 F1 2 2 12 1291.521	1291.497 5	Q 8 A1 0 2	7 1296.348	B 17	Q 4 F2 # 1300.14	4 B 5
Q11 A1 0 2 11 1291.587	1291.582 5	Q 8 A2 *	1296.361	B 4	Q 7 A2 0 2 6 1300.16	2 B 22
Q 4 F1 # 1291.593	1291.582 5	P 2 A2 *	1296.368	B 5	Q 4 A2 0 2 4 1300.16	7 B 39
Q 5 E 0 2 6 1291.637	1291.646 12	Q 9 A2 0 2 1	10 1296 412	B 10	Q 5 F2 * 1300.23	2 B 5
010 F2 0 2 10 1291.849	1291.810 8	U 6 A1 0 2	7 1296.447	B 26	Q 8 A1 0 2 9 1300.34	L B 15
Q 3 F2 # 1291.865	8 5	Q 3 F1 0 2	3 1296.488	B 23	Q 6 F2 1 2 7 1300.47	7 B 16
RIE 0 0 2 1291.864	B 4	436 02	2 1296.552	8 9	Q10 A1 0 2 9 1300.61	7 B 8
W J FI I Z 0 1271.8/2	1000 040 5	U 7 FZ V Z	8 1270.810	8 / D 14	4 6 A1 # 1300./8	5 8 8
	1272.047 J	U 4 F1 V Z	3 1270-847	B 14		
	1272.047 J	011 A2 A 2 1	0 1270.000			5 8 3
	1292 095 21	811 HZ V Z J	T 1707 MO			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
010 F2 1 2 10 1272.070	R L	015200	1 1207 15A	7 ק ע	0 / E1 × 1701-20	, ø 3∠ , ø 4
R 1 F1 0 0 2 1292.159	1292,154 7	DAF NO	A 1207 750	₽ 0 R 17	97.07 A A 1301.20	7 D 4 6 D 17
Q10 F1 0 2 10 1292_181	1292.156 8	02F202	1 1297 344	B 8	03F102 4 13V1.00	ע ד 10 א ד
Q10 F1 1 2 10 1292_267	B A	R 2 F1 0 0	3 1297 394	B 10	R 3 F2 0 0 4 1302 74	R R 10
9 F2 2 2 9 1292 307	B 12	0 8 F1 1 2	7 1297 4/7	R 10	0 8 Δ1 ¥ 1302 47	7 R 4
Q 9 F1 1 2 9 1292.358	B 12	Q 3 F1 0 2	2 1297_649	B 12	R 3 F 0 0 4 1302 51	5 B 7
Q 9 A1 Q 2 9 1292.395	B 20	Q 6 F1 1 2	7 1297 784	k 15	R 0 F2 0 2 1 1302 49	
Q 5 A1 0 2 6 1292.599	B 30	07F102	6 1298_040	B 13	0 5 F1 # 1302-97	
0 8 F1 0 2 8 1292.627	B 17	R 2 A1 0 0	3 1298-049	8 20	0 6 F2 # 1303_23	
Q 8 E 0 2 8 1292.668	B 11	05F102	5 1298-131	B 23	0 5 F2 # 1303.39) <u> </u>
Q 7 F2 1 2 7 1292.838	B 6	Q8E02	7 1298.171	B 6	R 3 F1 0 0 4 1303-84	B 11

JOURNAL DE PHYSIQUE

I	II	III	IV		I		II	III	IV		I		II	III	IV
Q 9 A2 0 2	9 1292.846	B	18	07	A2 #	_	1298.172	B	.6	Q 2	A1 0	23	1303.941	B	33
095212	5 1292 86/	B	20	92	F1 0 2	3	1298.188	B	17	Q 5	A2 *		1304.081	B	9
Q 7 F2 0 2	7 1292.909	B	15	0.5	nz v z F1 #	0	1278.230	B	ىد 5	u 4 0 4	F2 #		1304.560	B	4
Q6F202	5 1292.946	B	15	Q 6	F2 *		1298.350	B	4	03	F1 *		1305.878	B	6
Q 3 A2 0 2	4 1292.972	B	36 ·	04	F2 0 2	4	1298.550	B	24	R 1	F1 *		1306.354	B	5
Q9E 02	9 1293.010	B	6	061	E 02	7	1298.551	B	10	R 4	F2 0	05	1306.535	B	6
034102	3 1293.139	B	45	011	E V Z F1 0 2	2	1298.725	B B	4	K 1 0 2	F1 Q	2 2	1307.135	1307.12	511 49
R 4 F1 0 0	4 1307.227	1307.204	11	87	F2 0 0	8	1324.942	1325.033	19	R 7	F2 1	28	1337.598	B	5
R 1 F2 *	1307.564	1307.551	. 4	R 5	F2 *	-	1325.093	1325.033	5 4	R 7	F1 0	28	3 1337.599	B	17
R 1 F2 0 2	1 1308.394	1308.376	26	R 5	A2 *		1325.182	1325.174	11	Rd	5 F2 *		1337.654	B	5
R 1 A2 0 2	0 1308.528	1308.920	61 5	R 7	F1 U U F 0 0	8	1325.489	1325.2/3	5 10 7 A	K / R /	1 F2 Ο Δ2 ¥	2 . 7	1337.666	B	17
R4E 00	5 1309.112	1309.112	9	R 4	F1 0 2	4	1325.499	1325.452	30	R 7	A2 0	26	1338.090	1338.11	7 61
R 4 F2 1 0	5 1309.184	1309.197	9	R 5	F2 *		1326.398	В	4	R 7	F2 0	26	1338.273	B	36
R1E 02	2 1309.714	1309.647	7	R4	F1 #		1326.931	B	7	R 7	F1 0	26	5 1338.492	1338.54	036
R 5 F 0 0	6 1311.089	1311.122	5	R 5 1	L # F #		1320.743	B	5	K / 8 7	F1 1	20 24	1337.316	1339.31	8 60
R 5 F1 0 0	6 1311.207	1311.248	7	R 5	F1 #		1327.416	B	5	R 7	E 0	26	1339.716	1339.71	7 24
R 2 F1 *	1311.400	B	6	R 5	F2 0 2	5	1327.999	1327.986	26	R 7	Έ0	27	1339.758	B	11
R 2 A1 0 2	3 1311.464	B	17	R 5	F1 0 2	5	1328.040	1327.986	26	R 7	F1 1	27	1339.760	1339.82	2 17
R 3 A1 0 0 R 2 F #	6 1311.850 1312 157	1311.882	16	851	F1 0 2 F 0 2	4	1328.//2	1328.800	52	R 7	A1 0	27 20	1339.844	1339.82	2 29
R2E 02	2 1313.293	1313.290	20	R 5	F112	6	1329.234	1327.127	i ni	R 7	F1 1	20 27	1340.269	D 1340.25	3 17
R 2 F1 0 2	3 1313.450	1313.484	11	R 5	E 02	4	1329.237	1329.255	34	R8	F2 0	29	1341.509	1341.50	0 6
R 2 F2 *	1313.531	1313.586	6	R 6 (A1 *		1329.423	1329.432	9	R 8	F1 0	29	1341.627	1341.62	16
R 2 F2 0 2	1 1313.897	1313.893	47	R 5	F202	4	1329.424	1329.432	51	R 8	E 1	27	1342.445	1342.49	78
R 5 F1 1 0	6 1314.436	1314.475	11	R 6	F1 *		1329.423	1329.432	: 5 5	· K8	A2 0	28	1342.481	1342.47 R	9 12 21
R 5 F2 0 0	6 1314.497	1314.475	14	R 5 /	A1 0 2	6	1329.527	1329.510	17	R8	F2 1	27	1342.720	B	28
R 5 A2 0 0	6 1314.510	1314.526	25	R 8 I	F2 1 0	9	1329.694	1329.690	6	R 7	F1 *		1342.752	B	4
R 2 F2 0 2	3 1314.983	1314.911	12	R 5 (A2 0 2	4	1329.698	1329.690	86	R 8	E 0	27	1342.991	B	18
R 6 F1 0 0	7 1315.415	B 1315.496	4 5	к 8 л R 5 л	A2 U U F 0 2	9 5	1330.040	1330.112	11	к/ 88	F1 1	2 7	1343.052	1343.09	24
R 3 F1 *	1315.626	1315.628	7	R 5 I	F1 0 2	6	1330.336	1330.332	6	R 8	A1 0	27	1343.565	1.743.55	746
R 2 A2 ¥	1316.507	1316.476	11	R 5	F2 1 2	5	1330.434	1330.397	26	R 8	F2 0 :	28	1344.281	B	12
R 3 F2 #	1316.526	1316.548	7	R 8 /	A1 0 0	9	1330.461	1330.471	14	R 8	F1 0	27	1344.566	1344.54) 27
R 3 F2 0 2	3 1318,195	1317.400	31	R 8 F	FZZV	9	1330-635	1330.677	7	к 8 Р 9	F1 1 .	28 27	1344.5/0	1344.34) 12 9 77
R 3 F1 0 2	4 1318.343	1318.336	9	R 5 4	1 *	'	1330.871	1330.878	11	R 8	E 0	28	1344.887	1344.78	18
R 3 F1 *	1318.347	1318.336	6	R 5 F	202	6	1330.885	1330.878	5	R 8	F1 0 3	28	1344.906	1344.93() 12
R 7 A2 0 0	8 1318.520	B	6	R 6 F	1 *	,	1331.143	1331.179	5	R 9	F1 2	2 10	1345.703	1345.65	34
R 3 F1 0 2	2 1319.054	1318./10	27 54	RAF	2V2 7#	0	1331-866	1331.421 R	8 5	R 9	AL U /	2 Y 7 R	1345./8/	1345./5) R	19
R3E 02	2 1319.193	1319.196	36	RSF	F1 #		1332.057	B	5	R 9	F1 0	29	1347.337	1347.35	2 8
R 6 A1 0 0	7 1319.247	1319.307	16	R 5 F	2 *		1332.577	B	6	R 9	E 0 3	29	1347.343	1347.352	2 13
R 3 E 0 2	4 1319.353	1319.307	7	R 6 4	102	6	1332.733	B	36	R 9	F2 0 2	29	1347.389	1347.45	3 8
R 6 F1 1 0	7 1319.740	1319.792	8	K 0 1	112	6	1332.82/	B	14	K Y D O	F2 0 2	28	134/./36	8 1749 77	19
R 6 F2 0 0	7 1319.783	1319.792	4	R 6 F	212	7	1333.344	1333.353	7	R 9	A2 0 3	29	1348.735	1348.620) 14
R 3 F2 0 2	4 1319.837	1319.889	12	R 6 F	212	5	1333.545	1333.565	45	R 9	F2 1	29	1349.146	B	8
R 6 F2 1 0	7 1320.039	1320.049	8	R 6 F	102	7	1333.566	1333.565	9	R 9	E 0 3	29	1349.231	B	5
R46 *	1320.325	1320.137	5	R 7 F	1 # : 0 2	5	1333.656	B	4	R 9	F2 2 2	29	1349.434	B 1740 403	8
R 3 A2 0 2	4 1320.474	1320.391	21	R 7 F	2 #	J	1333-740	1333.074 B	30 4	R 9	A1 0 2	27	1347.438	1347.470) 0) 14
R 3 A1 0 2	3 1320.541	1320.473	52	R 7 F	1 *		1333.859	1333.910	4	R 9	E 1	2 8	1349.598	1349.532	2 13
R 4 A2 *	1321.278	1321.374	12	R 6 F	102	5	1334.350	1334.360	45	R 9	F2 1 2	28	1349.664	1349.627	' 19
K 3 F2 #	1321.855	1321.815	7	R 9 F	210	10 F	1334.682	B	4	R 9	A2 0 2	28	1349.770	1349.716	32
κ η Γ∠ ≖ R 4 F1 ±	1322.541	1322-581	6	πο Γ R δ Δ	2 4 2	ว 7	1334.747	1334.749	40 10	R10	HL 0 2	: 7 > 0	1351.583	1301.5/3 R	17
R 4 A2 0 2	4 1322.979	1322.980	50	R 6 F	102	6	1335.032	1335.002	22	R10	F2 2 2	2 9	1351.903	B	13
R 4 F2 0 2	4 1323.248	1323.236	29	R 6 F	202	6	1335.211	1335.183	22	R10	A1 0 2	2 10	1352.250	B	9
R4E 02	4 1323.392	1323.332	19	R 7 A	1 ¥	,	1335.535	B	7	R10	F1 2 2	2 10	1352.285	B	5
R 4 A1 0 2	1323.4/8	1323.311 R	92	πο Α R A F	∠ V Z '1 ¥	Ö	1335.445	R-242	აი 5	R10	H2 V 2 F2 1 2	: Y > Q	1352.326	1302 . 324 R	13
R 4 F1 0 2	3 1324.135	B	55	R 7 F	1 *		1335.729	1335.722	4	R10	E 02	. ,	1352.951	B	8

R 4 F2 0 2 3 1324.392 1324.393 55	R 9 F1 0 0 10 1335.771 1335.722 5	R10 F2 1 2 10 1353.688 1353.69 5
R 7 F1 1 0 8 1324.474 1324.549 8	R 9 F2 0 0 10 1335.792 1335.722 5	R10 F1 1 2 10 1353.882 1353.781 5
R 4 E 0 2 5 1324.561 1324.549 5	R 9 A2 0 0 10 1335.939 1335.907 8	R10 F2 0 2 10 1353.934 1353.947 5
R 4 F2 1 2 5 1324.616 1324.599 7	R 6 F1 1 2 7 1336.072 1336.051 4	R10 F1 0 2 10 1354.051 1354.042 5
R 4 F1 0 2 5 1324.704 1324.665 11	R 7 A2 # 1336.428 1336.415 7	R10 A2 0 2 10 1354.302 1354.288 9
R 4 F2 0 2 5 1324.814 1324.752 12	R 7 A2 0 2 8 1337.372 1337.345 14	R10 F1 0 2 9 1354.612 1354.629 13
R 5 F1 * 1324.924 1325.033 6	R 7 F2 1 2 8 1337.482 1337.455 7	R10 F2 0 2 9 1354.697 1354.629 13

Fig. 2. — Comparaison entre les spectres calculé et expérimental. Les raies du spectre expérimental marquées d'un astérisque sont des impuretés.

[Comparison between calculated and experimental spectra. Experimental * lines are impurities.]

fait des impuretés. En particulier on ne retrouve pas les raies marquées d'un astérisque sur le spectre de Lutz *et al.* [17].

Ainsi ce travail a permis de compléter sensiblement le dépouillement du spectre du méthane dans cette région, et en conséquence, a fourni des données expérimentales supplémentaires sur des niveaux qui ne peuvent être atteints en première approximation par des transitions issues du niveau de base.

5. Nouvelle analyse de l'état $v_4 = 2$. — Le même formalisme tensoriel développé dans T_d [3] permet également de traiter l'interaction entre des sousniveaux vibrationnels quelconques. Lepage et Saint-Loup [5] l'ont utilisé pour analyser le spectre infrarouge de la bande 2 v_4 de ¹²CH₄. Ils ont pu déterminer la position du sous-niveau $v_4 = 2$, $l_4 = 0$ (A1) à partir de 4 transitions *interdites* observées. Ces transitions sont rendues permises par interaction avec le sous-niveau $v_4 = 2$, $l_4 = 2$ (E + F2). Malheureusement, ce faible nombre de données a limité la précision obtenue sur ce sous-niveau.

Parmi les 295 transitions que nous avons attribuées aux bandes chaudes, 79 concernent le sous-niveau $v_4 = 2$, $l_4 = 0$ (A1). Pour montrer l'intérêt de notre étude, nous avons repris l'analyse de la bande 2 v_4 réalisée par Lepage et Saint-Loup [5]. Par souci de cohérence nous avons limité cette analyse à J' = 7comme ces derniers. Cela nous a conduit à ajouter aux données antérieures [5] 49 transitions concernant le sous-niveau A1 de $v_4=2$. Grâce à ces nouvelles données, les paramètres (voir tableau III), relatifs à ce sous-niveau, ont été déterminés de manière plus significative. L'écart-type obtenu sur les 49 nouvelles attributions est de 0,027 cm⁻¹.

Tableau III. — Paramètres du type $P^{\Omega} q_4^4$ relatifs au niveau $v_4 = 2$ de ¹²CH₄. * Paramètres de la réf. [5]. [$P^{\Omega} q_4^4$ type parameters relative to the $v_4 = 2$ state of ¹²CH₄. * Ref. [5] parameters.]

$t_{44,44}^{\Omega(K,\Gamma)\Gamma 1\Gamma 2}$	valeur en cm ⁻¹	écart standard
- 36(K, 1) 1112-		
0(0,A1)A1A1	-34,383 -34,177	0,012 0,055 ±
2/0 21)2121	- 0 01385	0 00015
2(U,AI)AIAI	- 0,01385	0,00015
	- 0,0080	0,0015 x
2(2, E)A1 E 2(2,F2)A1F2 0(0,A1) E E 2(0,A1) E E 2(2, E) E E	0,0116 0,0201 4,490 0,0064 - 0,001	0,0005 0,0006 0,017 0,0022 0,003
	•	
1(1,F1) EF2	0,103	0,007
2(2,F2) EF2	0.0090	0.0015
	-,	- ,
0(0,A1)F2F2	-12,530	0,013
1(1,F1)F2F2	0.927	0.004
2/(1) $2(1)$ $F(2F(2))$	- 0 0031	0 0018
	- 0,0031	0,0010
2(2,F2)F2F2	- 0,00//	0,002/

A l'aide de ces nouveaux paramètres, nous avons pu, en particulier, reproduire de façon satisfaisante la partie isotrope du spectre Raman de 2 v_4 obtenu par Brodersen [18] (Fig. 3). Toutefois des désaccords apparaissent pour des raies de faible intensité situées de part et d'autre de la branche principale. Ceux-ci peuvent provenir de l'imprécision de notre analyse pour les valeurs de J' supérieures à 7 puisque le

Fig. 3. — Comparaison' entre le spectre Raman enregistré par Brodersen [18] et le spectre calculé à partir de l'analyse de la bande chaude 2 $v_4 - v_4$.

[The isotropic part of the 2 v_4 spectrum calculated from the 2 $v_4 - v_4$ hot band is compared with the Raman spectrum realized by Brodersen [18].]

spectre calculé comporte toutes les raies jusqu'à J'=11. Notons cependant que le spectre *expérimental* de Brodersen résulte d'un calcul. Ce spectre est obtenu par soustraction de deux spectres expérimentaux : la partie anisotrope et le spectre total, de manière à éliminer les raies éloignées de la branche principale.

6. Conclusion. — Le travail théorique entrepris pour le calcul des bandes de différence des molécules toupies sphériques XY_4 est général. Au niveau de son application, la seule condition requise est d'avoir des données suffisantes sur les niveaux concernés. L'intérêt de ce travail est de permettre un dépouillement plus

- DANG NHU, M., TARRAGO, G., POUSSIGUE, G., FONTANELLA, J. C. et DELPLANQUE, M., *Molec. Phys.* 32 (1976) 785-794.
- [2] GRAY, D. L. and ROBIETTE, A. G., Molec. Phys. 32 (1976) 1609-1625.
- [3] CHAMPION, J. P., Can. J. Phys. 55 (1977) 1802-1828.
- [4] PIERRE, G., CADOT, J., CORICE, R. J. et FOX, K., Can. J. Phys. 55 (1977) 473-481.
- [5] LEPAGE, P. et SAINT-LOUP, R., J. Physique Lett. 40 (1979) L63-67.
- [6] TOTH, R. A., BROWN, L. R. and HUNT, R. H., J. Mol. Spectrosc. 67 (1977) 1-33.
- [7] HUNT, R. H., BROWN, L. R. and TOTH, R. A., J. Mol. Spectrosc. 69 (1978) 482-485.
- [8] HUNT, R. H., TOTH, R. A., BROWN, L. R. and BENEDICT, W. S., Symposium on Molecular Spectroscopy, Columbus, U.S.A. (1978).
- [9] BOBIN, B. et GUELACHVILI, G., J. Physique 39 (1978) 33-42.
- [10] PASCAUD, E. et DANG NHU, M., J. Mol. Spectrosc. 69 (1978) 141-158.
- [11] HECHT, K. T., J. Mol. Spectrosc. 5 (1960) 355-389.
- [12] MORET-BAILLY, J., Cah. Phys. 15 (1961) 237-316.

complet des spectres enregistrés, même lorsque les conditions expérimentales ne sont pas particulièrement adaptées à l'observation des bandes de différence.

Dans le cas des bandes faisant intervenir le niveau de base, les seuls sous-niveaux actifs en infrarouge ont la symétrie F2. En conséquence les sous-niveaux de symétrie différente, ne peuvent être atteints en absorption IR que par deux types de transitions : les transitions interdites en première approximation et rendues observables par interaction avec un sousniveau actif, ou bien, les transitions ne provenant pas du niveau de base c'est-à-dire appartenant aux bandes chaudes. Par exemple, la bande $v_2(E)$ du méthane est rendue active par interaction de Coriolis avec la bande $v_4(F2)$ [2, 3]; le sous-niveau F1 de $v_2 = v_3 = 1$ du méthane est atteint expérimentalement grâce à la présence de l'autre sous-niveau de symétrie F2 très proche [19]; de même la bande v_1 du silane est observée grâce à l'interaction avec la bande v_3 [20].

Dans le cas général, pour les transitions interdites, il convient de distinguer celles qui impliquent un sous-niveau de symétrie A_1 et les autres. En effet, l'opérateur prépondérant pour les interactions du type E-F2, F1-F2 ou A2-F2 est de la forme Pq^{α} (degré rotationnel égal à 1). Par contre, pour les interactions du type A1-F2 il est nécessairement de la forme $P^2 q^{\alpha}$ (degré rotationnel égal à 2). Toutes choses égales par ailleurs, les intensités des transitions correspondantes sont d'ordre supérieur et donc *a priori* plus faibles.

Dans ce cas particulier, même à température ambiante, les bandes chaudes peuvent donner des informations plus nombreuses que les transitions interdites. La bande 2 $v_4 - v_4$ utilisée dans ce travail pour une étude précise du sous-niveau $v_4 = 2$, $l_4 = 0$ (Al) en est l'exemple type.

Remerciements. — Les auteurs remercient le Pr. S. Brodersen de leur avoir accordé l'autorisation de reproduire le spectre expérimental de la figure 3.

Bibliographie

- [13] CHAMPION, J. P. and PIERRE, G., J. Mol. Spectrosc. 79 (1980) 255-280.
- [14] HILICO, J. C., BERGER, H., LOETE, M., Can. J. Phys. 54 (1976) 1702-1711.
- [15] TARRAGO, G., DANG NHU, M., POUSSIGUE, G., GUELACHVILI, G. and AMIOT, C., J. Mol. Spectrosc. 57 (1975) 246-263.
- [16] CHAMPION, J. P., PIERRE, G., BERGER, H. and CADOT, J., J. Mol. Spectrosc. 79 (1980) 281-294.
- [17] LUTZ, B. L., SILVAGGIO, P. M. and BOESE, R. W., Astrophys. J. 227 (1979) 334-337.
- [18] BRODERSEN, S., Raman Spectroscopy of Gases and Liquids. Topics in Current Physics, Editor : A. Weber (1979).
- [19] HILICO, J. C., DEGNI, J., CHAMPION, J. P. and GUELACHVILI, G., J. Mol. Spectrosc., à paraître.
- [20] CABANA, A., GRAY, D. L., ROBIETTE, A. G. and PIERRE, G., Molec. Phys. 36 (1978) 1503-1516.
- [21] RESTELLI, G. and CAPPELLANI, F., J. Mol. Spectrosc. 78 (1979) 161-169.
- [22] PINSON, P. and DUPRE-MAQUAIRE, J., J. Mol. Spectrosc. 78 (1979) 170-174.