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Shear waves in colloidal crystals : I. Determination of the elastic modulus

E. Dubois-Violette, P. Pieranski, F. Rothen (*) and L. Strzelecki

Laboratoire de Physique des Solides (**), Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France

(Reçu le 5 novembre 1979, révisé le 20 décembre, accepté le 20 décembre 1979)

Résumé. 2014 On induit des ondes de cisaillement dans un échantillon de latex. La détection des vibrations excitées
se fait par une technique de diffusion de la lumière (anneaux de Kossel). L’amplitude de vibration de l’échantillon
dépend de la fréquence. Il apparaît une série de résonances dont l’analyse permet de déterminer le module élastique
de l’échantillon. On étudie la variation de ce module en fonction de différents paramètres caractéristiques du latex.

Abstract. 2014 Shear waves are excited in a latex sample. One detects the vibrations of the sample using light scatter-
ing phenomena (Kossel rings). The amplitude of vibrations of the latex sample, when recorded as a function of the
frequency of excitation, presents a series of resonances. Analysis of the resonance peaks allows to determine
the elastic modulus of the latex crystal. We study the variation of the elastic modulus as a function of different
parameters characteristic of the latex.
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1. Introduction. - Polymer colloids are two

component systems. They are made of :

(1) polymeric spheres, few tenth of micrometers
in diameter, dispersed in the solvent at concentra-
tion n = 1012 to 1013 particles/cm3 ;

(2) a solvent such as water characterized by the
viscosity fi.
From the existence of the selective light diffraction

it has been concluded that under appropriate condi-
tions the polymeric spheres are ordered in a tridi-
mensional çrystal. Numerous articles are related
to the phenomena of the light Bragg diffraction [ l, 2, 3]
and to the fundamental problem of crystallization
under the action of repulsive electrostatic inter-
actions [4-7]. This last problem rests on the know-
ledge of the interaction forces which, in principle,
can be deduced from the elastic modulus of the

crystal. In spite of this fact only very few articles
report the measurements of mechanical properties
of the colloid crystals.
. The first estimate of the elastic modulus E has
been performed by Mitaku et al. [8] using the tor-
sional crystal method. Due to the relatively high
excitation frequency (40 kHz and 70 kHz) they inter-
pret the result E = 103 dyn/cm2 as being probably

indicative only of short range ordering. In fact, in
the disordered (liquid) phase obtained by addition
of KCI salt (at 10-4 N concentration) they measured
a finite elastic modulus smaller by a factor of two
as compared with the result obtained in the ordered
phase.

In another experiment performed with a Zimm
low shear viscometer Mitaku et al. measured the

yield stress of about 0.5 dyn/cm2. Using the relation
which relates the yield stress to the elastic modulus
they find the value of elastic modulus compatible
with that obtained by torsional quartz methods.

Independently, Crandall and Williams [9] estimated
the static rigidity from the elastic deformation of a
crystalline column under the earth gravitational
field. They obtained a value of = 1 dyn/cm2 for a
latex containing 1012-1013 particles/cm3. Although
very simple, this method would be diffieult to use
systematically to measure the elastic modulus because
of a prohibitively long time of sedimentation required
to attain the equilibrium deformation.

In this article we propose a method which allows
to determine simply and accurately the elastic modulus
of the colloid crystals from the spectrum of their
mechanical vibrations. In section 2 we describe
the method and the experimental set-up which is
used :

(1) to excite shear waves in a sample contained
in a test tube ;
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(2) to detect the amplitude and phase of these
vibrations using the light diffraction phenomena.
The amplitude of vibrations of the latex sample

when recorded as a function of the excitation fre-

quency (Section 3) presents a series of resonance

peaks which corresponds to the formation of the

standing waves. Such a spectrum is indicative of the
elastic modulus (in general complex with the viscous
damping factor represented by the imaginary part)
of the latex sample as it is shown in section 4 where
we analyze theoretically the problem of shear waves
in ordered latexes. The phase and amplitude of the
shear waves in cylindrical geometry are calculated
in particular. Preliminary measurements of the elastic
modulus as a function of polymer particles concen-
tration as well as a function of NaOH concentration

(introduced progressively) are presented in section 5.

2. Experiments. - 2.1 MECHANICAL SET-UP. -
The latex sample is contained in a glass test tube T
of internal diameter of 14.3 mm and of 150 mm

length. In order to excite the shear waves, the test
tube is forced to oscillate around its axis z using a
system represented in figure 1. The test tube T holds
on the metallic cylinder C by friction. Being suspended

Fig. 1. - Schematic of the experimental set-up.

on ball bearings B, the cylinder and the test tube have
only one degree of freedom ; they can rotate around
the z axis. They are coupled to the loudspeaker
membrane through a rigid rod R and by this means
the small amplitude oscillations of the test tube can
be produced. The oscillation amplitude ço was
measured as a function of the frequency. It has been
found that the mechanical resonance of the loud-

speaker, loaded by the mass of moving parts in the
system, is situated at 35 Hz. Consequently in the

range of frequencies between fm;n = 0 Hz and

fmax = 40 Hz the resonances detected by the appa-
ratus (as those shown in Fig. 5) are due to the colloidal
crystals sample.
The largest elastic modulus values Emax which can

be measured with the operating range 0-40 Hz can
be estimated as follows : the fundamental standing
shear wave in a cylinder of diameter 2 R = 14.3 mm
has a frequency (calculated in section 4, form. (4.19))

From the condition that this frequency can not be
larger than fmax one finds that

The largest elastic modulus we measured, up to
now, in ordered latexes was of about 110 dyn/cm2.
So that not only the fundamental mode but also a
few harmonics were observed.

2.2 SHEAR WAVE DETECTION. - A 20 mW HeNe
laser beam is focused on a small area of the latex

sample. The test tube containing the sample is
immersed in a spherical vessel (10 cm in diameter)
filled with water so that the incident and outgoing
rays propagate practically without refraction. The
spherical vessel is covered by a nylon sock NS which
acts as a translucent screen for the backscattered
light. The diffraction image characteristic of the

crystalline structure observed on the screen is

composed of :

(i) Bragg diffraction spots ;
(ii) Kossel lines (KL in Figs. 1 and 2);
(iii) diffuse background light scattering.
Kossel lines allow one to determine the crystallo-

graphic structure very simply (easier than specular
reflexion spots) because their configuration does not
depend on the incident beam direction. A Kossel
line is in fact an intersection of the Kossel cone with
the screen surface (Fig. 2). Each Kossel cone is centered
around the normal n to the corresponding refracting
crystallographic planes. The cone angle 0 is indicative
of the interplanar spacing d. On the spherical screen
surface the Kossel lines are circular (Kossel rings).
Their configuration is indicative of the crystalline
structure ; while their diameters provide an infor-
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Fig. 2. - Detection of the Kossel line motion.

mation about the interplanar spacing (see Fig. 2).
When the crystal is deformed by the shear wave

the diameter and the position of the Kossel rings
change.

In order to detect this motion a photodiode with
a large photosensitive surface was situated near

to the screen in such a way that only half of the photo-
sensitive area is observed by the Kossel ring (Fig. 2).
When, due to the crystal deformation, the Kossel
ring moves the observed area changes and the total
light intensity is modulated.

It is also possible to detect the deformation using
Bragg spots and even background light scattering.
In this last case the largest signal was observed when
the incident angle corresponds to assumed Bragg
reflexion condition. The signal delivered by the

photodiode is amplified by an AC stage. In order to
detect the amplitude the AC signal I( f ) is multiplied
by itself (I( f ).I( f )) using a four guadrant analog
multiplier and then the average value I( f ) 2 is obtained
by filtering using an R.C. low pass filter. The filter
time constant Tc was 3 s.
The information about the phase of the crystal

deformation is obtained by multiplying I(fl by an
AC reference voltage Vr( f ) of constant amplitude
in phase with the loudspeakers supply voltage and
filterin« 
The I( f )2 and 1( f ) V(f) signals are plotted as a

function of the frequency on a XY recorder. The
VCO input voltage is applied to the X input.

2. 3 FREQUENCY SWEEP. - The loudspeaker is sup-
plied from a voltage controlled oscillator (VCO in
Fig. 3). Due to the low operating frequencies the
sweep rate dfldt must be low enough in order to
obtain a good resolution Aires in the response
spectrum. Afres can be estimated to be of the order

of i df where i is the apparatus response timedt pp p

constant. This time is defined both by the sample
behaviour and by the detection low pass filter cha-
racteristics. The sample contribution Tsampie to i

is particularly large at resonance where it can be

Fig. 3. - Schematic of the signal processing.

estimated to be of the order of l/A/i/2 where Afl/2
is the halfwidth of the resonance peaks. It has been
observed experimentally (section 4) that Aj’l/2 can
be as small as 0.3 Hz. The filter time constant idef
has been chosen to be 3 s. We conclude that in order
to obtain a resolution Aires of 0.3 Hz it is necessary
to use the sweep rate lower than

Such a slow sweep control signal Vsw was obtained
easily using a microprocessor driven 12 bit digital
to analog converter. The microprocessor program
developed for this purpose offers to the user the follow-
ing functions :

a) a choice of the start and stop frequencies,
b) a choice of the sweep rate and sense,
c) a possibility to stop the sweep at a particular

frequency and resume the sweep from this frequency
at a later time.

3. Results. - 3.1 SAMPLE PREPARATION AND

CHARACTERIZATION OF THEIR CRYSTALLOGRAPHIC

STRUCTURE. - Two different latex samples have been
prepared and investigated in our laboratory : Sample A
was made of polystyrene spheres with diameter
of the order 1 000 A dispersed in water. After purifi-
cation, using the ionic exchange resin (Amberlite
MB-3) the latex was introduced in the test tube

(see Fig. 1); about 1/3 of the total height of the tube
was filled by the latex sample.
The test tube was then located in the spherical

vessel in such a way that the small area of the sample,
illuminated by the laser beam, coincided with the
spherical vessel center 0. The global configuration
of Kossel rings suggested that the crystallites which
are in contact with the glass wall have the BCC
structure with the (110) planes parallel to the inter-
face. From the interplanar spacing drBBCC1100 = 0.247 um
the polystyrene spheres concentration was deter-
mined as follows :
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Sample B was made of spheres with diameter of
order 2 000 À. As deduced from the light diffraction
image this sample was polycrystalline with the cubic
structure as well. The crystallites which were in
contact with the glass walls had FCC structure with
their (111) planes parallel to the interface. The nume-
rical density of the polymeric particles as calculated
from the interplanar distance dfff = 0.40 pm was

The sample B was diluted progressively by addition
of a known volume of distilled water. After each
dilution the sample was purified with the ionic

exchange resin. The crystalline ordering was then
recovered for density as low as

3 . 2 SHEAR DEFORMATION. - The behaviour of the
latex sample depended strongly on the excitation

amplitude. For the oscillation amplitude small enough
the crystallite deformation was elastic; the Kossel
ring oscillations were proportional to the excitation
amplitude and the global configuration of the dif-
fraction image was conserved in average. On the

contrary, for the excitation large enough the plastic
crystal deformation was observed : the diffraction
image was destroyed. When the excitation was

removed a new Kossel rings configuration appeared.
In general, the samples were first submitted to

a plastic shear deformation in order to improve the
crystallographic structure of the sample. Then the
measurements of the amplitude and phase of the
elastic oscillations were made using the method
described in the previous section. 

In figure 4 we present a typical plot of I2(f) obtained
with the sample A. It shows a series of peaks which
indicates the mechanical resonances.

Fig. 4. - Colloidal crystal vibrations detected by the photo-
diode as a function of frequency. Sample A.

The spectrum I2( f ) obtained with the sample B
(Fig. 5) shows as well the resonance peaks but its
general aspect is more regular.

Fig. 5. - Colloidal crystal vibrations. Sample B.

4. Theoretical calculation of shear modes. - 4.1

EQUATIONS OF MOTION. - The driven oscillations of
the test tube induce shear waves in the latex sample.
The latex sample is not a monocrystal but contains
many microcrystallites with a dimension of the order
of 10-few 100 um. From an elastic point of view
the sample will behave as an isotropic medium and
as long as we are concemed with transverse modes
it will be characterized by only one elastic modulus E.
In this section we shall first determine the shear modes
induced by the test tube motion and then compute
the resulting deformation on a crystallite close to

the test tube surface. From a hydrodynamic point
of view the medium is described by a two-component
system (particles and fluid) [10, 11]. A first equation
describes the latex sphere motion :

where A is the Laplacien operator,
where n is the number density of particles,
m is the mass of the particles,
mo is the mass of the solvent having the same volume
as a particle,
Ço is the frictional coefficient of a particle,
s denotes the position of the particles and v is the
fluid velocity.

The term nm 
av 

is similar to the ArchimedeThe term nmo v is similar to the Archimede° 
at

force : it characterizes the force exerted (in absence
of friction) by the accelerated fluid on a particle. The

term n as - v describes the friction between( at )
the particles and the fluid. The last term E AS repre-
sents the elastic force due to the fact that the particle
is not isolated but belongs to an ordered suspension.
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The fluid is well described by the Navier and Stokes
equation with the additional term corresponding
to the frictional force. This reads :

where q is the medium viscosity.
The friction coefficient Ço is of order 6 nlao

where ao is the particle radius. For particles wi+h
ao - 10 - 5 CGS, Ço is typically of order 10 - 5 CGS
if il - 10 -1 CGS.
The pressure does not appear in equation (4.2)

since we are considering transverse modes. The first
two terms of equation (4. 1) are negligible compared
to the friction terms since

for the frequencies under use ( f in the range 0-40 Hz).
Then equation (4.1) reduces to :

Using equations (4.2) and (4.3) one can eliminate the
velocity v, one obtains :

where ç = nço is of order 107 to 108 CGS for samples
with n - 1012-1013. The second term of equation (4.4)

reduces to A as since pE  1 (strong frictionred luces to il at 
Since 

03B5n 
 (strong friction

between the spheres and the solvent compared to
the elasticity).

Let us show that the last term of equation (4.4) can
be omitted since it would correspond to a mode with a
very small penetration depth. As indicated in (Ref. (9),
Eq. (4.4)) leads, for modes of the form s = so ei (wt - kr)
to the two (+ and - ) dispersion relations :

These expressions can be simplified : Indeed

since wn  1 and PE’  1.since 
E 

 1 and 1 « 1
The two dispersion relations are now expressed

as :

The mode defined by k - corresponds to a penetration
depth b which is of the order of the distance

d ~(1 between the spheres.n
Indeed one gets

Such a mode with a penetration depth of the order
of the distance between the particles will not contri-
bute to the response of the whole sample. Then the

E
term fi: A’s can be omitted in equation (4.4) which
now reads :

and corresponds to the dispersion relation (4.6).
Let us note that equation (4.8) takes into account

the fact that the friction term n v - as expressed03BE0 (v at ) p

as - E As (from Eq. (4. 3)) is of the same order as the
friction term q Av of equation (4.2).

4. 2 TRANSVERSE MODES IN THE CYLINDRICAL GEO-
METRY. - As a first approximation one can consider
that the particules move with the same velocity as
the fluid :

The driven oscillations are imposed by a motion
of the test tube of the form :

where Tep is the tangential component (in cylindrical
coordinates) of the test tube displacement (see
Fig. 6).

Since the driven oscillations are tangential, one
considers transverse modes of the form (in cylin-
drical coordinates) :

In this description we omit the z-dependence of the
modes since we are dealing with samples where
R/H  1 (H is the height of the sample). After some
algebra equation (4. 8) reads :
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Fig. 6. - Definition of the shear geometry.

where y = k+ r is a complex number and k+ is
defined by equation (4.6). In the following we shall
write k instead of k+.
On the surface of the test tube the fluid velocity

must be equal to the velocity of the test tube :

The boundary condition on the displacement s is
deduced from equation (4.13) with use of equa-
tions (4.9), (4.10) and (4.11)

General solutions of equation (4.12) are Bessel
functions of order one. Solution of equation (4.12),
with boundary conditions (4.14) reads :

This corresponds to a fluid velocity

The light difi’raction is performed on a crystallite
which is quenched with a specific crystallographic
plane parallel to the cylindrical surface of the test

tube (the choice of this plane and its orientation

depend of course on the crystallographic structure
of the sample). As a consequence, the geometrical

structure of the Kossel lines strongly depends on
the displacement sQ and on the distortion oS({J/ or
of the latex crystallite in the immediate neighborhood
of the test tube. In a newt paper we shall give the
explicit relation between the shape of the Kossel lines
and the applied excitations. Here we shall restrict
our attention to the position of the mechanical
resonances which correspond to the peaks of the local
strain.
The local strain, obtained by differentiation of

equation (4.15) and evaluated at r = R where the
light diffraction occurs, reads :

Two difficulties arise when we want to compare the

peaks of the local strain defined by equation (4.17)
with the resonances measured by the apparatus
described in section 2.2.

1) The very existence of the solvent viscosity
broadens the resonance peaks as soon as w &#x3E; E/n
so that it is difficult to determine their exact position,
experimentally as well as theoretically.

2) As will be shown in the next paper, motion of
the scattered light exists without any distortion of
the latex : rigid motion of the sample also induces
a change of the Kossel lines. This effect, which can be
neglected for sharp resonances, cannot be ignored
when the peaks begin to broaden.
One sees on figure 7 a typical curve showing the

resonances of the quantity :

plotted for a complex k and with R = 0.715, E = 40,
1 = 0.05 in CGS units. Since the resonances are

Fig. 7. - Typical curve showing the resonances of the local strain.
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sharper for low frequencies a comparison between
experiments and calculations has to be done in the
low frequency part of the resonance spectrum. In
this low frequency region the resonances appear for
the zeros of the denominator Jl(kR) of equa-
tion (4.18), which can be calculated for positive
real k.
As quoted above, the smootheness of the peaks

due to the imaginary part of k does not play an impor-
tant role for low frequency. Let us define Xn as the
nth zero of J,(X) in the domain X &#x3E; 0. Due to the
definition of k (see Eq. (4.6)) the spectrum of the
resonance frequencies simply writes :

To a very good approximation, the difference between
two consecutive zeros of Jl(x) can be considered
as a constant, equal to n. If we call àf the difference
between two consecutive resonance frequencies, we
finally get

which can be easily tested.
The difference between two peaks evaluated from

equation (4.20) and for R = 0.715, E = 40 in CGS
units is Af = 4.42 Hz. This is a very good approxi-
mation of the exact value obtained from the plot of
l/1(t) calculated for a complex k. One obtains from
figure 7 Af = 4.48.

5. Measurements of the elastic modulus. - 5. 1
PARTICLE CONCENTRATION DEPENDENCE. - The regu-
lar shape of the vibrational spectra obtained with
the sample B allowed to determine accurately the
position of the resonance peaks and subsequently
their average interval Af. Using the approximate
formula (4.20) the elastic modulus E has been deter-
mined for the different particles concentrations

(sample B) obtained by successive dilution as explained
in section 3 . l. The obtained variation E(n) is plotted
in figure 8. One observes that the elastic modulus
decreases with the concentration. For eightfold dilu-
tion the elastic modulus decreased by a factor of 65.
For the concentration n = nint/l0 the suspension did
not crystallize and we supposed that the elastic modu-
lus vanishes.

In general, the elastic modulus can be determined
from each spectrum with the accuracy

which we estimated for the sample B to be in general
of the order of 5 %. However the dispersion of the
experimental points in figure 9 is larger. We supposed
that this can be due to the uncertainty in the ionic
purity of the preparation - each dilution operation
was followed by the ionic purification which was

Fig. 8. - Variation of the elastic modulus as a function of the
polymer particles concentration n.

Fig. 9. - Electrical conductivity variation as a function of the
Na+ ion concentration (per polymer particle).

done without any control of the electric conductivity.
For two preparations of the same particle concen-
tration the ionic impurity concentration can be diffe-
rent and consequently the electrostatic interactions
and the elastic modulus can be quite different.

5.2 IONIC IMPURITIES CONCENTRATION DEPEN-

DENCE. - The fact, that the elastic modulus depends
on the ionic impurities concentration, was verified
in another series of measurements where the initial

(sample B) preparation was doped with 0.001 N NaOH
solutions in water. The base content in the sample
was increased by steps ; each step consisted in addi-
tion of four droplets of the electrolyte solution. The
elastic modulus was measured and afterwards the
relative electric conductivity was tested using two
metallic electrodes immerged in the solution. As

expected, the electric conductivity plotted on figure 9
as a function of the base content presents the V-like
variation. The minimum conductivity corresponds to
the neutralization of the acid groups and the negative
charge of the polysterene spheres has been estimated
to be 6 x 103 e/part.
The elastic modulus of the colloidal crystal decreases

as a function of the base content. For the base concen-
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tration which corresponds to the minimum of the
electrical conductivity the elastic modulus has been
found to be finite (Fig. 10) and the crystal-liquid
phase transition takes place for the base concentra-
tion larger than cm;n . Such a behaviour seems to be
in contradiction with the assumption of the acid

groups neutralization for cm;n [12].

Fig. 10. - Elastic modulus variation as a function of the Na+ ion
concentration.

5.3 FINE STRUCTURE OF THE VIBRATIONAL SPEC-

TRUM. - The spectra obtained with the sample A
were in general much less regular than that of the
sample B. The secondary resonance peaks, well
visible in figure 4, were obtained systematically.
An explanation of these secondary peaks çan be

proposed :
In a cylindrical sample vibrational modes other

those that considered in section 4 can exist. In parti-
cular, due to the non slipping condition at the bottom
of the test tube, the crystal deformation should also
be a function of the vertical coordinate Z. In such
a case two characteristic lengths must be taken into
account : the tube radius R and the sample length H.
The effect of the second length H will be to intro-

duce the fine structure in the spectrum because in

general H » R. This fine structure can be visible

only if the imaginary part of the elastic modulus
(viscosity) is small enough, which seems to be the case
for the sample B.

6. Conclusions. - From the preliminary results

presented in this paper we can conclude that the

spectrum of the mechanical vibrations excited and
detected using the experimental set-up described
in section 2, provides interesting information about
the elastic modulus (complex in general) of the colloi-
dal crystals. As compared with other methods,
which we discussed in the introduction of this paper,
our method is very simple and well adapted to measure
accurately the low frequency elastic modulus in

polycrystalline samples. In our samples, under specific
conditions 1) of the particle size, charge and concen-
tration and 2) of the ionic impurities concentrations,
the elastic modulus has been found to vary between
102 and 0 dyn/cm2 which suggests that the diffe-
rences between the results obtained previously [8, 9]
can be explained in terms of the differences in the
sample characteristics.
The present work can be extended in several

directions :

I) A systematic measurement of the elastic modulus
as a function of different parameters can be useful
for the determination of the interaction potential
in the colloidal crystals.

II) The application for the monocrystalline samples
should be very interesting because in this case the
measurement of the elasticity tensor is possible in

principle and also because an additional information
about the interaction potential could be obtained.

III) The vicinity of the crystal-liquid phase transi-
tion should be explored more in detail.

IV) The measurement of the imaginary part of
the elastic modulus is of prime importance for the
knowledge of the plastic properties of the colloidal
crystals. Such a study should be made in connection
with the microscopic observation of the dislocations
mobility.
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