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(Reçu le 8 juin 1979, accepté le 31 août 1979)

Résumé. 2014 Une théorie a été mise au point pour rendre compte de l’émission d’électrons à partir d’un centre
profond dans un champ électrique, en tenant compte de l’effet tunnel ainsi que du couplage électron-phonon.
Un modèle numérique utilise cette théorie pour simuler les expériences DLTS capacitives et les variations tran-
sitoires de capacité. Les paramètres du modèle pour le piège E3, introduit par irradiation électronique, sont
évalués en recherchant les meilleurs ajustements possibles des prévisions théoriques avec les spectres DLTS
expérimentaux et avec les variations expérimentales de la capacité. En particulier une estimation est obtenue
pour le décalage Franck-Condon. Cette estimation se trouve être consistante avec une autre basée sur l’énergie
d’activation mesurée pour la section de capture. Avec les paramètres ainsi obtenus, on montre que le modèle
reproduit correctement plusieurs autres résultats experimentaux pour une grande gamme de températures et
d’intensités du champ électrique. 

Abstract. 2014 A theory is developed for the electric field emission of electrons from deep levels in GaAs taking
into account quantum mechanical tunneling and electron phonon interaction. Using this theory, a numerical
model is developed simulating capacitive DLTS and capacitive transient experiments. The parameters of the
model for the electron irradiation induced defect E3 are extracted by fitting an experimental DLTS spectrum and
an experimental transient capacitance curve. In particular, an estimate is given for the Franck-Condon shift.
This estimate is found to be consistent with that obtained by another method based on the measured activation
energy of the capture cross-section. With the parameters thus found, the model is shown to reproduce correctly
several other experimental results over a wide range of temperatures and electric field intensities.
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1. Introduction. - Electric field dependent ioni-
zation rates of deep levels in semiconductors have been
observed by several authors [1-9]. For example,
Tash and Sah [1] have experimentally evaluated the
field enhancement of the emission rate of a deep
acceptor level attributed to gold in silicon. They ten-
tatively explain this enhancement by the Poole-
Frenkel effect [10]. Their measurements follow the
relationship :

between the emission rates en in the presence of an
electric field and eno in the absence of field. In this
expression AE is the Poole-Frenkel potential barrier
lowering, k is the Boltzmann constant and T the abso-
lute temperature. However, they did not succeed in

(*) Present address : Laboratoire Central de Recherche, Thom-
son CSF, Domaine de Corbeville, 91401 Orsay, France.

fitting their experimental results with a reasonable
value of AE.

Lang [4] has also observed a field enhancement of
the emission rate of a centre associated with ZnO
in GaP. The emission rate was found to depend expo-
nentially on the electric field, but no tentative explana-
tion was given.
Vincent [6] has recently observed field dependent

emission rates for a GaAs trap which he ascribed to
chromium. To explain the observed emission rates,
he develops a theory which bears a close ressem-
blance to that of the Franz-Keldysh tunneling effect [11,
12].
As it has been shown by Lang [7], field effects can

be detected using the DLTS techniques that he had
recently introduced [7]. In the depleted region of a
reverse biased Schottky barrier or p-n junction, there
is a linear distribution of electric field strength. This
gives rise to a distribution of field dependent emission
rates for a given trapping level. As a consequence,
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one observes in heavily doped samples a deformation
in the shape and a shift in the position of DLTS
peaks relative to lightly doped samples.
The above observations are common to electron

traps in GaAs samples doped above 1016 cm- 3.
For analogous doping levels, field effects seem to be
negligible for hole traps [8]. The small effective mass
of the electron near the F minimum of the conduction
band in GaAs may therefore be an important factor
and quantum mechanical tunneling may be consider-
ed as a likely cause for emission rate enhancement.
The aim of this paper is to show that tunneling is
effectively the physical mechanism involved and that
it can quantitatively explain the observed effects in
GaAs.

Recently, Korol’ [13] gave an elegant calculation
of the probability per unit time for elastic tunneling
from a bound state to a free state of the conduction
band in the presence of a uniform electric field. The
ionization rate r(L1) found by Korol’ for an electron
trapped in a delta function potential well can be
written as

where L1 is the energy depth of the trap below the
conduction band at the trapping site and K is the
WKB attenuation of the wave function across the

potential barrier separating the trapping site from
the free conduction band states. For a uniform field

F, the barrier is triangular and K is given by :

where q is the electronic charge,
M* the effective electron mass, and
h Planck’s constant divided by 2 n.

The preexponential factor y corresponding to

Korol’s calculations is equal to q/3 h. Calculations
similar to those of Landau and Lifshitz [14] for the
tunneling ionization rate of the hydrogen atom have
been performed by Pons [15] for a delta function
potential well. Pons calculations yield an ionization
rate in the form of eq. (2) with y = 8 ql3 h.

Since the coupling with phonons is not accounted
for in the above evaluation of the ionization rate

r(L1), this quantity is temperature independent. In
practice, as we show later, the ionization rates are
found to be very sensitive to both temperature and
electric field. In part 2 of this paper, we present a
theoretical model for the calculation of the emission
rate in the presence of an electric field taking into
consideration the coupling of the trap with the lattice
phonons.

Eq. (2) is used as one of the building blocks for our
model. In part 3, we report experimental results
obtained for the electron-irradiation induced defect
E3 in GaAs [16], and a comparison with theory is

made. Lastly, a critical discussion on some salient
features of the model is given in part 4.

2. Theory of phonon assisted tunnel emission. -
Kovarskii and Sinyanskii [17] were the first to for-
mulate a theory for the non radiative capture by mul-
tiphonon emission (MPE). Henry and Lang [18]
have considerably simplified the theory and put it
in a readily usable form. Their work revived the interest
in the subject and several authors have discussed
different aspects of the MPE theory [19, 21]. The non
radiative capture results from lattice vibrations which
cause the energy level of the bound state to cross the
bottom of the conduction band where free electrons
are available. At sufficiently high temperatures, the
capture cross section J can be shown to be thermally
activated [15]

where

(J 00 is the value of a extrapolated to infinite tempe-
rature, and

Eu is an activation energy.
In GaP and GaAs, Henry and Lang [18] have

shown that many deep levels give strong evidence for
such non radiative transition. We are therefore led
to describe the coupling between the centre and the
lattice vibrations in terms of MPE theory.

2.1 THE ELECTRON-PHONON INTERACTION. - We
now give the assumptions of our model. The defor-
mation of the lattice around the trap is described by
a single configuration coordinate Q and coupling
is assumed to occur with phonons having a single
well defined characteristic angular frequency 0153. As
shown in (Fig. 1), the electronic energy level Ee
of the bound state is assumed to change linearly
with Q. When, the centre is unoccupied, the value of Q
oscillates about an equilibrium position which is
taken to be at Q = 0. The electronic level Ee of the
trap changes with Q according to

where Eo and b are constant.
When the trap is occupied by an electron, the elec-

tronic level is assumed to be still given by eq. (5)
but Q oscillates about a new equilibrium position
and consequently, Ee oscillates about a new equili-
brium value El. The new equilibrium values

Q and El can be found by looking for the minimum
of the total energy Etot associated with the occupied
electron trap. This total energy is the sum of an elec-
tronic and an elastic term, hence

where the constant M is a reduced mass.
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Fig. l. - Energy diagrams showing the dependence of the elec-
tronic and total energy on the configuration coordinate Q. The
oscillations of Q occur about the equilibrium values 0 and U for
empty and occupied traps respectively. In each case, the equilibrium
value of Q is that corresponding to the minimum of the total
energy.

Etot becomes minimum when Q assumes the value

For a semiclassical model, one may assume that the
value of Q oscillates sinusoidally at an angular
frequency m about the equilibrium value. Conse-

quently, for an occupied trap, Ee oscillates about the
level El corresponding to Q = Q according to

6m being the amplitude of oscillation of the coordi-
nate Q. The difference between the levels E. and El
is easily shown to be equal to twice the Franck-
Condon shift Shco and can be written as :

where S is the Huang-Rhys factor [22]. The ampli-
tude Qm can be directly related to the total energy
in the phonon mode. Assuming that n phonons are
involved, we have

Combining eqs. (7), (9) and (10), we obtain

for the amplitude of oscillation in the electronic

level Ee.

2.2 THE ADIABATIC WAVE-FUNCTION. - In appen-
dix A, we give an adiabatic solution to the electronic
time-dependent Schrôdinger equation. This solution
is shown to be valid in the neighbourhood of the
potential well. We now develop this electron wave
function in terms of stationary wave functions for
the following reasons :

(i) Eq. (2) for the tunnel emission rate applies
only to stationary states.

(ü) The emission and capture rates will be related
by the principle of detailed balance which only applies
to stationary states.

The phase factor exp[2013 10(t)] in the electronic
wave function in eq. (A. 13) of Appendix A can be
expanded into a Bessel-Fourier series

where dp = Ec - El - pnw, Ec = E,,,(X,) is the bot-
tom level of the conduction band at the trapping site
Xt and Ec - jp is an electronic stationary quasi-
level as shown in (Fig. 2a). It is shown in appendix A
that the magnitude ll’[r, A(t)] of the wave function
changes only slightly with d in the vicinity of the
potential well. Consequently, if the excursion bQ,.
of the electronic level is not too large, the modulus
IF[r, J(t)] of the wave function can be assumed to be
time independent. Furthermore, for the values of p
yielding non negligible values of the Bessel function
Jp(bQmlnw), we can set

With this approximation, eq. (12) becomes

showing that, near the potential well, the wave func-
tion can be considered as a linear combination of

stationary wave functions corresponding to the quasi-
levels Ec - J, (p := 0, ± 1, ± 2, ...).

In order to calculated the probability II p of finding
the electron at a given quasi-level Ec - d p, we must
take into consideration all the allowed values of the



1164

Fig. 2a. - Energy diagram showing the profile of the conduction
band edge in the depleted region of a p+ n junction or n-type
Schottky barrier diode. This figure shows also the quasi-levels
associated with an occupied trapping site.

amplitude bQ. given in eq. (11), the probability of
finding an integer number of phonons n following
the canonical distribution. Straightforward calcula-
tions yield

il pis, roughly speaking, a bell-shaped function of p
as shown in the sketch of (Fig. 2b). The above calcu-
lations were performed for an occupied trap. The
calculations for an empty trap are identical except
that the corresponding quasi-levels are located at

Ec - A; (p = 0, + 1, + 2, ... ) and :

2.3 CALCULATION OF EMISSION AND CAPTURE

RATES. - When the trap is occupied, the electron
can be field emitted from any of the quasi-levels
E, d p. This is an elastic tunneling transition from
a localized quasi-stationary state to a free conduction
band state. The probability for this process is the

product of three factors. The first factor is the proba-

Fig. 2b. - Probability of occupation 77p of each quasi-level of
energy E,, - Li p.

bility HIP of finding the trapped electron at the quasi-
level E c - d p. The second factor is the tunneling
emission probability r(Jp) for an electron at this

quasi-level. The third factor is the Fermi-Dirac

probability (1 - fl,p) of finding an empty conduction
band state of energy E,,(X,,) = Ec(X,) - dp (see
Fig. 2a). The net field ionization probability eF
is considered as the sum of the ionization probabilities
for all the different quasi-levels and can be written as

The above sum is restricted to quasi-levels having an
energy E,, - L1 p in the forbidden band at the trapping
site. Therefore, expression (17) for eF is restricted to
electronic levels for which an elastic transition to the
conduction band can occur only through tunneling.
To obtain the total emission rate en, we must add to

eF the thermal emission rate eno which is present even
at zero electric field, thus

Similar calculations can be performed for tunnel assist-
ed capture rate CF, we only have to replace the level
El by E. and the probability (1 - fl,p) appearing
in eq. (17) by the Fermi-Dirac probability fo,p of
finding the electronic conduction band level

occupied, Jp being defined by eq. (16). The counter-
part of eq. (17) for CF is thus

As for eq. (17), the summation of eq. (19) is restricted
to terms for which the energy Ec - d p is located in
the forbidden band at the trapping site. The total

capture rate c. can be written as
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where cno is the thermal capture rate which is prevalent
at low fields.
The thermal emission and capture rates eno and cno

can be related by the detailed balance equation :

where EF is the Fermi level and ET is the Gibbs energy
of the level and is given by [23]

2.4 FIELD AND TEMPERATURE DEPENDENCE OF THE
EMISSION RATE. - An approximate analytical expres-
sion for the field emission rate eF can be obtained by
approximating the sums in eqs. (15) and (17) by
integrals. The details are given in Appendix B. For
temperatures higher than 1iwjk, eF approximates to :

where I,(x) is the modified Bessel function of order v.
The values of v and of Avare given in Appendix B.
With the above approximations, we note that the
emission rate eF depends on the Huang-Rhys factor S
and on temperature T only through the product ST.
In (Fig. 3) we have plotted the emission rate eF versus
the electric field using the full expressions (15) and
(17) and the approximate expression (23). In both

Fig. 3. - Electric field dependence of the field emission rate eF,
as a function of the product ST. Full and dotted lines correspond
respectively to the «exact» and approximate expression for eF.
The case labelled ST = 0 is evaluated after Korol’s expression.

cases, the preexponential factor y appearing in expres-
sion (2) for F(4 ) was taken as ql3 h, corresponding to
Korol’s calculations. In the example of (Fig. 3),
we deal with traps having an electronic level 0.35 eV
below the conduction band. The phonon energy nw
is taken to be 10 meV. The choice of this value corres-

ponds to the Transverse Acoustic phonon mode in
GaAs and will be justified later.
As with the approximate expression (23), the exact

calculation ofBeq. (17) for eF depends on S and T
through the product ST provided T &#x3E; 50 K. We see
that, the agreement between exact and approximate
expression for eF is good for the different values
of the product ST except at small field strengths.
The case ST = 0 reduces simply to Korol’s ioniza-
tion rate F(E, - El). We note that coupling with
the lattice increases the field emission rate eF to a great
extend especially at low fields. For ST = 500 K, and
at a field of 105 V. cm -l, the field emission rate is
five orders of magnitude larger than for ST = 0.

2 . 5 CALCULATION OF CAPACITIVE TRANSIENTS. -

In a p+ n junction or Schottky barrier, the electric
field F varies linearly across the depleted junction
width W according to a law of the form

where eo Er is the dielectric constant, qNp the net charge
density of shallow ionized donors assumed to be
uniform in the depleted region, X is the distance from
the junction or the Schottky barrier. The variable
field strength in the depleted region will give rise to
a distribution of emission rates. In the following,
we outline the calculations for the transients follow-

ing the application of a rectangular refilling pulse in
the diode bias. This pulse serves the purpose of filling
a fraction of the traps in the depleted region. The
transients are subsequently studied under the condi-
tions of a constant bias voltage. The occupation of
an electron trap at any position X can be deduced
from the differential equation

where J(t) is the occupation ratio of the traps at the
position X and at any time t. The rates cn and en
are the capture and emission rates for the trap at the
position X including field effects. The solution of

eq. (25) can be written in the form

where to is an arbitrary reference time and 100 is the
limiting value of f (t) at steady state given by
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The capacitance transients that we simulate are obtain-
ed just after the application of a rectangular refilling
pulse which reduces the value of the reverse bias and
reduces consequently the depletion layer width. The
transients occurring during and after the refilling
pulse are both governed by eqs. (24) to (27) except
that the depletion layer width is changed when the
pulse is removed and consequently Cn and en assume
différent values.

In a DLTS experiment, the refilling pulses of dura-
tion tp are applied periodically with period tr. Assuming
that en and cn are the emission and capture rates for
a trap during the refilling pulse and that en and Cn
are these values after the removal of the pulse, and
taking for the time origin the instant of application
of the refilling pulse, eq. (26) yields

and

where f. is given by eq. (27), whereas

If the heating rate during the DLTS experiment is

sufficiently low, one can assume that

This condition together with eqs. (28a) and (28b)
easily yield the value of f (tp). The case of a one shot
refilling pulse can be treated as a limiting case for
which the repetition period tr is made to go to infinity.
The transient behaviour of f (t) is given by eq. (26)

with tp replacing to. The corresponding capacitive
transients are obtained by using Poisson’s equation,
the solution of which has the form

where NT is the concentration of traps per unit volume
assumed to be uniform. These traps are assumed to
be neutral when unoccupied. V is the electrostatic
potential across the depletion region and includes the
diffusion potential. The depth of the depletion layer W
can now be calculated at any instant t and the capaci-
tance C is deduced from the formula

where A is the diode area.

We have developed a computer model calculating
the emission and capture rates under different tempe-
rature and electric field conditions after the full for-
mulae given by eqs. (17) to (20). The computer model
then predicts the capacitive transients according to
the method outlined above.

3. Comparison between theoretical and experimen-
tal results. - 3.1 TECHNIQUES. - We have studied
field effects on the irradiation induced defect E3 [16].
For this study, irradiations with 1 MeV electrons have
been performed on three different vapour phase
epitaxy layers of GaAs (dopant concentrations of the
starting materials : 1.5 x 1015, 1.8 x 1016,
5 x 1016 cm-3) and on one layer of bulk Czochralski
material (dopant concentration of the starting mate-
rial : 1 x 101’ cm-3). Irradiation doses range from
2 x 1 O 14 cm - 2 for the material with the lowest dopant
concentration to 2 x 1016 cm-2 for the material with
the highest dopant concentration. After irradiation,
the layers are lightly etched (1 pm) and a 1 000 A
thick layer of gold is evaporated onto their surface.
(Area of the Schottky diodes : 5.8 x 10- 3 cm2.)

Capacitance transients have been recorded at fixed
temperatures using a Boonton model 72 B capacitance
bridge monitored by a computer [24]. « Deep Level
Transient Spectroscopy » (DLTS) [7] experiments
have also been performed with both capacitance and
current transients. The transient signals are analysed
with a two phase lock-in amplifier [25, 26] ; the difi’e-
rence between the in-phase component and the qua-
drature component of the transient is recorded as the
DLTS signal [27].

3.2 EXPERIMENTAL RESULTS. - Capacitance tran-
sients have been recorded at five temperatures rang-
ing from 108 K to 163 K for a sample with a free
electron concentration equal to ND = 4.7 x 1016 cm - 3
after electron irradiation, with a fixed reverse bias
equal to 3.5 V and after a refilling pulse of 100 ps
duration. The results are given in (Figs. 4a and 4b).
A somewhat unusual linear scale for capacitance and a
logarithmic scale for time have been used. For the
lowest temperature a linear dependence of the capaci-
tance on the logarithm of the time is observed over
more than five orders of magnitude of time, giving
clear evidence of a large distribution of time constants
in the depleted region of the Schottky diode. Let us
note the increasing slopes of the curves with increasing
temperatures, which obviously shows that the effect
is temperature dependent.
DLTS curves have also been recorded from the

same sample, with a fixed reverse extemal bias equal
to 4.0 V, with refilling pulses of variable amplitude A V,
and with two different ’émission rate-windows [7]
(Fig. 5). With increasing amplitude of the pulses, the
additional filled traps are submitted to increasing
electric fields. As a consequence, shifts in the position
and deformations in the shape of the DLTS peaks
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Fig. 4a. - Transient capacitance changes at différent temperatures
for a Schottky barrier diode made on n-type GaAs with a dopant
concentration of 4.7 x 1016 cm-3. The transients correspond to
a reverse bias of 3.5 V, the refilling pulse has a height AV = 4 V
and a duration of 100 gs. The reference capacitance level has been
taken to be equal to the steady state value. The points correspond
to measurements and the full lines to the simulated transients.

Fig. 4b. - Transients recorded in the same conditions as for

(Fig. 4a), but with dînèrent values of the refilling pulse height AV.

towards low temperatures are observed. A saturation
of the peaks is reached for amplitudes of the refilling
pulses larger than 2.0 V. The signatures [28] of E3
in four different samples with dopant concentrations
ranging from 1. 5 x 10 " to 9 x10111 CM- 3have been
recorded using both capacitance and current tran-
sients (Fig. 6). For the samples with the larger dopant
concentrations, we note strong deviations of the

signatures from that recorded from the sample with
the lowest dopant concentration. It can be noticed
that this effect is less pronounced for large emission
rates or for high temperatures.

3.3. EVALUATION OF THE PHYSICAL PARAMETERS
BY CURVE-FITTING METHOD. - The différent physical
parameters entering the model are : the Gibbs energy

Fig. 5. - DLTS curves for the same sample as in (Fig. 4), with a
4 V reverse bias and different values of the refilling pulse height A V.
The emission rate windows and pulse durations are respectively :
(a) 17 s-1 and 100 ils, (b) 140 s - and 50 ils. Dotted curves corres-
pond to the model simulations.

Fig. 6. - Signatures of E3 for four samples with different dopant
concentrations ND, reverse bias Vb and refilling pulse heights O V ;
en is the experimental emission rate window, yielding a DLTS
peak with a maximum at the temperature T. Curves correspond
to model simulations and points to experimental determinations.
(Points with 1000/T  4.5 are determined from current transients.)
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ET of the trap, its concentration NT, the phonon
energy %0153, the Huang-Rhys factor S, the effective
mass m* for the trapped electron, the preexponential
factor y and the dopant concentration Np.
We have assumed that m* is identical to the effective

mass for the density of state of the F minimum of the
conduction band (m* = 0.068 mo) and that the

energy of the phonons corresponds to the peak of
density of state for the T.A. mode (hm = 10 meV).
These choices will be discussed later.

Some of the other parameters cah be deduced from
experimental results : the dopant concentration is
obtained from careful C(V ) profiling. Measurements
at the same temperature of the emission and capture
rates with negligible electric field effects provide the
Gibbs energy ET of the trap, from eq. (21). Direct
measurements of the capture cross section of E3
have been published by Henry and Lang [18] who
interpreted the results in terms of their MPE theory.
The temperature dependence of Q follows eq. (4)
with parameters

DLTS experiments have been performed on a sample
with the low dopant concentration

with several emission rate windows [7] ranging from
6.9 s -1 to 1.7 x 10 5 s -1 using both capacitance and
current transients (Fig. 6). The emission rates have
been checked to be uniform in the depleted region and
insensitive to the external bias. Numerical simulations
of these experiments have been performed, and assum-
ing that the Gibbs energy ET varies with tempera-
ture according to a law similar to that of the gap [29],
we set

where the parameters determined for best fits are
given by :

In order to determine the remaining unknown para-
meters of the models, we have fitted, with the computer
model described in section (2.4), the experimental
results described above for a sample having a uniform
dopant concentration measured to be

by careful C-V profiling.
For such a dopant concentration, because of field

effects, only a rough estimation of the concentration
of the trap can be deduced from the amplitude of the
DLTS peaks. Hence, the concentration of the trap NT
is an unknown parameter, together with S and y.
For a fixed value of NT, we can determine the values

of S and y required to yield a least square fit for the
capacitance transient at 123 K of (Fig. 4a). In fact,
this curve is very close to a straight line over four
orders of magnitude of time, and in our numerical
model, the slope of the linear part of the plot depends
only on S, and increases when S is made to increase.
Changing y results in a mere translation of the comput-
ed transients along the logarithmic time scale. Everyth-
ing else being fixed, the parameters S and y can be
considered as single valued functions of NT.
For a range of values of NT from 1.5 x 1015 to

2.1 x 1015 cm-’, we find that the parameters requir-
ed to fit the transient at 123 K of (Fig. 4a) will also
reasonably fit the transients recorded at other tempe-
ratures, and the corresponding values of S range
from 4 to 10.

In order to reduce the uncertainty in S and to check
the validity of our model over wider temperature and
electric field ranges, we have developed a computer
program to perform DLTS simulations. These simu-
lations allow us to determine the trap concentration
NT which remains undetermined after the curve-

fitting procedure described above. This is achieved

by seeking the model parameters which simultaneously
yield a best fit for the 123 K capacitive transient of
(Fig. 4a) and of the DLTS curve of (Fig. 5a) which
corresponds to the pulse height AV = 2.5 V. The
consistent set of parameters is thus found to be

With the above parameters, all the capacitive tran-
sients of (Fig. 4a and 4b) as well as all the DLTS curves
of (Fig. Sa and Sb) have been simulated. One notices
the good agreement between calculations and measu-
rements even for the cases which have not been ini-

tially selected for curve-fitting purposes.
We have applied our model to simulate DLTS

experiments in other samples with different dopant
concentrations. The computed signatures, deduced
from the position of the maximum of the simulated
peak for a given emission rate window are compared
to the experimental signatures in (Fig. 6).

4. Discussion. - 4.1 SENSITIVITY ANALYSIS OF

THE MODEL. - Uncertainties in some parameters
entering the model cause errors in the parameters S,
y and NT that we have deduced by our curve fitting
method. Convincing values of the uncertainties in m*,
ETo, a and ND have been assumed to investigate the
sensitivity of our model. We have determined the
parameters S, y and NT using extreme values of m*,
ETo, and ND. The results are given in table I. It is
clear from the above table that the parameters S and

NT can be obtained within an uncertainty of about
± 25 %, whereas y can only be located within a four
orders of magnitude range. We note that this range
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Table 1. - Values of the model parameters S, y and NT,
deduced by curve fitting for extreme and average values
of the parameters m*, ETol a and N, assumed in the
model.

includes the theoretical value ql3 h corresponding
to Korol’s calculations for a delta function potential
well.

4.2 COMPARISON WITH OTHER RESULTS. - From
our evaluation of the different parameters, we can
obtain a rough estimate of the Franck-Condôn shifts

It is interesting to compare this estimation with the
value deduced from the activation energy of the

capture cross-section after the MPE theory. As men-
tionned earlier, measurements by Henry and Lang [18] ]
yield an activation energy of 0.10 eV for the capture
cross-section of trap E3. Using the theoretical formula
of these authors for J, one obtains the measured

capture cross-section activation energy for

This estimate is seen to be consistent with ours.

4.3. CHOICE OF PHONON ENERGY. - The proce-
dure outlined in section 3.3 has been repeated for
different values of hco. For values of hco between 9
and 12 meV, reasonably good agreement between
theory and experiment is obtained. For other values
of hco, we find that agreement is only possible in a
narrow temperature range. Although the phonon
mode could be a local one, the range of acceptable
values of hco seems to be consistent with the trans-
versal-acoustic mode having a sharp peak of density
of state at 9.8 meV [30].

4.4. EFFECTIVE MASS. - In our treatment of

electron tunneling, we have assumed the effective
mass of the trapped electron to be constant and identi-
cal to the effective mass for the density of state of the F
minimum of the conduction band. Two types of
objections can be made about this assumption :

(i) As noted by Kohn [31], the electron effective
mass cannot be used to describe the electron wave
function in the immediate vicinity of the potential well
of a deep trap. It can only be used to describe the

asymptotic behaviour of the wave function away
from the potential well. This may explain the dis-
crepancy between the value of the preexponential
factor y given by Korol’s theory :

and the average value that we have determined. From
table I, it can be seen that the determined values of y
are between 8 times too large and 4 000 times too
small.

(ii) In the forbidden band, the dispersion law E(k)
is not parabolic, which invalidates the use of a cons-
tant effective mass in the gap. However, according
to the theoretical calculations of Kane [32] and Chaves
et al. [33], experimentally confirmed by Padovani and
Stratton [34] and by Conley and Mahan [35], devia-
tion from the parabolic dispersion law occurs only
for energies deeper than 0.4 eV below the conduction
band. Consequently, our theory should be applied
with caution to trapping levels deeper than that of E3.

4.5 POOLE-FRENKEL EFFECT. - Assuming that
the E3 centre is neutral when unoccupied (acceptor
type), we have neglected in our calculation the Poole-
Frenkel effect [10]. To evaluate the error caused by
this neglect we may calculate the increase in the emis-
sion rate due to this effect, with the formula of Hart-
ke [36]. For a spherical potential well having a radius
a = 5 A (of the order of the interatomic spacing),
we see that the thermal emission rate at 123 K is
increased for an electric field of 105 V.cm-’ by
only 30 %. This is a very small correction when compar-
ed with the observed increase in emission rate for this

temperature and electric field range which is more than
five orders of magnitudes.

5. Summary and conclusions. - We have developed
a theory of electric field ionization by means of quan-
tum mechanical tunneling for deep traps in semicon-
ductors. The theory takes into account interaction
with phonons. Our field emission model is particularly
simple because of the use of the adiabatic approxima-
tion for the wave function of the trapped electron.
This approximation is justified on the ground that the
crossing between the bound and free energy levels
is not involved in the transition.
We have applied our theory to the trap E3 which

is introduced by electron irradiation into GaAs.

Capacitance transients and DLTS curves have been
obtained for several samples with different dopant
concentrations. Our experimental results give clear
evidence of electric field dependent emission rates

for this trap. A complete computer calculation has
been elaborated to simulated the above mentioned
experiments, which are accurately reproduced in a
large range of temperature and electric fields. In

particular, the Huang-Rhys factor and the energy of
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the phonon mode coupled to the trap are evaluated by
careful curve fitting. The value of the Franck-Condon
shift which can be deduced is consistent with the
one obtained from the activation energy of the cap-
ture cross-section after the work of Henry and Lang.
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APPENDIX A

The adiabatic approximation for the electron wave-
function. - We wish to evaluate, in this Appendix,
the error involved in using the adiabatic solution of
the Schrôdinger wave equation for the electron.
The time dependent Schrôdinger equation for

the trapped electron is

where V represents the potential energy of the trap
which is time-dependent due to interaction with
lattice phonons. In the immediate vicinity of the trap,
the changes in potential energy due to the electric
field are negligible compared to the trap potential.
The trap potential V is assumed to be a function of
time t and of the distance r from the centroid of the

trap.
If the time derivative appearing in eq. (A .1 ) is

neglected, a possible solution of this equation would
be an energy eigenfunction for the fundamental
electronic eigen energy Ee. For an occupied trap, Ee
is assumed to change sinusoidally with time accord-
ing to eq. (8) of the text. At any instant t, the instan-
taneous energy level Ee lies at an energy depth L1 (t)
below the conduction band Ee at the trapping site,
that is

Assuming the instantaneous potential well V yields
an eigen energy level E c - A, let tp (r, d) represent
the corresponding real normalized solution of the

stationary Schrôdinger equation. We now attémpt
to find the solution of the full Schrôdinger eq. (A .1)
in the form

where 0(t) is a phase angle to be found. Substituting
this tentative solution into the left hand side of

eq. (A .1), we obtain, instead of zero, an error àE
having the units of energy in the form

The real part of the above error AE can be made to
vanish by choosing for 0(t) the value

Eqs. (A. 3) and (A. 5) completely define the adiabatic
solution 0(r, t). We readily see that 0(r, t) satisfies
the normalization condition if IF(r, A ) satisfies this
condition for all values of 4 . However, the above solu-
tion 0(r, t) still leaves us with an error which is the

imaginary part of AE in eq. (A. 4).
We assume for simplicity that the potential well

of the trap has a constant depth Vo inside a sphere of
radius a centered at the trap centroid, the potential
being zero outside this sphere. We adopt the simple
phonon-electron interaction picture of Henry and
Lang [15] by assuming that Vo is time-dependent
whereas the radius is time-independent. With the
above assumption, we get for the ground state with
zero angular momenta

where

and A and A’ are constant related by the condition
of continuity of IF(r, d ) at r = a, which yields

The values of A and A’ are determined by the normali-
zation condition for P(r, J ). In order to satisfy the
condition of continuity of the gradient of P(r, L1 )
at r = a, the potential well depth V. and the energy
depth d must be related by the implicit relation

For a potential well with a small radius and large depth,
the value of ka which satisfies eq. (A. 8) is very nearly
equal to n/2. Furthermore, one easily gets

From eqs. (A. 2), (A. 5), (A. 8) and (A. 9), we can
calculate the time derivative of the wave function
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’l’Cr, 4(t)]. Straight-forward algebra yields

We note in particular that the time derivative is very
small outside the potential well and near the spherical
shell defined by

We can now evaluate the residual imaginary part of
the error AE given in eq. (A. 4). One can easily obtain
an upper bound for the logarithmic derivative of

tp (r, J) given in eq. (A. 3) and we deduce

which shows that when the amplitude of the energy
level oscillation is not too large, the error is a fraction
of the phonon energy multiplied by a factor of the
order of (xr). For trap E3 and for temperatures under
200 K, the average value for the amplitude excursion
bQm is smaller than 65 meV. This can be obtained
from an evaluation of the parameter S and hco as
is explained in the text.
The error AE in this case is of the order of 1 meV

times (xr). Since, furthermore, AE is in phase quadra-
ture with the other energy terms of eq. (A. 4), we
conclude that the adiabatic approximation yields
the correct wave function near the potential well
and the errors become important only in regions
where the wave function is very small.
We may write this adiabatic wave function in the

form

APPENDIX B

Analytical approximation for the field emission rate.
- It is possible to get an analytical closed form expres-
sion for the field emission rate, avoiding the double
summation in eq. (17) of the text.
We assume that the density of free carriers in the

conduction band is low enough so that the Fermi-
Dirac probability of finding an empty conduction
band state having an energy Ec - d p is equal to

unity for any value of p subject to the condition

The field emission rate can be written as :

The summation over n can be replaced by an integral,
which is justified for high temperatures (kT &#x3E; hco)

with the transformation

we get

For large enough values of p, the lower limit of the
integral can be replaced by zero, thus

where 1 p is the modified Bessel function of integer
order p [34]. We deduce

The term under the summation sign in the above

equation will be shown to have a maximum for a
value of p = v. In fact, we can approximate this term
by expanding its logarithm by means of a Taylor
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series, yielding a Gaussian expression of the form

The value of v is found by looking for the solution
p = v of the transcendental equation

and Av is defined as

The summation in eq. (B. 7) can now be evaluated
by approximating is to an integral yielding

The above evaluation of eF therefore requires the
calculation of v and A,.
We first evaluate v by solving eq. (B. 9). Neglecting

the dependence on d p of the preexponential factor
of T (d p), we get

where K is given by eq. (3) in the text.

A good approximation for ôiplôp can be obtained
from the recurrence relation

From

we get

An elementary calculation yields, from eq. (B. 9)

vhw = 2(E,, - El) {1 1 + [1 + (FIFc)2]1/2 }-l 1 (B ,16)

where the critical electric field Fc is given by

The parameter Ay is deduced from eqs. (B. 10) and
(B .15)

For high temperatures (kT &#x26; hm), a further simpli-
fication can be made

and the field emission rate is written as
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