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Résumé. 2014 Nous étudions la stabilité de l’écoulement de Poiseuille dans un nématique en géométrie planaire.
Nous prolongeons l’analyse de la référence [5] pour tenir compte des distorsions périodiques du directeur. Plu-
sieurs approches différentes sont mises en 0153uvre : modèles simplifiés, méthode de Galerkin ou simulation numé-
rique. Nos résultats permettent d’interpréter l’ensemble des données expérimentales obtenues jusqu’à présent
(réfs. [4] et [9]).
Abstract. 2014 We study the stability of a Poiseuille flow in a planar nematic. We extend the analysis given in ref. [5]
to take into account periodic distortions of the director. Several different approaches are employed : simplified
models, Galerkin method, or numerical simulation. Our results allow one to interpret experimental findings so
far obtained (refs. [4] and [9]).
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1. Introduction. - Recently much attention has
been devoted to hydrodynamic instabilities in Nematic
Liquid Crystals [1]. A situation of particular interest
is achieved when the mean molecular orientation is

perpendicular to the shearing plane [2]. Instabilities
which set in then result from the very specific coupling
between the velocity field and the director ; they
occur at very low Reynolds numbers. The case of
the Simple Shear Flow (S.S.F. in the following) is

pretty well understood [3]. Steady as well as alter-
nating flows have been investigated and the effects
of applied electric and magnetic fields have been
examined. Two different instability modes can take
place : a uniform distortion called the Homogeneous
Instability (H.I.) and a periodic distortion, the Roll
Instability (R.L). Essential parameters are the sign
of a3, the intensity of the external fields and/or the
frequency. When a3 &#x3E; 0 only the R.I. can take

place. When a3  0, the H.I. which sets in at low
field/frequency is replaced by the R.I. at high field/fre-
quency. Quantitative agreement between experiments
and theory is quite satisfactory. 

Before a complete understanding of the S.S.F.
instabilities was obtained, planar Poiseuille flow

began to be investigated. The first experimental
results were qualitatively accounted for by a model
in terms of an assemblage of average simple shear
flows [4] but the detailed theoretical analysis tumed

out to be far more difficult. First results obtained
concemed the symmetry properties of the unstable
modes (which lead to a useful classification of expe-
rimental facts) and the detailed solution of the steady
flow H.I. [5] in complete agreement with experiments.
However experiments revealed more complexities
than one could have inferred from the simple trans-
position of the simple shear flow case and much
remained to be accounted for.

In this paper we intend to complete the theoretical
account of experiments. The main source of difficulty
originates from the fact that the shearing rate of the
primary flow is no longer constant so that some
coefficients of the partial differential equations govern-
ing the problem become variable. To cope with this
difficulty we shall develop essentially three différent
kinds of approach : approximate models, Galerkin
analysis or direct numerical integration. Detailed
calculations are rather lengthy and tedious, so they
will be skipped over since they have been reported
elsewhere [6]. Notations and general equations have
already been given [7] and will not be repeated here.
The paper is organized as follows :
- In section 2, we recall the symmetry of the

unstable modes and the solution of the steady flow
Homogeneous Instability. We take advantage of its
simplicity to check the prototype of approximate
models to be used in other sections.
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- Section 3 is devoted to the effect of external
fields on homogeneous as well as periodic instability
modes.
- Then thé analysis is extended to altemating

flows (§ 4). Specific features of the stability analysis
and additional symmetry properties are briefly dis-
cussed. Then we consider the altemating Homoge-
neous Instability which is solved by direct numerical
integration. The case of rolls is discussed within the
framework of an approximate model derived from
that presented in § 2.
- Finally, agreement between experiments and

theory is examined in section 5, and prospects for
future work are suggested.
Now, before we begin by recalling previous results,

let us briefly present the experimental situation. The
geometry of the set-up is sketched in figure 1. The
channel has length L, width 1 and height d. The
fluid is submitted to a pressure drop Ap corresponding
to a pressure gradient Gy = Ap/L. Through surface
treatment, the nematic is oriented parallel to the
direction of the width. As long as Gy is small enough,
the director n remains everywhere perpendicular to
the shearing plane and the velocity assumes the
usual parabolic profile

which leads to the z-dependent shearing rate

and this proves to be the main source of difficulties
for the theoretical analysis. When Gy exceeds a cri-
tical value, the orientation gets distorted and secon-
dary flows set in. From an experimental point of
view, the instability is linear (1) and stationary (2) [8].

Fig. 1. - A pressure gradient Gy = àplL is applied between the
two ends of a channel of rectangular section. Upper and lower
plates have received a special treatment so that the anchoring of
the nematic molecules is planar and parallel to the x-axis. The
nematic may be submitted to a magnetic field H(//Ox) and/or
an electrical field EifOz). Origin of coordinates is taken at the
centre of the channel.

(1) With the exception of the so-called Z-regime which develops
in alternating flow under high electric field [9].

(2) In the linear regime, the distortion growth is exponential,
the growth rate a is real and a = 0+ corresponds to the threshold
(marginal case) ; for alternating flows, see the extension of the

meaning discussed at the beginning of section 3.

2. Summary of previous results [5]. - From the
linearized equations which govem an infinitesimal
perturbation (nY’ nz, vx, VY’ vZ, p) to the primary
flow [7], recalling that s( - z) = 2013 s(z), one can

classify the unstable modes according to their parity
(table I).

Table I. - Parity properties of the unstable modes.

Solution T (resp. S) is associated with an average
finite Twist (resp. Splay) distortion :

parity properties of vx will tum out to be very impor-
tant. These formal symmetry properties were already
underlying the first qualitative analysis of the flow
in terms of the juxtaposition of two average opposite
simple shearflows [4]. However such a point of view
only leads to rough estimates of the threshold pro-
perties and a complete analysis had to take into
account the spatial variation of the shearing rate.

The first step in this direction was the analysis of
the steady flow Homogeneous Instability for a

nematic with a3  0 [5]. In absence of external
field a complete analytical solution can be derived.
The threshold is given by Erc = 12.824 where the
Ericksen number Er is the relevant dimensionless
measure of the flow gradient

The corresponding unstable mode is a T-solution
with net transverse flow

In presence of external fields the possibility of an
analytical solution is lost in general, due to the ani-
sotropy of the Frank elastic constants. However an

approximate numerical Galerkin type analysis (Chan-
drasekhar’s method [8]) has shown that this aniso-
tropy is of little importance and that results are

close to what is obtained in the ideal case of isotropic
elasticity (for which the analytical approach remains
tractable). The intensity of a stabilizing extemal

magnetic field applied parallel to the unperturbed
orientation can be measured by
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which expresses the ratio of the magnetic torque to
the elastic one (K is some average value for the
Frank constant). The variation of the threshold with
the field is given by

Contrary to what was first thought, such a peculiar
variation can in fact easily be derived from a sim-
plified model that we shall develop here, since we
shall refer to it in section 3 and 4. Let us consider
figure 2a which presents the fluctuation profile of
the T-distortion at high fields (F = 150). In the
central part (z - 0) where the shearing rate is small,
the distortion is small due to the stabilizing effect
of the field. On the contrary in the neighbourhood
of the plates (z - ± d/2) the Pieranski-Guyon insta-
bility mechanism leads to a large distortion. This
strongly suggests the simplified distortion depicted
on figure 2b where a stable central layer is assumed
to separate unstable layers of thickness ô (0  ô « d/2)
close to the plates. The distortion is taken of the form

Fig. 2a. - Solution of the exact calculation : in the central region
the distortion is very small due to the stabilizing effect of the field
while the destabilizing mechanism proportional to the square of
the shearing rate is very weak.

Fig. 2b. - Approximate model describing the situation of

figure 2a : two unstable layers of thickness ô are submitted to an
average simple shear + 37(ô). Optimizing ô leads to an excellent
agreement with the exact calculation.

Fig. 2. - Fluctuation profiles under large fields (here
F = la H2 d2/4 K ~ 150) for the homogeneous instability dis-
cussed in ref. [5].

where ç represents the distance to the plate, and
the unstable layers are submitted to an average shear

The instability criterion is then given by the Simple
Shear flow theory [7]

in which b is still a free parameter. The threshold is
then given by the value bc which minimizes the

critical shear. Turning to dimensionless notations,
with L1 = 2 b/d one gets (2) in the form

The extremum condition DErlôd = 0 reads

and when F is large the root of eq. (3) is approximately
given by

so that

in excellent agreement with the analytical result (1)
which we can write Erc =F + 2.338 F 2/3 + 0 (Fl/3).

Let us take the opportunity to stress the fact
that Li (or 03B4) is not a coherence length as it is defined
for exemple in the Freedericks problem [10]. In that
case the coherence length is directly related to the
balance between the magnetic torque and the elastic
one when surface effects and field effects are con-

flicting : this leads to l5 ’" 1 / H. In the present case,
these effects are not conflicting but both struggle
with the destabilizing mechanism, which leads to a
more involved compromise and to the rather strange
dependence à - H-2/3 : a simple dimensional argu-
ment based on the Freedericks coherence length
(irrelevant to the present problem) would fail.

3. Steady Poiseuille flow : general approach. - In
the simple shear flow case the uniform distortion
corresponding to the Homogeneous Instability can
take place at low fields when a3 is negative. At higher
fields a distortion sets in which is periodic in the
direction of the unperturbed orientation, this dis-
tortion is associated with a secondary flow in form
of rolls, the order of magnitude of the wavelength
being given by the thickness of the unstable layer.
Recalling the analogy between a Poiseuille flow
and two juxtaposed simple shear flows one expects
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such a roll instability to be possible (Fig. 3) and one
can estimate the cross-over field from the H.I. to
the R.I. Even at fields much larger than this estimated
cross-over field and at least for steady flows such a
transition has not been observed experimentally
which clearly needs an explanation. The origin of
the discrepancy can be traced back to the coupling
both elastic and viscous between the upper and lower
halves of the channel which must alter the simple
picture of Poiseuille flow in terms of decoupled
unstable layers submitted to average simple shears.
Unfortunately a quantitative account of this effect
leads to a cumbersome analysis. The normal mode
analysis developed for the simple shear case [7] no
longer works due to the z-dependence of the shearing
rate and one must turn to a Galerkin approach
(Chandrasekhar’s method [8]) derived from that
outlined in ref. [5] for the Homogeneous Instability.
Calculations result in the determination of the

complete curve of marginal stability i.e. the critical

pressure drop (or Ericksen number) as a function
of the wave vector q,, of the periodic distortion.

Fig. 3. - Qualitative picture of the rolls assuming the Poiseuille
flow as the juxtaposition of two average simple shears and neglecting
the coupling between the two halves of the channel. ny is even and
n., is odd for a solution with average twist (T --&#x3E; figure 3a) ; on
the contrary for a solution S, ny is odd and so is v.,, which implies
that the rolls do not gear properly (Fig. 3b).

The instability threshold corresponds to the absolute
minimum of the curve. As in the case of the simple
shear flow one expects the marginal stability curve
to separate in two different regions : the one at small
wave vectors (q. « 2 03C0/d ) connected with the homo-
geneous instability, the other at larger wave vectors
(qx &#x3E; 2 nid) connected with rolls. T and S modes

may be separated from the beginning and will be
studied one after the other.

3.1 T-TYPE ROLL INSTABILITY. - T-distortion is
associated with an average twist and with a fluctua-
tion ny(z) which is an even function of z. Calculations
parallel to those of ref. [5] have been performed
assuming

Numerical applications correspond to MBBA, the
nematic which was used in experiments. The resulting
marginal stability curve is given in figure 4 where
we have plotted the Ericksen number, here

as a function of the reduced wave vector Q = qx d/2.
Intensity of the external fields is measured by

Fig. 4. - Critical curve for solution T. The Ericksen number

is given as a function of the reduced wave vector Q = qx dJ2.
Solution To (resp. Te) corresponds to a homogeneous instability
with (resp. without) net transverse flow (see Fig. 5). Solution T,
corresponds to rolls.

The curve presented corresponds to Fy = F, = 0 (no
external fields). As expected it is composed of two
branches. Let us first consider the small qx part.
When qx tends to zero, this branch presents a mini-
mum denoted To slightly above the point To obtained
from the direct calculation with qx = 0 (i.e. assuming
from the very start a fluctuation independent of x,
results were given in section 2 using a slightly different
definition for the Ericksen number). This is not a

spurious numerical result : To and To must be asso-
ciated with two different homogeneous instabilities.
This can be understood from the comparison of the
fluctuation profiles given in figure 5. For a T-type
solution, the transverse velocity vx is an even func-
tion of z, which does not forbid an average net trans-
verse flow

and solution To is indeed associated with such a
transverse flow. On the contrary, solution T 0 corres-
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Fig. 5a. - Solution To with net transverse now ( ) VX dz # 0
as obtained in ref. [5] by a direct calculation assuming fluctuations
independent of x (q x strictly equal to zero).

Fig. 5b. - Solution To without net transverse flow (J vx dz=0 )
limit qx ---&#x3E; 0 of a calculation assuming periodic fluctuations with
wave vector qx (at the limit qx -&#x3E; 0, vy and vz vanish ; here

Fig. 5c. - Solution To emerges directly from the juxtaposition
of two simple shear flow instabilities (full line) after relaxation of
a part of the elastic energy contained in distortion ny (dashed line).

Fig. 5. - Fluctuation profiles for the two homogeneous solu-
tions To and T..

ponds to Yx = 0 ; this could be expected since Toi
is obtained at the limit qx -+ 0 of a calculation which
assumes a strictly periodic fluctuation of wave vec-
tor q,, :0 0 (without any component at qx = 0). An
integration of the continuity equation ôxvx + ôzvz = 0
over the height d of the channel then leads to :

from the velocity boundary conditions. This implies
qx Vx = 0 and Vx = 0 as long as qx = 0 even at the

limit qx --&#x3E; 0 (except at qx = 0 where one can have
V" =1= 0). That To be an isolated point is then not a
surprise. Solution To is in fact very close to what
one would expect from the analogy between the
Poiseuille flow and the two juxtaposed average
simple shears (Fig. 5c). Profiles of the orientation
fluctuations ny and nz are very similar for To and TO,
which explains that the threshold values are nearly
identical. The calculation shows that the most unstable
mode is solution To with transverse flow. This is in
complete agreement with experimental results :

Regime B of ref. [9] which occurred at threshold was
associated with a transverse flow leading to a regular
domain structure. Another regime denoted A, with
average twist but without net transverse flow could
also take place but was metastable and had a higher
threshold. First velocity measurements are too incom-
plete to rule out the identification of regime A with
our solution To and we urge a check of the two
superposed wide rolls suggested on figure 5c.
The branch defined for qx &#x3E; 2 nld corresponds to

a true roll instability : it presents a minimum denoted
as Tr. Fluctuations profiles given in figure 6 are

Fig. 6. - Fluctuation profiles for the roll solution T r :
figure 6, a, b, c correspond to different external fields measured by
Fy and F% (see text) (a) Fy =FZ =F = 0 ; (b) F =100 ; (c) F = 500.
Profiles are roughly as expected from the qualitative point of
view illustrated in figure 3. When the fields are increased, a stable
layer with small distortion tends to separate the cell in two decoupled
parts.
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roughly as expected from the naive sketch (Fig. 3a).
Upper and lower halves of the channel are rather
uncoupled and a stable layer appear in the central
part (z - 0) with increasing fields. Evolution of the
instability threshold with external fields is given
in figure 7 for the three T-solutions. One can see that
the homogeneous instability with transverse flow To
has always the lowest critical value and that if it did
not exist one would observe the cross-over from Toi
to Tr exactly as in the simple shear case.

Fig. 7. - Threshold of the three different solutions with average
twist as a function of external fields.

3.2 S-TYPE ROLL INSTABILITY. - A distortion with

average splay corresponds to a fluctuation n,(z)
which is an odd function of z, so that the calculation
has been performed assuming

Figure 9 displays marginal stability curves for
several values of the extemal fields. The two branches
at small and large qx only appear for large enough
extemal fields. This can be understood from the

qualitative picture of figure 3b. Indeed an S-type
solution involves an odd transverse velocity ux and

Fig. 9. - Fluctuation profiles for solution S, ; (a) F = 100, the
situation is still far from what was expected in figure 3b. (b) F = 500
the two halves of the channel are rather decoupled by the stable
layer, distortions begin to concentrate close to the plate, apart
from parity profiles look like those given in figure 6c for rolls Tr.

Fig. 8. - S-critical curves for different values of external fields. Rolls can take place only if F is large enough.
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a strong velocity gradient ôzvx in the mid-plane (z = 0) ;
in other words, rolls do not gear correctly. Distor-
tions in the upper and lower halves of the channel
are so strongly coupled that a roll instability with a
wave vector of the order of 2 n/d cannot exist in
zero field. With increasing field, the role of the central
layer (z - 0) weakens and a roll instability can

exist. At moderate fields, fluctuation profiles are

still far from what one expects (Fig. 9a) but the
situation gets better at higher fields and the two
halves of the channel become uncoupled (Fig. 9b).

Let us now tum to the small qx part of the curve.
On the enlargement given in figure 10 for Fy = Fz = 0,
one first notices that the minimum does not take

place at qx = 0 but rather at Q = qx d/2 - 1 so that
the homogeneous S-type instability studied in ref. [5]
and denoted here as So is in fact unstable against a
roll fluctuation of long wavelength (since v., is odd,
the net transverse flow is zero and the discontinuity
at qx = 0 does not appear). Figure 11 displays the
fluctuation profiles at So and at the minimum of the
curve. vx and ny are quite similar and the fact that So
lies slightly above the minimum is to be related to
the shape of nz. Indeed the dominant part of the

elastic ener gY is 12 K1 J (Oz:nz)2 dz and when n z gets
more regular, this energy gets smaller and the insta-
bility threshold decreases. In the following we shall
denote the minimum of the curve So to recall that
it occurs at small wave vectors (index 0) and origi-
nates from the relaxation of a part of the elastic

energy contained in solution So. It should be noted
here that calculations have been performed using
values of the viscoelastic coefficients for MBBA
tabulated in ref. [10] (with a3/a2 = 1.53 x 10-2) ;

Fig. 10. - Enlargement of the small qx part of the curve F = 0
given in figure 8. Solution So discussed in ref. [5] is in fact a relative
maximum of the critical curve. The threshold takes place at Q N 1

(solution Sô) however the critical value of the homogeneous solution
with transverse flow To lies below that for S..

Fig. 11. - Fluctuation profiles for S-type solutions at small wave
vectors. The difference between solution So (Q = 0, figure lla)
and So (Q N 1 ; figure l lb) is obvious for fluctuation n., which
looks like cos (nzld) for S, while ny and vx bear nearly no change.
The contribution of vy is not negligible when Q - 1 and should
be taken into account in the discussion of the mechanism for S..

for slightly larger a3 (a3Ia2 &#x3E; 4 x 10-2) (3) So tends
towards So which becomes a true minimum instead
of being an unstable relative maximum.
As can be seen in figure 10, So remains above To

so that the homogeneous T-instability with transverse
flow is expected at threshold in agreement with

experiments [4, 9]. Now let us recall that in their
first series of experiments [4] Pieranski and Guyon
have observed in the non-linear regime above the
threshold of the To-mode a roll instability of the
S-type with a wavelength 2 or 3 times the thickness
of the cell which has all the characteristics of our

solution When

one increases the external fields the critical value
for So and To remain very close to each other. Using
Gâhwiller’s viscosity values one can even predict a
cross-over from To to So which is not observed

experimentally. The reason may be that To is observed
in a metastable state due to the operating procedure
but more probably that temperature or impurity
effects lead to a slightly different set of viscoelastic
coefficients. Indeed changing a3/a2 from 1.53 x 10- 2
to 2.5 x 10-2 is sufficient for the mode To to remain
the most unstable one. This interpretation is rein-

(3) a3 is not a free parameter since it enters an Onsager relation
but as long as a3 remains small enough one can neglect the effect
of its variation on other viscosity coefficients. Calculations have
been performed keeping all viscoelastic coefficients constant

except a3.
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forced by the fact that solution So has not been
observed in the second series of experiments [9],
indicating slightly different experimental conditions.
The great sensitivity of the result to the exact

value of a3 has led us to reexamine the instability
mechanism of this particular solution So. Let us
assume a long wavelength distortion nz extending over
the whole thickness of the channel (see Fig. llb)

such a distortion induces a viscous torque [2, 7]

which tends to make the director rotate so that a
fluctuation ny appears. when qx = 0 one recovers
the original Pieranski-Guyon mechanism for a homo-
geneous instability [2] corrected to take secondary
flow effects into account [7] ; namely, viscous forces
induce a transverse flow vx which adds its contri-
bution - a3 ô,,,,v. to the viscous torque created by
the fluctuation ny

when a3 is negative this tends to increase the distor-
tion nz. Now when qx "# 0, due to the continuity of
the fluid, the fluctuation vx induces a vertical velo-
city Vz which contributes to the torque fy through
a term - OE2 ôxvz (a2  0). A careful examination
of the global effect shows that the sequence sketched
below

Fig. 12. - Threshold of So as a function of oc3. Here

oc.3 is negative at high temperatures and may be positive below
some inversion temperature while U2 remains negative. Notice
that a roll instability Tr can also exist, the threshold of which is
not much affected by a3 so that one could witness the cross-over
from S, to Tr at another temperature somewhat below the inversion
temperature. Calculations have not been performed since detailed
viscoelastic data are not available.

works in a destabilizing way as long as qx # 0 and
small, whatever the value of a3 positive or negative
as long as a3 is small enough. So when a3 is positive
and small, the usual homogeneous instability To
can no longer take place but So does. Figure 12

displays the threshold of the solution So for an

imaginary nematic which would have the same

viscoelastic coefficients as MBBA except for a

small and variable a3 (3). The reduced wave vector
Q = qx d/2 slowly varies with a3 from 0.8 for

CX3 = - 2.5 x 10-2, CX2 1 to 1.2 for CX3 = + 3.3 x 10-2 , CX2 1. .
The result given above is not of academic interest
since there exist nematics for which a3 varies from

negative values close to the clearing point to positive
values at lower temperatures, in connection with a
tendency to smectic ordering. These nematics will

present a cross-over from a solution To to the long
wavelength splay distortion So when the temperature
is lowered.

3. 3 REMARK : : ASYMPTOTIC REGIME FOR ROLLS

UNDER HIGH FIELDS. - Despite the fact that rolls
are always masked either by a homogeneous insta-
bility To or by solution S’, let us consider the asymp-
totic behaviour of rolls under high fields. It is obtained
through an extension of the model of section 2 which
combines the idea of unstable layers with results of
the simple shear flow instability theory [3] : for rolls,
exact results are well accounted for by an approximate
normal mode analysis which rests on effective torque
equations and assumes a simplified analytical form
for the fluctuations. Here :

where ç is again the distance to the upper and lower
plates, and q., is taken as 03C0/03B4, ô being the thickness
of the unstable layer submitted to the average shear
s(b). At the limit of high fields and large wave vec-
tors (q2x &#x3E; q2z) with notations of ref. [3] the critical
condition reads

à (through qz, and -s) and qx are two parameters to
be optimized, the threshold corresponding to the
lowest critical value. With L1 and F as defined in
section 2 and

eq. (4) reads
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Extremum conditions ôEr/64 = 0 and
lead to

Elimination of F gives

which relates the wave vector to the unstable layer
thickness. In the limit R &#x3E; 1 and 4 « 1 this may
be simplified to

the optimum layer thickness is then given by eq. (5)

so that

As can be seen in figure 13 this asymptotic behaviour
is fairly well verified by solution Tr as calculated
from the Galerkin expansion. As already stated, the
decoupling between the upper and lower half of the
channel is more difficult to obtain for S-type rolls,
so that agreement with the asymptotic line only
appears for the highest calculated points. This fact
also explains that threshold values for S, are about
10 % higher than those for T, (Fig. 14). Of course
such a difference is not accounted for by the simplified
model which does not separate solutions of différent

parities. Finally from (4) and (5’) one deduce

Contrary to the case of the Homogeneous Insta-
bility, coefficients entering this expansion are very

, difficult to estimate and (6) rather gives a general
trend of evolution which may help to analyse data

Fig. 13. - An indication of the validity of the approximate model
for rolls under large fields is given by the behaviour of the wave
vector Q - F 3/8. Dots and crosses correspond to calculated values
for Tr and Sr respectively.

Fig. 14. - The threshold for rolls with average twist (T,) lies
about 10 % below that for rolls with average slay (S,).

on roll instabilities (see below the alternating flow
case).

4. Alternating Poiseuille flows. - From a concep-
tual point of view it is not difficult to extend the
linear stability analysis from the case of a steady
flow to that of an alternating one ( 11 ] . In the first
case one looked for solutions of a differential system
with coefficients independent of time under the
form w(r, t) = w(r) exp ut ; marginal stability cor-

responding to Re { a} = 0 and the exchange of
stabilities to Im { a } = 0 at threshold [8]. In the

case of a periodic basic flow of period T certain
coefficients of the differential system become time-
dependent and one cannot eliminate the temporal
dependence through a simple exponential factor. As
in the case of ordinary differential equations, one
assumes a kind of Floquet separation [12]

where w is periodic in t with period T. The expo-
nential factor now describes the evolution of the
fluctuation once the variation forced by the basic
flow has been substracted. Again the instability
sets in when Re { a } &#x3E; 0. Condition Im { Q } = 0
at threshold now corresponds to an extension of
the hypothesis of exchange of stabilities ; it merely
states that the only period relevant to the problem
is the one imposed from the outside. As in the case
of steady flows the validity of this assumption should
be checked rather than taken for granted. The sepa-
ration of the temporal dependence in two parts is

particularly clear on figure 15 to be discussed further.
The next step is to search for periodic solutions w

of the eigenvalue problem. At least formally this
, can be performed through a Fourier expansion :
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Fig. 15. - Time evolution for the numerical solution of the

Homogeneous Instability in square wave alternating flows. Ticks
on the time axis mark every reversal of the flow direction (reduced
frequency 1/T = (Y1 d2/4 Kl) f = 12.5). The upper (resp. lower)
curves display the behaviour of ny (resp. nz). The 3 or 4 first periods
correspond to an adjustment of the spatial profiles of ny and n,,
from those given as initial conditions. Then an asymptotic regime
is reached where fluctuations grow (Er = 130 &#x3E; Erc) or decay
(Er = 90  Er°). We present the case of the Z-regime where nz
changes sign from one 1/2-period to the next. In the marginal
case Er = Er° N 120, the exponential trend disappears and one

is left with n. (t + T)= - nz(t) and ny periodic with period T/2.(t+ 2

Time dependent coefficients of the equations are
also expanded and after separation of the different
harmonics one gets an infinite system of equations
where time is absent. Of course the solution is obtained
after truncation at a sufficiently high order but
from a practical point of view this program is hardly
achievable and one is lead to severe approximations.
Before entering into details, let us point out the
temporal symmetry properties linked to the perio-
dicity of the basic flow. In experiments square wave
excitation has been used which is such that

s(t + T/2) = - s(t) .

This allows to distinguish a Z-mode (nomenclature
of ref. [2]) where nz alternâtes from one half-period
to the next (nz(t + T/2) = - nz(t)) while ny does
not (ny(t + T/2) = ny(t)) from a Y-mode where ny
and nz exchange their role. Moreover the fluctuation
with the shortest natural relaxation time is expected
to oscillate. Classification of the unstable modes in
the Poiseuille problem then involves parity and

periodicity and one can expect four different regimes
Y-T, Z-T, Y-S, Z-S.

4.1 HOMOGENEOUS INSTABILITY. - The homoge-
neous instability takes place at low frequencies.
Even if the equations are much simpler in that case
than for rolls, the system has variable coefficients
in space and time and the Galerkin procedure has
to be performed on both variables. Moreover at

low frequencies the exact form of the excitation

square wave or sinusoid is important and many

harmonics must be retained (for a discussion in the
simple shear flow case see ref. [6]). Several approxi-
mations have been worked out leading to unreliable
results due to a truncation at a too low order ; this
has led us to a frontal attack of the problem, i.e. :
to a numerical integration of the initial and boundary
value problem. In order to compare with experimental
results, we shall restrict to the Z-T mode with a

square wave excitation in absence of external fields.
In that case equations are particularly simple ; in
dimensionless form they read [5-7]

where k = K, IK2 - 2 and

the length scale is dl2 and the time scale is given
by 4 Kl/Y1 d2 Boundary conditions are

Er(t) = + E oyer one half-period and - E over the
following one.
The most straightforward explicit finite difference

scheme [13] turned out to be quite efficient and
calculations have been performed with a desk

computer. At t = 0 we fix approximate profiles
for ny(z) and nz(z) which fulfil the parity and boun-
dary requirement and we let the solution evolve.
On figure 15 one clearly distinguishes a transient

regime which corresponds to the adjustment of the
spatial dependences from an asymptotic regime of
growth, decay or marginal stability according to the
value of the Ericksen number. Figure 16 displays

Fig. 16. - Fluctuation profiles at the end of a 1/2-period for

IIT = 12.5. They look very similar to those for F - 10 in the
steady flow case (see ref. [5]). This could be expected from an
analogy between field effects and frequency effects [3]. However
this analogy does not work in detail ; in particular to explain the
cross-over from uniform distortions to rolls which takes place at
a rather low frequency without equivalent in the field case.
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the fluctuation profile at the end of a half-period
for the highest frequency examined. As in the case
of steady flows under magnetic field, one witnesses
the constitution of a stable sheet between two unstable

layers. Intuitively this comes from the fact that at
sufficiently high frequency the instability has not
enough time to develop over a large distance from
the plate before the flow direction is reversed. However
a simple model analogous to that of section 2 shows
that the unstable layer thickness b varies as T 2/5
and that Er- T -1 + o (T - 3/5). Finally figure 17

presents the comparison between calculated and

experimental values. Experimental points have been
scaled using

to be compared with the corresponding values

Er £r 66 Ap and 1/T ~ 130 f deduced from data

compiled in ref. [10].

Fig. 17. - Threshold of the Homogeneous Instability in alter-

nating flows. Agreement between the calculated curve and expe-
rimental points taken from ref. [9] is very good in view of the
somewhat poor precision with which viscoelastic coefficients are
known.

4.2 ROLL INSTABILI1Y MODES. - In addition to the

homogeneous mode, roll instabilities have also been
observed in the case of alternating flow, in contrast
to the case of steady flows under external fields.
Here we shall not be concerned with the cross-

over problem which would require a complete
solution but rather consider a special case. Indeed
equations governing the roll instability are much
more involved than those for the homogeneous
instability.

Though still possible a direct numerical integration
would be much more complicated and one may
consider retuming to the Galerkin type of approach.
However due to the symmetry properties of the
unstable modes one will have to solve 4 different

systems of equations corresponding to the 4 possible
instability regimes. Even restricted to a first harmonic
approximation (valid at high enough frequencies)
this leads to a rather tedious program. One is then
far from the detailed description of stability diagram
and more especially from the cross-over problem.
Here we shall only consider a simplified approach
in terms of unstable layers of adjustable thickness
for a solution (4) Y-T. The adaptation of the theory
developed for the simple shear case is quite straight-
forward. At a first harmonic approximation, the

critical condition is given by [3] :

(The factor 2 03C0 arises from the fact that a sinusoidal
excitation has been assumed : this makes no diffe-
rence at high enough frequencies and this has the
advantage of leading to a simpler formula than for
a square wave excitation [3].) As in § 3.3 one has
to adjust the thickness ô of the unstable layer and
the wave vector qx of the rolls. One obtains here

Agreement obtained for solution T, in the steady
case gives some confidence in these exotic powers.
For the threshold value, they lead to

so that except at rather extreme frequencies one does
not expect large departures from the linear depen-
dence of L1pc with the frequency obtained assuming
S N 1/qx~ T 1/2 [4]. However an experimental check
of this asymptotic regime should be searched for.
Extensions of this analysis and more results on the
basis of direct numerical integration are not very
useful before experiments give new data for a quanti-
tative comparison.

5. Conclusion. - At first sight Poiseuille flow could
be visualized as the assemblage of two average
simple shear flows in order to understand how

(4) As in the case of a steady flow under high magnetic field,
the model does not distinguish solutions of different parities ;
the fact that a T-solution appears at threshold [9] is compatible
with the arguments already given in section 3.3. In absence of
external field, ny is expected to have the shortest relaxation time
and then to oscillate thus leading to a Y-regime [3].
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hydrodynamic instabilities can occur. However to a
certain extent the experimental situation turned out
to be more complex than what could be expected
from the transposition of results obtained in the

simple shear case. This paper has been mainly devoted
to the account of that surprising diversity which
originates from the spatial dependence of the basic
shearing rate s(z) oc z. (i) In agreement with expe-
rimental results rolls analogous to those which

develop in the simple shear case have been shown
to have a threshold much higher than that of the
homogeneous solution. (ii) In addition we have
been able to account for the existence of the second
metastable homogeneous regime with average twist
and no transverse flow observed above the threshold
of the first one associated with net transverse flow.

(iii) A modification of the original Pieranski-Guyon
instability mechanism leads to a long wavelength
roll system with average splay. The threshold of
this instability (which was observed in the first
series of experiments) strongly depends on the
viscoelastic constants and more especially on the
ratio a3/a2. This sensitivity (quite sufficient to explain
the absence of this solution in the second series of

experiments) immediately suggests the performance
of experiments with a nematic compound where «3
is positive and small, a situation which forbids

homogeneous regimes but leaves intact the mechanism
for this particular instability mode.
The three points mentioned above required quanti-

tative predictions. Reliable results have been obtained
using an extension of the Galerkin method developed
previously. However calculations are rather long,
tedious and expensive, moreover they are nearly
untractable in the case of altemating flows. These
facts have urged one to develop approximate models.
The important point was to take into account the
spatial dependence of the shear in a simplified but
realistic way. Consideration of fluctuation profiles

’obtained by exact calculations has led to the notion

of unstable layer of variable thickness submitted to
an average shearing rate, the thickness of the layer
being determined by some consistency condition.

Comparison with exact results gives some confidence
in such approximate models at least as long as the
upper and lower halves of the channel are decoupled
by a stable sheet, which is pretty well achieved in
the case of average twist rolls. An application has been
given for the so-called Y-regime in an altemating Poi-
seuille flow.

Theoretical analysis of altemating flows is rather
difficult from a practical point of view even if it is
not so complicated conceptually. Beside the develop-
ment of approximate models there is another approach
which seems worth-while, namely the direct inte-

gration of the partial differential set of equations
taken as an initial and boundary value problem.
This method has given excellent results for the

altemating homogeneous instability and one can

perhaps think of it for more complex situations.
Of course many points remains to be studied such

as the truly quantitative account of rolls in alter-

nating flow (and more especially the cross-over.

from uniform distortion to rolls, non-linear effects
for the Z-regime...) and further experiments have
been suggested which require a check so that our
paper can by no means be considered as exhaustive.
However we think that the kind of approach which
has been used, combining experimental results with
an analysis of mechanisms, detailed calculations,
approximate models and numerical simulation can
lead to a rather thorough understanding of physical
phenomena which occur in complex systems such
as flowing nematic liquid crystals as described by
the Ericksen-Leslie hydrodynamic theory.
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