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Résumé. 2014 Les réactions entre ions lourds sont étudiées dans le cadre de la mécanique classique à trois dimensions.
L’un des noyaux est sphérique, l’autre sphéroïdal. Les vibrations du noyau sphéroïdal sont prises en compte.
Il est montré que les variations de forme et d’orientation du noyau sphéroïdal ont une influence sensible sur la
distribution angulaire et la polarisation des produits de réaction.

Abstract. 2014 Heavy ion collisions are studied in the framework of three dimensional classical mechanics. One of the
colliding nuclei is spherical, the other being spheroidal. The vibrations of the spheroidal nucleus are taken into
account. It is shown that the variations of the shape and orientation of the spheroidal nucleus can have an appre-
ciable influence on the angular distribution and the polarization of the reaction products.
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1. Introduction. - Heavy ion interactions and in
particular deep inelastic collisions, have been studied
with the help of many models [1]. In most of these
models, the deterministic character of classical mecha-
nics is supplemented by the phenomenological intro-
duction of statistical and thermodynamical considera-
tions in order to describe the subsequent dispersion
of such physical quantities as mass, charge, relative
kinetic energy and spin.

It has been already shown by Deubler and Die-
trich [1] ] that the inclusion of shape degrees was
essential for obtaining the experimentally measured
loss of translational energy. But it was then assumed
that the classical trajectories were lying in a plane.
As the first purpose of this work was to understand the
de-orientation of the spin angular momentum observ-
ed in some experiments [2], collision has been des-
cribed within the framework of three dimensional
classical mechanics.

However, this three dimensional extension of the
previous models has been restricted to the collision of
a deformable spheroidal nucleus with a spherical
nucleus. Large amplitude mass vibrations have been
allowed, provided that they remained within the
limit of spheroidal shapes.

Before entering into the model description and the
results, we would like to emphasize that such elements
as variations of the shape and orientation of deformed
nucleus can have an appreciable influence on the
angular distribution and the polarization of the reac-
tion products, even though friction and nuclear vibra-

tional damping are not taken into account in our
model.

2. Model. - In order to characterize the system,
the following collective degrees of freedom are taken
into account dynamically :

i) The position vector of relative distance between
two centres of mass (C.M.) of the nuclei (r = (r, e, 4»).

ii) The orientation of the symmetry axis of a sphe-
roidal target nucleus by means of Euler angles
(6 = (cp, 8, tJ), where gl does not specify the macro-
scopic shape of the spheroid because of its symmetry.
From now on, à will therefore be specified only by its
components (0, ~)).

iii) A shape coordinate for which we take the

eccentricity (.). f is defined as follows for the spheroid
x2/a2 + y2/a2 + z2/c2 = 1 in its body-fixed coordi-
nate system,

which is real for the prolate shape (1 &#x3E; e &#x3E; 0) and
pure imaginary for the oblate shape (e = iE’,
oo &#x3E; e’ &#x3E; 0). In the figures, - s’ is used instead of a
for convenience.

We assume that the nuclear flow inside the sphe-
roidal nucleus has a vibrational velocity field vo such
as :
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We assume also that the nuclear fluid is incompres-
sible.
Then

When the whole nucleus rotates with an angular
velocity w(t), the total velocity field at the point ro is

This field verifies the following equations

This mass fluid is therefore incompressible and rota-
tional. The kinetic energy of the nucleus can be writ-
ten :

where p is the nuclear density and the integration is
taken over the whole volume of the nucleus. The
third term of eq. (1) represents the coupling between
rotation and vibration. Vibrational spin,

is zero due to the symmetry of the spheroid. If this
term were not zero, simple separation of vibration
and rotation could be ambiguous. Ivib and the rota-
tional moment of inertia 1 ôt about the axis perpendicu-
lar to the symmetry axis of the spheroid are shown in
figure 1-1 as a function of E. The Lagrangian of the
system is 

_

where J1 is the reduced mass of the system. 
’

Proximity nuclear potential ( VN) without any

approximation is used [3]. A detailed discussion of the
merits and validity restrictions usually made in similar
calculations can be found in a recent paper by J.
Randrup [4]. In figure 1-2 we show the mean curvature
R as a function ofe, and it can be shown that YN has a
close affinity to the plotted R(e) results. The exact
Coulomb potential ( YQ) between the spheroid target
and spherical projectile is deduced from reference [5].

Fig. 1-1. - Model calculation of vibrational inertia (Ivib) and
rotational inertia (I1rot) as a function of E’, where

where A is the mass of target nucleus whose radius is Ro.

Fig. 1-2. - Two extreme values of the mean curvature R as a
function of E’.

The surface of the spheroidal target nucleus, its curva-
ture, its self-Coulomb energies ( Yd) and the moments
of inertia are calculated from reference [6].
The equations of motion are
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The equations for q = t/1, E, 0 are briefly considered
below :

i) q = gl ; this coordinate is cyclic. Its canonical
momentum is chosen to be zero, i.e., ip cos 0 + t/1 = o.

The third term of eq. (2) represents the coupling
between rotation and vibration through the change of
inertia.

3. Results and discussion. - Calculations were per-
formed for the system 63Cu + ’9’Au with 443 MeV
bombarding energy. The impact parameter b was
changed from 2 to 6 fm, which corresponds to a change
in orbital angular momentum from 67 h to 200 h.
At t = - oo we assume that 19’Au is slightly deform-
ed with e = 0.1. (In Bohr’s deformation notation,
fl = 0.03), and its symmetry axis points toward the
angles shown in figure 2.

Fig. 2. - Geometrical orientation (1) of the symmetry axis of
spheroidal nucleus (Au) is chosen to point toward different direc-
tions. b is the impact parameter. (D = (0, 0). @ 6 = (n/4, 0).
(3) à = (n/4, n). @ à = (n/4, n/2). (5) a = (n/2, n/2).

In figure 3 the time evolution of the deformation,
mass-vibrational energy, nuclear potential and orbital
angular momentum for two different initial orienta-
tions, à, are shown ; (a) à = (0, 0), b = 2 fm ;
(b) 6 = (n/4, 0), b = 2 fm.

t = 0 is taken when the distance between the two
C.M. is 50 fm. The time unit is 10- " second.

(I) The following remarks can be made concern-
ing figure 3-1, where the deformation of 19’Au is
shown as a function of time :

i) Until the nuclear interaction comes into play
(t ~ 1.0), the Coulomb interaction causes Au to

Fig. 3-1. - Time evolution for the deformation coordinate (e).
t = 0 is chosen when the relative distance is 50 fm.

(a) = Q = (0, 0), (b) = (6 = (n/4, 0). Negative values of e are for
oblate deformation.

deform into two different shapes, one more prolate
for case (a) and the other oblate (b) ;

ii) The deformation has no simple periodicity
during the time in which the nuclear interaction takes
place ;

iii) The deformation in case (a) becomes pronounc-
ed in the exit channel (t &#x3E; 1.52) but in case (b) this
already happens in the entrance channel (t  1.64) ;

iv) The resulting deformation in the exit channel
will be prolate for both initial orientations.

Fig. 3-2. - Same as figure 3-1 for. vibrational energy (MeV).

(II) The following two remarks can be made

conceming figure 3-2, where the vibrational energies
of (a) and (b) are shown as a function of time :

i) The vibration mode in (a) is excited only in the
exit channel but in (b) this occurs very early in the
entrance channel.

ii) The vibrational energy in (a) is at most 25 MeV
but in (b) it can be as great as 160 MeV. Such a high
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vibrational energy value may be related to the fact
that damping is neglected in our calculation. In the
following paragraph the reason for these differences
between (a) and (b) is given by simple derivation of the
vibrational energy from the leading terms of eq. (2).
As mentioned, the third term of eq. (2) represents

coupling between rotation and vibration. The ratio
of the third to the second term of eq. (2) becomes

As shown in figure 1-1,

We can therefore ignore the third term unless the
rotational energy is much higher than the vibrational
energy, but comparison with figure 3-4 shows the
smallness of R. A simple calculation to obtain the
explicit appearance of Ivib’ gives

TVib depends principally on two parameters : IVib and
à V/68.
Once the nuclear potential VN intervenes this governs

the movements. It is thus sufficient to consider

oVN/oe instead of ôV/68.

i) At the moment when VN begins to interact,
Au in (a) is deformed with 8 = 0.2 but in (b) with
8 = - 0.9.

This deformation difference signifies a large pos-
sible difference in a YN/aE, as can be easily deduced
from figure 1-2. Since the proximity nuclear potential
is linearly proportional to the mean curvature,
R, aVN/aE is simply proportional to the tangent of the
curves shown in figure 1-2.

ii) For the prolate nucleus, the increase in oVN/oe
is compensated by the increase in Ivib’ this latter rising
quite quickly above E N 0.5. Vibrational energy in (b)
therefore reaches a maximum at fairly small deforma-
tion.

(III) We observe by comparison between figure 3-2
and figure 3-4 that the vibration mode acquires much
more energy than the rotation mode. This difference
can be explained in almost the same way as in the
previous paragraph but with an additional restriction
on time, i.e. t  1.6.

The ratio between the second and fourth terms of

eq. (3) leads to

where J = I ôt 8 is the spin angular momentum of Au.
In the limit of t  1.6, i becomes small when

èlrot/of, increases and vice versa, which means that
ôlrot/at is small. The same applies to the spin angular
momentum, J.
We can therefore neglect the second term and

consider that the rotational inertia is constant within
the above time limits. Eq. (3) gives

The influence of I ôt and of Ivib on energy is revealed
in the above equation and in eq. (5). Tvib could be
higher than Trot by a factor of 10 because of the inertia
difference.

(IV) The proximity nuclear potential, VN, is shown
as a function of time in figure 3-3.

Fig. 3-3. - Same as figure 3-1 for nuclear proximity potential
(MeV).

For case (a), two nuclei approach until a strong
repulsive core is met then they separate. The same
procedure is taken for case (b) until the target nucleus
Au is quite deformed (t ~ 1.8). Transformation of the
deformation energy into vibrational and rotational

energy induces a relatively rapid surface movement
while the relative kinetic energy is low. Continuation
of nuclear surface movement in the proximity of the
other nuclear surface results in a new attractive
interaction. ( @ in the figure.) A similar situation
can be shown to exist around t = 2.2 ( @ in the

figure), but the radial kinetic energy already becomes
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Fig. 3-4. - Same as figure 3-1 for orbital angular momentum (h).

Fig. 4. - Effective potential energy ( Veff) which is the difference
between total energy and radial kinetic energy, as a function of
relative distance (fm). The solid line refers to the entrance channel
and the dashed line to the exit channel. Almost 40 MeV of kinetic

energy is transformed into deformation energy. Zero of Veff is
chosen arbitrary. @ and (B) indicate the moments shown in

figure 3-3.

55 MeV (see Fig. 4). Hence the nuclear potential does
not show the pronounced local minimum observed
at t = 2.0.

(V) The change of orbital angular momentum
is shown in figure 3-4.
The spin angular momentum (J ) of Au is the diffe-

rence between each value of orbital angular momen-
tum and the initial value. The corresponding rota-
tional energy of Au can be easily calculated from the
rigid body relationship between angular momentum
and rotational energy. For example,

The final changes in quantity of angular momentum
are almost 20 h, coming from the variations of the
shape and of the orientation of the target nucleus.
However these changes manifest themselves by
opposite signs, i.e., the induced angular momentum
of the deformed nucleus has the same direction as the
orbital angular momentum for case (a) but the oppo-
site direction for case (b). This 40 h difference results
in a large dispersion in angular distribution shown
in figure 5.

Fig. 5. - C.M. angular distribution for given impact parameters
and symmetry axis orientations. The orbital angular momenta are
also shown. For different orientation, see figure 2.

(VI) In figure 5 the deflection function is drawn
for different symmetry axis orientations showing
that not only the statistical equilibration but also the
orientation of the deformed nucleus can be responsible
for the dispersion on the Wilczynski diagram. The
reduced dispersion found at large impact parameters
is due to the absence of deformation in the entrance
channel in these cases.

(VII) For cases where there is no spatial symmetry,
like case 3 in figure 2 (b = 5 fm), we observe in figure 6
the large deviation of the spin direction for the deform-
ed nucleus. In the centre of mass system, for example
the relative vector is r = (50, 95.9, 90) in the entrance
channel but r = (55.9,173.5, - 60) in the exit channel
as shown in the figure. It is therefore incorrect to say
that the initial direction of orbital angular momentum
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Fig. 6. - Pc represents the normal direction vector to the so called
reaction plane defined by the plane of the ion path, not in yz plane.
P; represents the initial direction of orbital angular momentum.
Angle, a, between P; and P, is almost 10°.

is perpendicular to the, so called, reaction plane
defined by the plane of the ion path. This direction
(P f) perpendicular to the reaction plane deviates from
the true initial direction which is P;.
As a result the acquired spin of the deformed nucleus

is likewise not oriented along Pf. This phenomenon
is also true for cases where a large deformation occurs,
as usually happens when the impact parameter is
small.
For the aboyé mentioned case (case 3 in figure 2

with b = 5 fm), the ratio between the spin component
of the spheroidal nucleus parallel to Pf and the spin
component normal to P f is as low as 0.6, from which
we deduce the classical value of the spin projection to
Pf axis, M;, 1

using the angular distribution formula for the qua-
drupole gamma ray, emitted when the nucleus decays
from the state J;, Mi &#x3E; to the state Jf, Mf &#x3E;.

where o, is the azimuthal angle from Pf axis in
is usual Clebsch-Gordon coefficient, and Y are usual
spherical vector harmonics, we find

instead of zero if the spin was aligned with Pf. This is in
reasonable agreement with the experimental value
which is about 0.9 [2].

In conclusion, this de-orientation effect due to the
dynamics is much more important than the de-orien-
tation effect due to the emission of light evaporated
particles. It becomes possible to explain the unexpected
isotropic distribution of gamma rays discussed as
above, and the anomalous angular distribution of the
fission fragments, when the fissioning nucleus is a deep
inelastic reaction product [8].

Likewise the Coriolis effect must align the spin of the
deformed nucleus into the P; direction but not into
the Pf direction.
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