

Emission ionique secondaire et structure électronique des petits agrégats VCn

M. Leleyter

► To cite this version:

M. Leleyter. Emission ionique secondaire et structure électronique des petits agrégats VCn. Journal de Physique, 1981, 42 (8), pp.1115-1128. 10.1051/jphys:019810042080111500. jpa-00209098

HAL Id: jpa-00209098 https://hal.science/jpa-00209098

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 36.40 — 79.20N — 31.20N

Emission ionique secondaire et structure électronique des petits agrégats VC_n

M. Leleyter (*)

Laboratoire de Physique des Solides (**), Bâtiment 510, Université Paris-Sud, 91405 Orsay cedex, France

(Reçu le 26 février 1981, accepté le 6 avril 1981)

Résumé. — Les intensités d'émission secondaire des ions $V_p C_n^+$ (p = 1 à 4) et VC_n^- produits par bombardement ionique primaire d'un carbure de vanadium montrent pour p = 1 et 4 des oscillations avec la parité du nombre n d'atomes de carbone. Les maximums ont lieu pour n pair si p = 1 (ions positifs et négatifs) et pour n impair si p = 4.

Ces résultats expérimentaux sont comparés à l'émission ionique secondaire de V₃Si où l'on observe respectivement les mêmes caractéristiques pour les intensités $I(VSi_n^+)$ et $I(V_4Si_n^+)$ que pour $I(VC_n^+)$ et $I(V_4C_n^+)$.

Dans le cas des amas $VC_n(p = 1)$, ce phénomène d'alternances peut s'interpréter à l'aide d'un calcul CNDO effectué pour des chaînes linéaires $VC_n(n < 7)$ (formes qui peuvent ne pas être les plus stables) où l'atome de vanadium est fixé à une extrémité. On trouve alors une plus grande stabilité (énergie de liaison) pour les amas de n pair, quelle que soit la charge (positive, négative ou nulle) des amas. De plus, le calcul CNDO permet d'analyser la structure électronique ainsi que l'évolution des niveaux d'énergie et de la liaison V—C avec n.

Ces calculs constituent une nouvelle vérification de la règle qui fait correspondre à une plus forte émission secondaire d'un spécimen donné d'amas, une plus forte stabilité de ces derniers.

Abstract. — The intensities of secondary emission of $V_p C_n^+$ (p = 1 to 4) and $V C_n^-$ ions produced in a primary ionic bombardment of a target of vanadium carbide, show oscillations when p = 1 or 4 according to the parity of the number *n* of carbon atoms. Maxima occur for *n* even if p = 1 (positive or negative ions), for *n* odd if p = 4. These experimental results are compared to the secondary ionic emission of V_3 Si where the intensities $I(VSi_n^+)$ and $I(V_4Si_n^+)$ respectively behave as $I(VC_n^+)$ and $I(V_4C_n^+)$.

In the case of VC_n clusters (p = 1), the alternating phenomenon can be interpreted from a CNDO calculation carried out on *linear chains* VC_n (n < 7) (shapes which may not be the stablest ones) with the vanadium atom bound at one end. We found then a greater stability (binding energy) for the clusters with n even, whatever the cluster charge (positive, negative or zero) is. Moreover the CNDO calculation let us to analyse the electronic structure and the evolution of energy levels and of the V—C bond with n.

Our calculations are a new verification of the simple rule of correspondence between a large secondary emission of given species of clusters and their greater stabilities.

1. Introduction. — Dans l'émission ionique secondaire (E.I.S.) de petits agrégats X_n (n < 20 en général), la règle de parité du nombre d'électrons de valence [1, 2] permet souvent de donner une bonne interprétation des phénomènes observés. Ceux-ci se caractérisent en général par l'existence d'alternances dans les intensités d'émission des ions avec renforcement de celles-ci pour une parité donnée du nombre d'atomes des ions considérés : les intensités sont les plus fortes quand le nombre d'électrons de valence est pair.

La règle de parité conserve sa validité lorsqu'il s'agit d'agrégats hétéronucléaires de type A_pB_n . Par

exemple, dans l'E.I.S. du composé KPF_6 [3] sous bombardement primaire par des ions Ar^+ de 3 keV, on observe sur le spectre des pics d'intensités correspondant aux ions P^+ , PF_2^+ , PF_3^+ et PF_4^+ , et la hauteur des pics P^+ , PF_2^+ et PF_4^+ (nombre d'électrons de valence pair) est nettement supérieure à celles des pics PF^+ (qui n'est même pas détecté) et PF_3^+ (tous deux correspondant à un nombre d'électrons de valence impair).

Toutefois cette règle très simple ne peut manifestement pas rendre compte des effets d'alternances observés sur des agrégats contenant du carbone. En effet, les ions de type $X_pC_n^+$ (où X est un élément simple, par exemple le fluor [4]) qui montrent pour p fixé des oscillations dans leurs intensités d'émission quand n varie, ont tous le même type de parité du nombre

^(*) Aussi : Groupe de Physique Théorique, Faculté des Sciences, 33 rue Saint-Leu, 80039 Amiens cedex.

^(**) Laboratoire associé au C.N.R.S. : LA nº 2.

d'électrons de valence pour p donné. On a vu précédemment [5] que ces alternances trouvent leur origine dans le fait que le « niveau de Fermi » (c'est-à-dire l'orbitale moléculaire occupée la plus élevée ou « HOMO ») de l'amas X_pC_n se situe dans une bande d'orbitales moléculaires de type π dégénérées, et que suivant la parité de n, il est tantôt à moitié ou moins qu'à moitié rempli, tantôt complètement ou presque complètement rempli.

Dans le cas des amas MC_n où M est un élément de transition, l'E.I.S. de ces agrégats fait apparaître aussi des oscillations suivant la parité de *n*, dans les intensités d'émission des ions MC_n^+ . Nous avons déjà considéré le cas des ions FeC_n^+ , CrC_n^+ [6] et TiC_n^+ [7]. D'après ces études, il est apparu que l'on peut classer les éléments de transition en deux groupes suivant la nature des alternances observées. Ainsi dans le cas du chrome [6], du titane [7], du zirconium, aussi bien en E.I.S. [8] que dans une source à étincelles [9], et de l'yttrium également dans une source à étincelles [9], et de l'yttrium également dans une source à étincelles [9], les intensités des ions MC_n^+ présentent des maximums marqués pour *n* pair. Au contraire, dans le cas du fer [10] et du nickel [8], les intensités des ions FeC_n^+ et Ni C_n^+ sont renforcées lorsque *n* est impair.

Or si l'on se réfère à la structure électronique des atomes de transition, le premier groupe correspond à un niveau atomique d à moitié ou moins qu'à moitié rempli, alors que pour les éléments du deuxième groupe, il est plus qu'à moitié rempli. En outre, si l'on examine les électronégativités des éléments de la première série de transition [11], on peut remarquer (Fig. 1) que ces éléments se scindent effectivement en deux groupes : du scandium au manganèse inclus (colonnes IIIA à VIIA) d'une part, et d'autre part les éléments de la triade (VIIIA) : fer, cobalt, nickel; et ces deux groupes correspondent bien aux résultats

Fig. 1. — Electronégativités des éléments de la première série de transition et du début de la deuxième (d'après Gray [11]).

[Electronegativities of the 3d transition elements and of the two first elements of the 4d series (Gray [11]).]

observés sur l'émission des amas MC_n^+ aussi bien sous un bombardement ionique (E.I.S.) que dans une source à étincelles. Rappelons que l'électronégativité au sens de Pauling se définit comme la capacité plus ou moins grande qu'un élément, engagé dans une liaison, a d'attirer les électrons de valence [11]. Les éléments du premier groupe (Sc à Mn) sont ainsi beaucoup moins électronégatifs que ceux de la triade. Il en résulte que dans la liaison d'un atome M de ce type avec une chaîne de carbone, il aura plutôt tendance à être donneur d'électrons, alors que le fer ou le nickel seront plutôt accepteurs, et ceci influera donc sur le remplissage du niveau π occupé le plus élevé.

Remarquons que l'interprétation des spectres des ions MC_n^+ est tout à fait analogue à celle de l'émission des ions carbonés XC_n^+ contenant un élément X normal, mais il faut tenir compte cette fois non seulement des niveaux π provenant du carbone et de l'élément de transition M, mais en plus du niveau δ dû à l'atome M. Ce niveau δ reste en fait un niveau d pur puisque l'atome M est seul de son espèce dans l'amas MC_n mais c'est sa position dans l'échelle des énergies qui conditionne le type des alternances observées, et cette position est évidemment liée à la nature de l'atome M, c'est-à-dire à son appartenance à l'un ou l'autre des deux groupes présentés ci-dessus.

Dans cet article, nous présentons des résultats d'E.I.S. du carbure de vanadium, ceci pour vérifier l'hypothèse précédente relative aux alternances d'émission : V appartient en effet au premier groupe cité plus haut. Nous les comparerons à l'E.I.S. de V₃Si, ce qui permet de mettre en évidence une certaine similitude de comportement qui peut s'expliquer par le fait que C et Si sont tous deux des éléments IVB. Nous rappelons aussi des résultats d'E.I.S. sur les ions FeC_n^+ pour illustrer la discussion ci-dessus et nous les confronterons avec les données de Cook sur les ions $FeSi_n^+$ obtenus dans une source à étincelles [9], ce qui peut mener à une généralisation du phénomène d'alternances aux amas MX_n où X, élément IVB, peut être différent du carbone.

Pour interpréter l'E.I.S. du carbure de vanadium, nous étudierons la structure électronique des molécules VC_n dans leurs divers états de charge par un calcul CNDO dans l'hypothèse où l'unique atome de vanadium est attaché à une extrémité d'une chaîne linéaire C_n . Ce modèle d'amas est évidemment théorique; mais d'une part, nous ignorons tout au point de vue expérimental sur la géométrie des très petits agrégats, et d'autre part, il permet une interprétation simple et intéressante du phénomène d'alternances dans l'E.I.S. de ces amas : en effet, quel que soit n, la géométrie est la même et il n'y a donc aucune influence « perturbatrice » d'une géométrie qui pourrait conduire à une stabilité beaucoup plus grande relativement, pour certaines valeurs particulières de n (par exemple cas du tétraèdre ou de la « bipyramide pentagonale»). Le problème des formes à 2 ou 3 dimensions nécessite un traitement beaucoup plus détaillé et sera généralisé dans une étude ultérieure [8].

2. Résultats expérimentaux. — 2.1 E.I.S. DU CARBURE DE VANADIUM. — L'échantillon d'un alliage VC à 0,89 % atomique de carbone [12] a été bombardé par un faisceau d'ions primaires O_2^+ de 6,5 keV, et les courants d'ions secondaires $V_pC_n^+$ ou VC_n^- sont analysés et enregistrés dans le microanalyseur ionique CAMECA SMI-300 de Castaing-Slodzian. La résolution de l'appareil est de 300 dans les conditions normales d'utilisation. L'intensité de chaque spécimen d'ion moléculaire est déduite de celle du pic principal à partir de la distribution isotopique des deux éléments V et C dans l'ion considéré.

2.1.1 Sur la figure 2 sont portées en fonction du nombre *n* d'atomes de carbone les intensités des ions $V_p C_n^+$ rapportées à celle de VC⁺ et les intensités $I(VC_n^-)$ rapportées à $I(V^-)$.

 $I(VC_n^-)$ rapportées à $I(V^-)$. Les ions positifs $V_pC_n^+$ se répartissent en quatre familles suivant les valeurs de p : ions VC_n^+ (n = 0 à 9, cercles pleins), $V_2C_n^+$ (n = 0 à 7, étoiles sur la figure 2), $V_3C_n^+$ (n = 0 à 5, triangles pleins) et $V_4C_n^+$ (n = 0, 1, 2).

I(VCn)

1(V-)

100

10

VC_

n

vc*

v_pc⁺

p=1,2,3,4

I(VpCn)

I(VC*)

5

٧3

0,1

0.01

[SIMS of vanadium carbide (primary beam : 6.5 keV O_2^+ ions) versus *n*, the number of carbon atoms. For positive ions, the relative emission intensities are reported to $I(VC^+)$; for negative ions they are reported to $I(V^-)$.]

Dans cet article, nous nous intéressons essentiellement aux ions ne contenant qu'un seul atome de transition; nous pouvons ainsi remarquer que les ions VC_n^+ montrent bien les alternances attendues suivant la parité de *n* pour $n \leq 5$ avec renforcement plus ou moins marqué des ions de *n* pair, ce renforcement pouvant n'être traduit parfois que par un simple point anguleux sur la courbe.

Les ions négatifs manifestent le même comportement avec des maximums pour *n* pair.

Les ions $V_2C_n^+$ et $V_3C_n^+$ ne présentent pas de caractéristiques particulières. Par contre les ions $V_4C_n^+$ paraissent amorcer des alternances renversées par rapport à celles de VC_n^+ puisqu'il apparaît un maximum en n = 1.

2.1.2 On peut également ranger les ions $V_pC_n^+$ en fonction du nombre p d'atomes de vanadium (Fig. 3), mais on n'observe plus alors d'oscillations dans leurs intensités en fonction de la parité de p. Ainsi les ions homonucléaires V_n^+ ont des intensités décroissantes jusqu'à V_4^+ (cette décroissance étant d'ailleurs plus forte de V_2^+ en V_3^+), puis croissantes de nouveau pour V_5^+ .

Le seul trait marquant est un maximum important en p = 2 pour les familles V_pC^+ , $V_pC_2^+$ et $V_pC_3^+$; les familles $V_pC_4^+$ et $V_pC_5^+$ n'ont, elles, qu'un comportement simplement monotone.

Fig. 3. — E.I.S. du carbure de vanadium en fonction du nombre p d'atomes de vanadium.

[SIMS of vanadium carbide as a function of *p*, the number of vanadium atoms.]

2.2 E.I.S. DU COMPOSÉ V_3 Si. — Le bombardement du composé V_3 Si [13] a été effectué avec des ions primaires Ar⁺ de 6,5 keV. Nous pouvons observer figure 4 les ions VSi_n^+ , $V_2Si_n^+$ et $V_3Si_n^+$ pour n = 0 à 3 ainsi que les ions $V_4Si_n^+$ et les ions VSi_n^- pour n = 0, 1, 2.

Fig. 4. — E.I.S. du composé V_3Si (ions primaires Ar^+ de 6,5 keV) en fonction du nombre *n* d'atomes de silicium. Les intensités relatives d'émission *I* sont rapportées à $I(V^+)$ pour les ions $V_pSi_n^+$ et à $I(V^-)$ pour les ions VSi_n^- .

[SIMS of V_3Si (primary ions : 6.5 keV Ar⁺) as a function of the number *n* of silicium atoms. The relative intensities *I* of emission are reported to $I(V^+)$ for the $V_pSi_n^+$ ions, and to $I(V^-)$ for the VSi_n^- ions.]

Il est intéressant de noter la similitude entre les séries de courbes des ions $V_pC_n^+$ et $V_pSi_n^+$: la série d'ions VSi_n^+ montre en effet des minimums relatifs pour n = 1 et 3 et un maximum relatif en n = 2(points anguleux) exactement comme dans le cas des ions VC_n^+ ; les ions $V_4Si_n^+$ ont un maximum très marqué pour V_4Si^+ (n = 1) tout comme les ions $V_4C_n^+$ (ce qui correspond aussi à un renversement d'alternances par rapport au cas des ions VSi_n^+).

Enfin, les intensités des ions $V_2Si_n^+$ décroissent continûment comme celles des ions $V_2C_n^+$ et les ions $V_3Si_n^+$ montrent un maximum relatif en V_3Si^+ tout à fait analogue au maximum en V_3C^+ sur la courbe des intensités des ions $V_3C_n^+$ de la figure 3. Les ions négatifs VSi_n^- sembleraient pour leur part amorcer un renversement d'alternances par rapport au cas des ions VC_n^- puisqu'ils présentent un maximum en n = 1.

2.3 E.I.S. DE LA FONTE. — Nous avons bombardé par des ions Ar^+ un échantillon de fonte eutectique FeC à 4,3 % en poids de carbone et nos résultats (Fig. 5) sont en tout point analogues à ceux obtenus par Vidal *et al.* [10] dans un spectre de source à étincelles.

En effet les ions FeC_n^+ montrent d'abord une décroissance, puis des maximums pour *n* impair (l'ion FeC_6^+ n'est pas indiqué à cause d'une interférence avec un

Fig. 5. — E.I.S. d'une fonte eutectique à 4,3 % de carbone en fonction du nombre *n* d'atomes de carbone (ions primaires Ar^+ de 6,5 keV). Pour p = 1 et 2, les intensités sont rapportées à $I(FeC^+)$, pour p = 3 et 4, elles sont rapportées à $I(Fe_3C^+)$; les intensités $I(FeC_n^-)$ sont rapportées à $I(Fe^-)$. Dans le cartouche, intensités relatives des ions $FeSi_n^+$ (rapportées à $I(FeSi^+)$) produits dans une source à étincelles (d'après Cook [9]), en fonction du nombre *n* d'atomes de silicium.

[SIMS of eutectic cast-iron (4.3 % carbon) against the number n of carbon atoms (primary beam : 6.5 keV Ar⁺ ions). When p = 1 and 2, the intensities are relative to $I(\text{FeC}^+)$; when p = 3 and 4, they are relative to $I(\text{Fe}_3\text{C}^+)$; the intensities $I(\text{FeC}_n^-)$ are reported to $I(\text{Fe}^-)$. In the inset, relative intensities of the FeSi_n^+ ions (reported to $I(\text{FeS}^+)$) produced in a spark source (Cook [9]), versus n, the number of silicium atoms.]

ion étranger). Les ions $Fe_2C_n^+$ n'ont pas de comportement régulier malgré la présence de maximums en n = 2 et n = 6 et il en est pratiquement de même pour les ions ayant 4 atomes de fer.

Au contraire, les ions $\operatorname{Fe}_{3}C_{n}^{+}$ montrent des alternances pratiquement régulières (comme dans les résultats de Vidal *et al.* [10]) avec des maximums pour *n* pair, soit un renversement par rapport au cas des ions $\operatorname{Fe}C_{n}^{+}$.

Les ions négatifs FeC_n^- de leur côté présentent aussi des alternances avec comme pour les ions VC_n^- des maximums pour *n* pair.

2.4 SPECTRE DE SOURCE A ÉTINCELLES : IONS FeSi_n^+ . — Sur la même figure 5, nous rappelons à titre de comparaison à la fois avec VC_n^+ et VSi_n^+ , les résultats de Cook relatifs aux ions FeSi_n^+ (n = 1 à 5) [9]. Pour $n \leq 4$, on observe des minimums pour *n* pair et un maximum pour n = 3, c'est-à-dire un comportement très semblable à celui des ions FeC_n^+ . C'est donc un facteur supplémentaire d'illustration du classement en 2 groupes des éléments de transition annoncé en introduction. En outre, le comportement des ions VSi_n^+ d'une part et $FeSi_n^+$ d'autre part, qui est très analogue respectivement à ceux des ions VC_n^+ et FeC_n^+ , confirme également que c'est bien l'atome de transition qui régit le phénomène. De surcroît il ressort bien de ces diverses comparaisons que ce sont les électrons de valence qui sont responsables de la production (par E.I.S. ou source à étincelles) des ions moléculaires de type MX_n^+ (M = élément de transition, X = élément IVB) puisque le « remplacement » de C par Si conserve pratiquement les résultats expérimentaux.

3. Etude théorique des agrégats VC_n : propriétés électroniques des chaînes VC_n . — 3.1 PRÉSENTATION DU MODÈLE. — Nous allons examiner à présent la structure électronique de certains des agrégats observés expérimentalement puisque nous savons que le résultat des expériences d'E.I.S., entre autres, est une bonne traduction des propriétés électroniques des petits amas ainsi produits.

Comme nous l'avons dit en introduction, nous nous restreignons ici aux amas de type VC_m en excluant ceux qui contiennent plusieurs atomes de vanadium et dont le comportement expérimental apparaît comme beaucoup moins net que le cas des VC_m . Cette étude va nous permettre en particulier de répondre à la question de savoir quelle propriété électronique, de la stabilité ou des potentiels d'ionisation par exemple, est la plus susceptible d'en régir l'émission.

Nous ne traiterons en fait dans cet article que le modèle des chaînes linéaires de carbone portant l'atome de transition en bout de chaîne, ce qui reviendrait dans le cas de la chaîne C_n seule à une hybridation de type sp, ce choix étant dicté par les raisons exposées plus haut et également parce que nous avons vu précédemment [5] que cela correspond à la forme la plus stable de C_n pour n < 6. Nous allons donc étudier les amas VC_n avec $n \leq 6$. L'étude faite sur TiC_n [7] montre en effet que le modèle linéaire n'a plus guère de sens dès que l'on dépasse six atomes de carbone car ceux-ci tendraient alors à se mettre plutôt sous forme d'anneau. Nous verrons en outre plus loin (§ 3.3) la raison qui nous a conduit à placer l'atome de vanadium au bout de la chaîne C_n et non en son milieu.

Nous calculons les énergies totales $E_{\rm T}(n)$, $E_{\rm T}^+(n)$ et $E_{\rm T}^-(n)$ des chaînes VC_n, VC_n⁺ et VC_n⁻ ($n \le 6$) à l'aide de la méthode bien connue de calcul semiempirique CNDO/2 [14] dont nous ne détaillerons pas le processus ici. Rappelons simplement que nous disposons d'un programme CNDO étendu aux éléments de transition [15] dans lequel les termes de la matrice de Fock pour les électrons ont les expressions données par Clack *et al.* [16] et limitées pour l'instant au cas d'un seul atome de transition. Enfin, signalons que le calcul a été mené dans l'hypothèse « lowspin ».

3.2 CHOIX DES PARAMÈTRES. — Nous donnons dans le tableau I les paramètres introduits dans le calcul CNDO. Ce sont essentiellement ceux préconisés par Clack *et al.* [16]. Les exposants ζ des orbitales de Slater sont ceux de Clementi-Raimondi [17].

Tableau I. — Paramètres (en eV) utilisés dans le calcul CNDO des chaînes linéaires VC_n .

[CNDO input parameters (in eV) used for the linear chains VC_n .]

Elément	Ο.Α. μ	$\frac{\frac{1}{2}\left(I_{\mu}+A_{\mu}\right)\left(^{a}\right)}{\mathrm{eV}}$	$- \beta^0_\mu eV$	ζμ	Distances (Å)
V (*)	4s 4p 3d	3,82 0,78 4,48	3,50 3,50 16,50	1,25 ([*]) 1,25 2,99	V-C 1,86
C (°)	2s 2p	14,051 5,572	21,00 21,00	1,625 1,625	C-C 1,312

(a) Clack et al. [16]; (b) Clementi-Raimondi [17]; (c) Pople et Beveridge [14].

La distance entre les atomes de carbone a été prise égale à la distance d'équilibre expérimentale donnée par Herzberg pour C_2 [18], soit 1,312 Å et on a supposé que cette distance reste fixe quel que soit *n* et quel que soit l'état de charge de l'agrégat VC_n.

Nous indiquons en appendice (Appendice I) comment nous avons déterminé la distance V-C. Toutefois, à titre de vérification, nous avons tracé la courbe d'énergie potentielle de VC et VC⁺ en fonction de la distance pour mieux fixer la distance d'équilibre de VC. On arrive ainsi (Fig. 6) à

V-C
$$\simeq 1,86$$
 Å et (V-C)⁺ = 1,77 Å.

Comme les distances d'équilibre trouvées par le calcul CNDO pour VC et VC⁺ ne sont pas très différentes et pour faciliter les comparaisons (et compte tenu également du fait que pour faire une étude très rigoureuse, il aurait fallu minimiser toutes les distances V-C et C-C pour toutes les valeurs de *n* et tous les états de charge des chaînes VC_n, et même pour toutes les formes possibles des amas VC_n), nous avons choisi de prendre une distance V-C unique pour tous les calculs, soit V-C = 1,86 Å pour tout *n* et tout état de charge. Ceci nous permet d'ailleurs d'obtenir les énergies d'ionisation « verticales » de VC_n et non les énergies d'ionisation « thermodynamiques » au sens de Simons et Smith [19] $E_{\rm T}^+(r_{\rm e}^+) - E_{\rm T}(r_{\rm e})$, où $r_{\rm e} = 1,86$ Å et $r_{\rm e}^+ = 1,77$ Å dans le cas présent (¹).

^{(&}lt;sup>1</sup>) Remarquons que l'énergie d'ionisation verticale de VC $E_{\rm T}^+(r_{\rm e}) - E_{\rm T}(r_{\rm e})$ est de 10,974 eV alors que l'énergie d'ionisation thermodynamique est de 10,829 eV, soit une différence entre les deux valeurs de 0,145 eV seulement. L'erreur ainsi introduite est donc faible.

Fig. 6. — Energies totales $E_{\rm T}$ de VC et VC⁺ (en eV) calculées en CNDO en fonction de la distance interatomique d en angströms.

[Total energies $E_{\rm T}$ (in eV) of VC and VC⁺ in CNDO versus the interatomic distance d (in angströms).

3.3 RÉSULTATS DES CALCULS. — Des énergies totales $E_{\rm T}(n)$ des agrégats dans leurs divers états de charge, nous déduisons les quantités

$$\Delta_n = |E_{\mathrm{T}}(n) - E_{\mathrm{T}}(n-1)|,$$

 Δ_n^+ et Δ_n^- définies de même à partir de E_T^+ et E_T^- .

VC⁺

CNDO

∆_n=IE₁(n)-E₁(n-1)

۵'n

e۷

190

180

180

Δ*****n

eV

170

180 _____ eV

[Evolution as a function of the number *n* of carbon atoms of the quantities Δ_n , Δ_n^+ and Δ_n^- (defined in the text) calculated in the CNDO approximation for the linear chains VC_n, VC_n⁺ and VC_n⁻.]

La grandeur Δ_n représente simplement l'accroissement d'énergie de la molécule VC_{n-1} quand on lui ajoute un atome de carbone et une liaison C-C supplémentaires. D'après nos études antérieures [5, 7], Δ_n est en effet mieux appropriée pour rendre compte des stabilités relatives des agrégats de valeurs consécutives de *n* que, par exemple, l'énergie de liaison par atome qui revient en fait à prendre une moyenne à la fois sur l'énergie de la liaison V-C et les énergies des liaisons C-Ç.

La figure 7 montre que l'évolution avec n de Δ_n , Δ_n^+ et Δ_n^- se caractérise par des oscillations très importantes avec la parité de n avec des maximums pour n pair. Ainsi le phénomène est-il tout à fait typique pour Δ_n et Δ_n^- . Il apparaît moins nettement pour Δ_n^+ puisqu'une discordance se manifeste pour Δ_5^+ . On peut donc en fin de compte conclure qu'on gagne en général davantage d'énergie quand on construit un amas de n pair à partir de l'amas de rang n - 1(impair) que dans le cas inverse (²).

Cela signifie donc qu'un agrégat est plus stable si nest pair que si n est impair. Dans le cas des ions positifs, on peut remarquer que la discordance pour Δ_5^+ et Δ_6^+ peut être rapprochée de la courbe expérimentale figure 2 où justement les oscillations dans les intensités d'émission se brouillent quelque peu quand n = 6. On verra d'ailleurs un peu plus loin (§ 3.4) que l'étude des énergies d'ionisation peut aussi éclairer cet écart à la règle de la parité de n, et qu'on peut même comprendre le fait que les oscillations de Δ_n^- semblent amplifiées par rapport à celles de Δ_n .

On arrive ainsi à un très bon accord entre le résultat des calculs de structure électronique et l'expérience puisque les amas de n pair, quelle que soit leur charge, se trouvent être généralement plus stables que ceux de n impair.

Nous allons à présent examiner plus en détail les niveaux d'énergie des chaînes VC_n .

3.4 ANALYSE DES NIVEAUX D'ÉNERGIE. — 3.4.1 Disposition des orbitales moléculaires (O.M.). — Sur la figure 8*a* nous avons porté la structure de niveaux de l'agrégat VC₆. Les calculs ont été évidemment réalisés en couche ouverte pour les chaînes neutres VC_n puisque le nombre total d'électrons de valence est impair (alors que les ions VC_n⁺ et VC_n⁻ ont été traités en couches fermées); toutefois pour plus de clarté sur la figure, nous n'avons tracé que

^{(&}lt;sup>2</sup>) Remarquons que si l'on examine l'influence de l'isomérie dans la chaîne VC_n en plaçant l'atome d'impureté dans les diverses positions possibles le long de la chaîne C_n, il apparaît [8] que pour toutes les positions de l'atome étranger autres que celle de l'extrémité, les valeurs de $E_{\rm T}(n)$ sont très nettement plus faibles, même lorsque l'atome est au milieu de la chaîne de carbone. Mais le fait le plus important est que les quantités Δ_n montrent alors des alternances contraires à celles observées expérimentalement, pour les diverses positions de l'atome étranger dans la chaîne, d'où le choix fait pour la suite de la discussion d'un atome de vanadium se liant à une chaîne C_n pouvant être considérée comme un bloc. La chaîne C_n constitue donc un « ligand » d'un type assez particulier.

Fig. 8*a.* — Structure de niveaux d'énergie de la chaîne VC₆ et composition des O.M. (spin α) en fonction des O.A. Les niveaux d δ et d σ de V sont antiliants. En traits épais, les orbitales dégénérées π et δ . On a indiqué les O.M. qui se projettent essentiellement sur les O.A. du vanadium. Les diverses notations sont précisées dans le texte.

[Calculated structure of the energy levels of the chain VC₆ and composition of the M.O. (spin α) as a function of the A.O. The $d\delta$ and $d\sigma$ levels of V are antibonding. In bold lines, the degenerated π and δ M.O. The M.O. which mainly project on the A.O. of the vanadium atom are indicated. The notations are precised in the text.]

les orbitales moléculaires (O.M.) correspondant au spin α . Nous avons également fait apparaître la contribution s, p ou d à chaque O.M.

Nous pouvons dès lors remarquer que cette structure de niveaux s'apparente tout à fait à celle que l'on peut déduire du modèle de Pitzer et Clementi [20] valable dans l'approximation de Hückel. En effet, en supposant la chaîne C_n linéaire, ce qui correspond à une hybridation de type sp, la structure de niveaux proposée par Pitzer et Clementi est la suivante : par ordre d'énergies croissantes, on rencontre d'abord (Fig. 8b) :

— une bande sp_L liante entièrement remplie (niveaux σ);

— 2 niveaux de « surface » σ_t remplis dont l'existence est due au fait que la chaîne C_n est de longueur finie et présente par conséquent à ses extrémités, 2 liaisons coupées;

— une bande de *n* niveaux π doublement dégénérés, partiellement remplie;

— une bande sp_{AL} de niveaux σ antiliants totalement vides.

Si l'on considère maintenant le cas d'une chaîne linéaire $C_n M$ (M atome de transition), l'atome étranger M forme 2 orbitales hybrides à partir des O.A. $3d\sigma$ et $4s\sigma$: l'une est localisée sur l'atome M et dans le

Fig. 8b. — Structures comparées des niveaux des chaînes C_n et MC_n d'après le modèle de Pitzer et Clementi (M métal de transition = V). E_s , E_p , β_σ , β_π et Δ_σ sont des notations reprises de la méthode de Hückel avec hybridation [1,5]; $E_m = (E_s + E_p)/2$ dans l'hybridation sp considérée ici.

[Comparison of the energy levels of the chains C_n and MC_n according to the Pitzer and Clementi model (M = transition element = V). E_s , E_p , β_σ , β_π and Δ_σ are quantities used in the Hückel approximation with hybridization [1,5]; $E_m = (E_s + E_p)/2$ in the sp hybridization under consideration in the present work.]

cas du vanadium, elle est vide car elle se situe dans la bande antiliante; l'autre interagit avec l'orbitale σ_t de bout de chaîne de C_n , ce qui donne naissance à 2 O.M. : l'orbitale liante $\sigma_L(C-V)$ contenant 2 électrons et l'orbitale antiliante $\sigma_{AL}(C-V)$ vide (Fig. 8b). Un seul niveau σ_t demeure à l'énergie « moyenne » E_m . On a donc pour la chaîne C_nM l'échelonnement suivant :

— une bande liante sp_L pleine, formée de *n* niveaux σ , soit les n - 1 niveaux σ de C_n et le niveau σ_{L} (C-V);

— l'unique niveau de surface σ_t subsistant à

$$E_{\rm m}=\frac{E_{\rm s}+E_{\rm p}}{2},$$

avec 2 électrons;

— une bande π de n + 2 niveaux doublement dégénérés : n niveaux de C_n + les 2 niveaux $p\pi$ et $d\pi$ du vanadium; — une bande antiliante sp_{AL} de n + 2 niveaux σ , soit les n - 1 niveaux de C_n, les niveaux s σ et d σ de V et le niveau σ_{AL} (C-V);

— un niveau δ (ou niveau d pur) 2 fois dégénéré, qui est également vide puisque situé dans la bande antiliante.

Cette disposition des O.M., classifiées d'après le modèle de Pitzer et Clementi se retrouve aisément sur la figure 8*a* où nous avons d'ailleurs précisé les diverses O.M. remarquables : les niveaux $\sigma_L(C-V)$ désignés encore par $p\sigma_V$, et $\sigma_{AL}(C-V)$ ou $p\sigma'_V$, l'unique niveau σ_t subsistant de la chaîne C_m les 2 niveaux s σ_V et d σ de l'atome de vanadium, ainsi que les O.M. d π (remplie) et d δ (vide).

Sur la figure 8c, nous donnons à titre de comparaison l'échelonnement et la composition des O.M. mais cette fois dans le cas de la chaîne linéaire FeC_6 calculée en couche fermée par Hoareau [15] avec les paramètres CNDO suivants pour l'atome de fer :

$$\frac{1}{2}(I_{4s} + A_{4s}) = 8,0 \text{ eV}; \quad \frac{1}{2}(I_{4p} + A_{4p}) = 1,06 \text{ eV};$$

$$\frac{1}{2}(I_{3d} + A_{3d}) = 6,20 \text{ eV};$$

$$\zeta_{4s} = 1,01; \quad \zeta_{3d} = 2,71; \quad \beta_{4s,p}^0 = -1 \text{ eV};$$

$$\beta_{3d}^0 = -10 \text{ eV};$$

ceux de l'atome de carbone étant les mêmes qu'au tableau I et avec des distances Fe-C de 2,04 Å et C-C de 1,312 Å. On retrouve sur cette figure 8c les mêmes traits essentiels que pour VC₆, mais avec cependant deux différences importantes. En effet la bande sp_L contient cette fois (n + 1) niveaux σ (et non plus *n* comme pour VC_n sur les figures 8a et 8b),

Fig. 8c. — Structure de niveaux de la molécule linéaire FeC₆ et composition des O.M. Les niveaux d δ et d σ de Fe sont liants [15].

[Energy levels of the linear molecule FeC₆ and composition of the M.O. The d δ and d σ levels of Fe are bonding [15].]

le niveau supplémentaire étant l'O.M. d σ qui se situe dans le cas du fer au-dessous du niveau « HOMO »; la bande antiliante sp_{AL} ne contient plus alors corrélativement que (n + 1) niveaux σ vides.

Mais surtout, le niveau δ qui était antiliant dans VC_6 , est devenu liant dans le cas de FeC_6 , l'inverse se produisant pour le niveau d π qui est antiliant dans FeC_6 . On voit donc que dans la chaîne neutre FeC₆, les électrons ont tendance à se localiser davantage sur l'atome de fer puisque le niveau δ est un niveau d pur (il se projette à 100 % sur l'orbitale atomique d de Fe), alors que l'O.M. $d\pi$ de la molécule VC₆ se projette à 91,5 % seulement sur les O.A. de l'atome de vanadium, les 8,5 % restants correspondant à des projections de l'O.M. sur les O.A. des six atomes de carbone. Les électrons $d\pi$ sont donc un peu plus délocalisés le long de la chaîne VC_6 que les électrons δ de FeC₆. Ce résultat du calcul est donc en bonne corrélation avec ce que nous avons dit en introduction des caractères respectifs du fer et du vanadium, à savoir que le fer est davantage accepteur d'électrons que le vanadium.

3.4.2 Energies d'ionisation et affinités électroniques. — Compte tenu de la similitude entre les schémas de niveaux donnés par le calcul CNDO ou par le modèle de Pitzer et Clementi, on peut étudier simplement les potentiels d'ionisation des amas VC_n par la méthode de Hückel comme nous l'avions fait pour les chaînes FeC_n et CrC_n [6] en ne considérant que la bande de niveaux π , ce qui permet de mieux visualiser les résultats.

Comme nous l'avons indiqué sur la figure 8b construite dans le cas où le métal de transition M est du vanadium, la bande π contient (n + 2) niveaux deux fois dégénérés et 2n + 3 électrons π pour une molécule neutre VC_n. Par conséquent, le dernier niveau π occupé (HOMO), qui se trouve d'ailleurs jouer en même temps le rôle de première O.M. non occupée (« LUMO ») puisque le calcul est fait en « couche ouverte », comporte soit un (n impair), soit trois électrons (n pair); ceci est résumé par la figure 9aoù E_{p} et β_{π} sont des paramètres repris du modèle de Hückel avec hybridation sp [5]. Sur cette figure, les PI_n représentent les énergies d'ionisation des molécules VC_n qui coïncident avec l'énergie de HOMO dans la théorie à un électron. Il apparaît donc que $PI_4 > PI_5 < PI_6$ ou encore $PI_{2k+1} < PI_{2k}$, c'est-à-dire que les amas VC_n avec n = 2 k + 1 seraient plus faciles à ioniser que ceux de n = 2 k (pair). On peut comparer ce résultat de la théorie de Hückel à un électron aux résultats du calcul CNDO représentés sur la figure 9b. Sur cette figure sont portées à la fois la valeur absolue de l'énergie du niveau « HOMO » $\varepsilon(HOMO)$ et l'énergie d'ionisation EI_n définie par $E_{\rm T}^{+}(n) - E_{\rm T}(n)$. Le comportement de ces deux grandeurs est très analogue puisque les deux courbes seraient presque superposables, et en outre il est en parfait accord avec le schéma Hückel de la figure 9a.

Fig. 9a. — Niveaux d'énergie de la bande π des chaînes VC_n (n = 4, 5, 6) d'après le modèle de Hückel et population électronique de ces niveaux (énergies en unités β_{π} ; β_{π} = intégrale de transfert de la méthode de Hückel; on a pris ici un seul β_{π} pour décrire la liaison V-C et la liaison C-C). E_p = énergie du milieu de la bande π . On a matérialisé par des flèches l'énergie d'ionisation PI_n (égale à la valeur absolue de l'énergie du dernier niveau occupé « HOMO »). Ici on a $PI_n = -A_n$ où A_n est l'affinité électronique de VC_n dans l'approximation de Hückel (énergie de « LUMO »).

[Energy levels of the π band of the VC_n chains (n = 4, 5, 6) according to the Hückel model and electronic population of the levels (energies in β_{π} units; β_{π} = hopping integral of the Hückel approximation; only one β_{π} has been taken here to describe the two V-C and C-C bondings). E_p holds for the energy of the middle of the π band. The arrows show the ionization energies PI_n (PI_n = absolute value of the energy of the highest occupied molecular orbital « HOMO »). Here $PI_n = -A_n$ where A_n is the electronic affinity of VC_n in the Hückel approximation (energy of « LUMO »).]

Les deux types de calcul conduisent donc à la conclusion que les amas VC_n sont plus faciles à ioniser positivement quand *n* est impair. Ceci suggérerait donc qu'on doit obtenir une émission relativement plus forte des ions VC_n^+ de *n* impair. Or c'est le contraire qu'on observe sur la courbe des intensités $I(VC_n^+)$ de la figure 2. Ce ne sont donc pas les énergies d'ionisation qui peuvent expliquer le résultat expérimental [21].

Si on considère maintenant le cas des ions négatifs, on peut remarquer que d'après la figure 9*a* (Hückel) on gagne davantage d'énergie en formant les ions VC_4^- et VC_6^- à partir des neutres correspondants qu'en formant VC_5^- à partir de VC_5 par capture d'un électron supplémentaire qui vient occuper le

Fig. 9b. — Energies d'ionisation $EI_n = E_T^+(n) - E_T(n)$, affinités électroniques $AE_n = E_T(n) - E_T^-(n)$ et valeurs absolues de l'énergie de la dernière orbitale occupée (HOMO) calculées en CNDO en fonction de *n* pour les chaînes linéaires VC_n.

[Ionization energies $EI_n = E_T^+(n) - E_T(n)$, electronic affinities $AE_n = E_T(n) - E_T^-(n)$ and absolute values of the energy of HOMO calculated in CNDO as a function of *n* for the linear chains VC_n.]

niveau «LUMO» : on a en effet $A_{2k} > A_{2k+1}$ où A_n est l'affinité électronique de VC_n dans la théorie à un électron, c'est-à-dire la valeur absolue de l'énergie de «LUMO». Sur la figure 9b (CNDO), la grandeur |HOMO| portée en fonction de *n* représente aussi | ε (LUMO)|, valeur absolue de l'énergie de la première O.M. inoccupée, et AE_n est l'affinité électronique définie par $E_T(n) - E_T(n)$. Les deux courbes montrent un comportement assez voisin qui s'accorde bien, en particulier avec le résultat du raisonnement fait dans le cadre de la méthode de Hückel (Fig. 9*a*), mais surtout avec la courbe expérimentale de la variation des intensités $I(VC_n^-)$ avec *n* de la figure 2.

La conclusion de cette analyse des niveaux d'énergie est donc que dans le cas des ions positifs, seule la stabilité mesurée par la grandeur Δ_n^+ peut rendre compte du fait expérimental, une plus forte émission des ions VC_{2k}⁺. Par contre, dans le cas des ions négatifs, l'affinité électronique influe dans le même sens que la grandeur Δ_n^- et contribue aussi à favoriser la probabilité de formation des ions VC_{2k}⁻, ce qui correspond tout à fait au résultat de l'E.I.S.

Si l'on revient à présent sur les résultats du calcul CNDO représentés figure 7, on peut observer que les oscillations de Δ_n^- semblent plus importantes que celles de Δ_n , ces dernières étant elles-mêmes bien plus marquées que les oscillations de Δ_n^+ . Ceci est donc différent du cas des amas TiC_n [7] pour lesquels l'amplitude des oscillations de Δ_n^- est plus faible que celle des oscillations de Δ_n , un amortissement encore plus marqué se manifestant aussi pour Δ_n^+ .

Il est alors intéressant de comparer le comportement des énergies d'ionisation et des affinités électroniques pour les deux séries d'agrégats, VC_n et TiC_n. Dans les deux cas, les grandeurs EI_n ou les valeurs absolues des énergies de «HOMO», sont plus fortes pour *n* pair, c'est-à-dire que les MC_{2k} sont plus difficiles à ioniser que les MC_{2k+1}. Dans une théorie à un électron où l'on supposerait qu'on forme les ions positifs par ionisation des neutres et où un mécanisme d'émission pourrait être le suivant : création d'amas neutres MC_n au voisinage de la surface de la cible, puis ionisation, donc avec influence d'abord de la stabilité des neutres, puis de leur capacité à s'ioniser positivement, on peut s'attendre par suite de l'effet conjugué de Δ_n et de EI_m , que les oscillations de Δ_n^+ soient amorties du fait que les oscillations des PI_n ou EI_n ont lieu *a contrario* de celles de Δ_n .

Si l'on tient le même raisonnement pour les ions négatifs, il se trouve que dans le cas de VC_n, $|\varepsilon(LUMO)|$ ou AE_n est plus forte pour *n* pair que pour *n* impair et qu'on gagne donc davantage d'énergie, ainsi que nous l'avons indiqué plus haut, à former un ion négatif de *n* pair à partir du neutre qu'un ion de *n* impair, donc que $|\varepsilon(LUMO)|$ oscille dans le même sens que la quantité Δ_n . En supposant là encore d'abord création des VC_n neutres puis leur ionisation

Fig. 10. — En haut : évolution en fonction de n de la charge Q(V) de l'atome de vanadium déterminée en CNDO dans la chaîne VC_n et mesurée en nombre d'électrons.

En bas : oscillations de la population électronique ρ (en nombre d'électrons) sur les atomes des chaînes C₇, VC₆ et VC₆⁺ (calcul CNDO).

[Above : evolution versus n of the charge Q(V) of the vanadium atom determined in CNDO for the chain VC_n and measured in electron number.

Below : oscillations of the electronic population ρ (in electron number) on the atoms of the chains C₇, VC₆ and VC₆⁺ (CNDO calculation).]

négative c'est-à-dire avec influence conjuguée de Δ_n puis de AE_n ou de $|\varepsilon(LUMO)|$, on peut logiquement s'attendre à observer des oscillations des Δ_n^- renforcées par rapport à celles des Δ_n , ce qui est justement le cas de la figure 7. Dans le cas des amas Ti C_n où les AE_n n'oscillent pratiquement pas ou alors en sens inverse de Δ_n [7], on observe au contraire que l'amplitude des oscillations de Δ_n^- est justement amortie par rapport à celle des oscillations de Δ_n , en très bon accord avec le raisonnement simple à un électron qui vient d'être fait.

Remarquons pour terminer que la discussion précédente permet également de bien comprendre le résultat expérimental de la figure 2 où les oscillations sont nettement plus marquées pour les ions VC_n^- que pour les ions VC_n^+ où l'on a parfois seulement un point anguleux au lieu d'un maximum.

3.5 ANALYSE DE LA POPULATION ÉLECTRONIQUE. LIAISON V-C. — On peut examiner la variation de la population électronique soit pour un agrégat VC_n de n donné en fonction de la position et de la nature de l'atome (V ou C) le long de la chaîne, soit pour le seul atome de vanadium lorsque n varie. Ces deux points de vue se trouvent résumés par les deux parties de la figure 10 et par les tableaux II et III.

3.5.1 Etude d'une chaîne. Oscillations de charge. — Dans le premier cas mentionné (tableau II, partie inférieure de la fig. 10), on peut observer que la popu-

Tableau II. — Populations électroniques des différents atomes des chaînes VC_5 et VC_6 obtenues en CNDO et leur décomposition suivant les symétries des O.M.

[CNDO electron charge densities on the atoms in the chains VC_5 and VC_6 and their decomposition according to local symmetry.]

VC ₅	v	C ₍₁₎	C ₍₂₎	C ₍₃₎	C ₍₄₎	C ₍₅₎
s p d	0,319 2 0,921 1 3,076 6	1,205 8 3,157 9	1,061 6 2,916 3 —	1,070 7 2,917 5 —	1,050 9 3,054 1 —	1,648 6 2,599 7
ρ	4,316 8	4,363 8	3,977 9	3,988 2	4,105 1	4,248 2
σ π δ	0,636 5 2,680 4 1,0	2,317 8 2,045 9	2,054 0 1,923 9 —	2,071 8 1,916 4 —	2,017 2 2,087 8 —	2,902 7 1,345 6 —

VC ₆	v	C ₍₁₎	C ₍₂₎	C ₍₃₎	C ₍₄₎	C(5)	C ₍₆₎
s p d	0,339 6 0,827 8 3,059 0	1,184 2 3,295 6	1,085 1 2,720 4 —	1,010 5 3,253 0	1,096 3 2,692 8 —	1,034 3 3,184 4 	1,650 1 2,567 1 —
ρ	4,226 4	4,479 8	3,805 4	4,263 5	3,789 0	4,218 6	4,217 2
σ π δ	0,668 9 3,557 5 0	2,263 1 2,216 7 	2,104 6 1,700 9 —	1,943 5 2,320 0 —	2,127 6 1,661 5 —	1,978 8 2,239 9 —	2,913 7 1,303 5 —

1125

Tableau III. — Populations électroniques de l'atome de vanadium dans les diverses chaînes VC_n (n = 0 à 6) étudiées en CNDO et leur décomposition suivant les symétries des O.M. On a indiqué corrélativement l'état moléculaire de VC_n dans l'hypothèse « low-spin ».

[Calculated electronic population of the vanadium atom in the different chains VC_n (n = 0 to 6) and the decomposition according to local symmetry. The molecular state of VC_n in the low-spin assumption is indicated too.]

Molécule VC _n (état moléc.)	Population des O.A. de V	Décomposition de la population électronique de V suivant la symétrie locale	Population totale de l'atome de V	Charge $Q(V)$
V (² P)	s 2 p 0 d 3	σ4 π1 δ0	5,0	0
VС (² Д)	s 0,224 2 p 1,322 6 d 3,031 9		4,578 7	+ 0,421 4
VC ₂ (² П)	s 0,505 0 p 0,735 9 d 3,071 5	σ 0,864 7 π 3,447 7 δ 0	4,312 6	+ 0,687 5
VC ₃ (² Д)	s 0,324 5 p 0,992 0 d 3,081 3	$ \begin{array}{c} \sigma \ 0,641 \ 7 \\ \pi \ 2,756 \ 1 \\ \delta \ 1,0 \end{array} $	4,397 9	+ 0,602 1
VC ₄ (² П)	s 0,356 8 p 0,822 1 d 3,060 6	$ \begin{array}{c} \sigma \ 0,692 \ 7 \\ \pi \ 3,546 \ 8 \\ \delta \ 0 \end{array} $	4,239 6	+ 0,760 4
VС ₅ (² Д)	s 0,319 2 p 0,921 1 d 3,076 6	$ \begin{array}{c} \sigma \ 0,636 \ 5 \\ \pi \ 2,680 \ 4 \\ \delta \ 1,0 \end{array} $	4,316 8	+ 0,683 2
VC ₆ (² П)	s 0,339 6 p 0,827 8 d 3,059 0	$\sigma 0,668 9$ $\pi 3,557 5$ $\delta 0$	4,226 4	+ 0,773 6

lation électronique ρ de l'atome de vanadium et des atomes de carbone montrent des oscillations le long de la chaîne avec en particulier une valeur plus faible de ρ sur le vanadium que sur l'atome de carbone adjacent C₍₁₎. L'atome de vanadium présente ainsi un défaut d'électron notable, c'est-à-dire une charge positive Q(V) par rapport à l'atome isolé.

Nous allons particulariser la discussion en traitant comme exemple la chaîne VC_6 . Il est intéressant de la considérer comme une chaîne de carbone homonucléaire C_7 perturbée à l'une de ses extrémités par le remplacement d'un atome de carbone par un atome étranger (vanadium). La comparaison est faite figure 10.

Dans le cas de C_7 , les oscillations de charge sont parfaitement symétriques par rapport au milieu de la chaîne et on constate un léger excès d'électron à chaque extrémité (donc une charge négative). On sait que de telles fluctuations de charge sur les atomes d'une chaîne linéaire proviennent de la présence de la « surface » (extrémités de la chaîne C_n) et que c'est cette perturbation à la périodicité du cristal linéaire qui engendre les « oscillations de Friedel » de période 2 k_F (k_F vecteur d'onde du cristal au niveau de Fermi, ici HOMO) assez rapidement écrantées vers l'intérieur de la chaîne [22] (³).

^{(&}lt;sup>3</sup>) Remarquons que les oscillations de ρ que nous avons représentées schématiquement par une ligne brisée devraient en fait prendre la forme d'une courbe de type sinusoïdal plus ou moins amortie [1].

Signalons aussi que le phénomène est compliqué par l'existence de 2 surfaces dont les effets se superposent et qu'il faudrait évidemment prendre une chaîne beaucoup plus longue si on voulait séparer la contribution de chaque extrémité.

De telles oscillations le long d'une chaîne ont déjà été mentionnées par Stoll *et al.* [23] pour les chaînes Li_n, par Itoh [24] pour la chaîne Cu₈, par Hoareau pour les chaînes Se_n [25] et nous les avions nousmêmes étudiées en détail pour Li_n [1].

Le cas des chaînes C_n est très analogue à celui de l'hydrogène pour lequel Joyes [26] a montré qu'on observait un excès d'électrons en « surface ». Rappelons que le signe de la charge sur l'atome de bout de chaîne est directement lié au remplissage des bandes du cristal [26]. Ainsi, si l'on a affaire à une bande exactement à moitié remplie comme pour H_n (bande s) pour C_n (bande sp) ou plus qu'à moitié remplie comme pour Se_n, on observe un excès d'électron à la « surface » du cristal linéaire.

Par contre, si la bande de niveaux sp est moins qu'à moitié remplie (chaînes Li_n), on doit trouver un défaut d'électron, c'est-à-dire une charge positive à la « surface ».

Examinons à la lumière de cette discussion ce qui arrive lorsqu'on « perturbe » la chaîne de carbone en remplaçant l'atome de carbone d'une extrémité par un atome de vanadium. Celui-ci possède une charge du noyau Z plus élevée, des niveaux d et un électron de valence de plus que le carbone. D'après les tableaux II et III, on remarque que l'atome de vanadium conserve toujours environ 3 électrons à caractère d comme dans l'atome isolé ; par conséquent la bande sp de la chaîne VC_n au voisinage de l'atome V étant moins qu'à moitié remplie, il est normal de trouver un défaut d'électron sur l'atome de V. Toutefois comme le nombre d'électrons sp sur l'atome de vanadium n'est que de 1,17 (VC₆), il en résulte corrélativement que la bande de niveaux sp de la chaîne C₆ est un peu plus qu'à moitié remplie, c'est-à-dire que l'excès de charge négative sur l'atome de carbone de l'autre extrémité doit augmenter par rapport au cas de C_7 , ce que l'on observe effectivement figure 10. On retrouve ici le fait que l'atome de vanadium est bien un donneur d'électrons (cf. § 3.4.1).

Si maintenant on considère séparément le comportement des électrons à caractère s ou à caractère p, on voit que le nombre d'électrons s sur V est très faible comparé à celui de l'atome isolé, que le long de la chaîne les oscillations des électrons s sont très peu marquées et que l'atome de carbone final présente un excès d'électron s; on voit par ailleurs que la promotion s \rightarrow p des électrons sur l'atome de vanadium est notable et que les oscillations des électrons p sont extrêmement marquées le long de la chaîne avec un défaut d'électron p sur l'atome de carbone terminal. Ceci est bien en accord avec ce que l'on peut attendre du degré de remplissage des bandes en traitant séparément les bandes s et p de la chaîne de carbone : bande s plus qu'à moitié remplie, bande p moins qu'à moitié remplie.

Le tableau II donne le détail et précise la nature des charges des deux chaînes VC_5 et VC_6 . Le nombre d'électrons à caractère d ne varie pratiquement pas alors que le long de la chaîne, que *n* soit pair ou impair, ce sont principalement les électrons p dont le nombre subit les plus fortes oscillations. Si l'on décompose la population électronique suivant les symétries locales, on constate que ce sont essentiellement les électrons π dont le nombre varie le long de la chaîne, la variation étant plus marquée pour VC₆ (*n* pair) que pour VC₅ (*n* impair).

Le cas de l'ion VC_6^+ représenté également figure 10 s'interprète alors aisément. La perturbation de la chaîne C_n provient en effet seulement de la différence de la charge Z du noyau et de l'existence des niveaux d. La bande sp de la chaîne C_n étant à présent moins qu'à moitié remplie, le résultat de la figure 10 s'ensuit logiquement avec en particulier un défaut d'électron aux 2 bouts de la chaîne.

3.5.2 Etude de l'atome de vanadium quand n varie. - Si nous en venons à présent à l'examen de la variation de la charge Q(V) de l'atome de vanadium avec n, la figure 10 (partie supérieure) montre une oscillation en dents de scie avec des renforcements importants pour n pair. En détaillant (tableau III), le phénomène paraît essentiellement lié là aussi aux électrons à caractère p. La configuration électronique de V dans VC_6 est s^{0,34} p^{0,83} d^{3,06}... ce qui montre bien l'importance de l'hybridation sp dans la chaîne VC_n déjà mentionnée plus haut. Remarquons que la valeur de la charge Q(V) que nous trouvons dans VC₆ est environ le double de celle trouvée pour V par Gubanov et al. [27] dans l'ion octaédrique $(VC_6)^{20-}$. Si l'on décompose la population électronique de l'atome V (tableau III) suivant la symétrie locale des O.M., σ , π ou δ , on voit que la différence fondamentale provient des électrons π et δ . La variation du nombre d'électrons π est en bonne corrélation avec le fait que le niveau de Fermi de la molécule tombe dans la bande π .

Par ailleurs, lorsque *n* est impair, le niveau δ , nettement plus bas dans l'échelle des énergies que lorsque *n* est pair, tombe un peu au-dessous du niveau de Fermi et contient alors un électron ce qui correspondrait à un état moléculaire ${}^{2}\Delta$ (tableau III) (⁴).

Au contraire, quand *n* est pair, le niveau δ est nettement antiliant (Fig. 8*a*) et la structure de la molécule est du type $d\pi^3$ correspondant à un état moléculaire ${}^2\Pi$.

Il est toutefois très probable que l'état moléculaire réel de VC_m , que *n* soit pair ou impair, est de plus forte multiplicité, mais notre choix de l'hypothèse « low

^{(&}lt;sup>4</sup>) En fait, la configuration lorsque *n* est impair est du type $d\pi^2 p\pi^2 d\delta^1$ mais dans l'hypothèse « low spin », les 2 couches π contiennent chacune 2 électrons antiparallèles, d'où un état ² Δ .

Remarquons que ce résultat diffère un peu de ce que nous avions indiqué en introduction puisqu'il y a un électron δ quand *n* est impair. Toutefois, ce comportement est finalement assez différent d'une part du cas de TiC_n où quel que soit *n*, il n'y a aucun électron δ [7] et d'autre part du cas de FeC_n où il y a toujours des électrons δ [15], ce qui correspond bien en fait à une progression le long de la série de transition.

spin » a été dicté par le fait que les calculs de type CNDO ne permettent pas de distinguer entre les états de diverses multiplicités possibles.

3.5.3 Remarque sur la liaison V-C. — Les caractéristiques de la liaison V-C dans la chaîne VC_n découlent directement de la discussion précédente. L'importance des orbitales 4p se manifeste en particulier si l'on consulte le tableau III puisque dans tous les cas les électrons à caractère p se trouvent toujours (dès que *n* dépasse 2) en nombre supérieur à 0,8. Ainsi le détail des populations électroniques des diverses orbitales de VC₆ qui est le suivant :

$$3d\sigma = 0.056$$
, $3d\pi = 3.0031$, $4p\sigma = 0.2734$,
 $4p\pi = 0.5544$,

montre que V est un fort donneur σ et un fort accepteur π , si l'on compare à l'atome de vanadium isolé.

Enfin, si l'on revient encore sur le fait que dans tous les cas, l'atome de vanadium lié porte 3 électrons d comme l'atome libre, il en résulte donc que la liaison V-C est essentiellement assurée par les électrons s de l'atome V isolé. Une fraction de ces 2 électrons s est cédée par V à l'atome de carbone voisin; une autre fraction, assez notable, prend un caractère p, qui est d'ailleurs systématiquement plus forte (supérieure ou voisine de 1) quand n est impair que quand n est pair (elle est alors de l'ordre de 0,7 à 0,8), l'effet opposé se manifestant corrélativement pour la population de type s ainsi que le montre le tableau III.

Remarquons aussi que cette liaison qui dans VC_n fait intervenir un électron δ pour *n* impair, n'en met plus aucun en jeu dans les ions VC_n^+ .

En ce qui concerne la séparation des niveaux d du vanadium en présence du ligand C_n, sa valeur est de 21,16 eV pour VC₆ (Fig. 8a) et elle est pratiquement indépendante du nombre n d'atomes de carbone de la chaîne puisqu'elle est déjà de 21,05 eV pour VC. On voit donc que ce fractionnement des niveaux d est beaucoup plus important que celui déterminé par Gubanov et al. [27], soit 4,8 eV pour l'ion octaédrique $(VC_6)^{20-}$. La différence entre les 2 valeurs provient sans doute pour une part de la géométrie, mais surtout du défaut bien connu de la méthode CNDO que les énergies calculées ainsi ont des valeurs systématiquement trop élevées [14]. En effet, la chaîne C_n se comporte comme un «donneur π » et dans ce cas, on devrait s'attendre à ce que le fractionnement des niveaux d du métal reste relativement faible [28] contrairement au cas présent. Remarquons enfin que le niveau d π est légèrement stabilisé (- 16,99 eV pour VC₆) par rapport au niveau d de l'atome isolé (-14,98 eV) par la présence de la chaîne C_n alors qu'au contraire le niveau d δ est très déstabilisé puisqu'il monte à + 4,16 eV (Fig. 8a).

4. Conclusion. — Dans cet article, nous avons présenté des résultats expérimentaux relatifs à l'E.I.S.

d'un carbure de vanadium. Les alternances observées dans les intensités d'émission des ions VC_n^+ et $VC_n^$ avec renforcements pour *n* pair, s'interprètent théoriquement à partir d'oscillations en fonction de la parité de *n* dans la stabilité des amas. Les énergies d'ionisation montrent en effet des alternances contraires au résultat expérimental. Par contre, pour les ions négatifs, les affinités électroniques alternent avec *n* exactement comme les stabilités, ce qui peut ainsi expliquer l'importance des oscillations de la courbe expérimentale.

Le modèle théorique utilisé, la chaîne linéaire, permet ainsi de donner déjà une interprétation intéressante de l'expérience. Toutefois, il est bon, comme nous l'avons dit en introduction, de généraliser cette étude des VC_n par la recherche pour les divers *n* considérés de la forme la plus stable [8] comme nous l'avions déjà fait pour les agrégats Cu_n, Ag_m Li_n et Na_n [1] et d'examiner ainsi l'évolution des divers facteurs étudiés dans cet article : charge de l'atome de transition, séparation des niveaux d du métal, hybridation entre ces niveaux d et les niveaux s-p de C_m, etc., et la transformation de la forme de l'amas C_n (dont on sait qu'il est linéaire pour $n \leq 5$ [5]) quand on lui adjoint un atome de transition.

Il résulte aussi de l'étude qui vient d'être faite que l'on vérifie encore une fois la règle qualitative simple suivant laquelle à une plus forte intensité relative d'émission d'un certain type d'ion correspond une stabilité plus élevée de l'agrégat considéré.

Enfin, on peut constater que l'hypothèse qui avait été émise en introduction suivant laquelle les éléments de transition de la première série (éléments 3d) se scindent en deux groupes, Sc à Mn d'une part et triade Fe, Co, Ni, est effectivement confirmée puisqu'on observe une notable différence de comportement entre VC_n et FeC_n .

La méthode de calcul utilisée, l'approximation CNDO, permet également d'étudier les répartitions de charges dans les amas. Il serait dès lors intéressant de comparer l'effet de la présence d'un atome étranger dans la chaîne de carbone en prenant divers types d'« impuretés » : autre élément de transition, élément normal ou même l'hydrogène dont le cas a déjà été envisagé (étude des chaînes C_nH [5]). Un calcul de ce genre peut en effet être intéressant en métallurgie ou pour déterminer des effets de dopage d'une matrice par une impureté.

Remerciements. — Nous tenons à remercier tout particulièrement le Dr. A. Hoareau pour nous avoir communiqué son programme CNDO étendu aux éléments de transition ainsi que pour les nombreuses discussions que nous avons eues avec lui. Nous adressons également nos remerciements au Dr. P. Joyes pour ses conseils judicieux. Enfin, cet article doit aussi beaucoup à M. Chaintreau qui a préparé l'échantillon de carbure de vanadium et à R. Dennebouy qui a réalisé les enregistrements.

Appendice I : Distance V-C dans les agrégats VC_n — Pour déterminer la distance V-C, nous avons commencé par en rechercher un ordre de grandeur de la manière suivante. Sachant qu'en général, pour les éléments normaux, le rayon de «covalence» (c'est-à-dire le rayon de l'atome engagé dans une liaison de covalence avec un autre atome) [29] est un peu plus petit que le rayon atomique, nous avons évalué le rayon de covalence du vanadium par référence à celui de l'arsenic qui est l'élément normal qui lui correspond dans la colonne V du tableau périodique. Comme l'arsenic a un rayon de covalence de 1,18 Å et un rayon atomique de 1,40 Å et que le rayon atomique du vanadium est de 1,36 Å, on trouve un rayon de covalence pour V égal à 1,15 Å, soit une distance V-C de 1,806 Å puisque nous prenons la distance C-C égale à 1,312 Å.

Or des études précédentes sur TiC et CrC [6, 7, 8] nous ont conduit à prendre des distances

$$Ti-C = 1,929 \text{ Å}$$
 et $Cr-C = 1,826 \text{ Å}$.

Bibliographie

- [1] LELEYTER, M., Thèse de Doctorat d'Etat, Orsay (1975).
- [2] JOYES, P., ORTOLI, S., J. Physique Lett. 41 (1980) L-193-5.
- [3] TAYLOR, J. A., RABALAIS, J. W., Surf. Sci. 74 (1978) 229-36.
- [4] LELEYTER, M., JOYES, P., à paraître.
- [5] LELEYTER, M., JOYES, P., J. Physique 36 (1975) 343-55.
- [6] JOYES, P., LELEYTER, M., HOAREAU, A., J. Physique Lett. 40 (1979) L-131-5.
- [7] LELEYTER, M., ORTOLI, S., JOYES, P., Proceedings of the International Meeting on Small Particles and Inorganic Clusters, Lausanne, septembre 1980; article accepté à paraître dans Surf. Sci. (1981).
- [8] LELEYTER, M., à paraître.
- [9] Cook, H. D., Proc. 12th Ann. Conf. Mass Spectrom. and Allied Topics (1966) 133-7.
- [10] VIDAL, G., GALMARD, P., LANUSSE, P., Mém. Sci. Rev. Métall. Tome LXV, nº 11 (1968).
- [11] GRAY, H. B., Electrons and Chemical Bonding (Benjamin, New York) 1964, p. 48.
- [12] Echantillon de Ch. de Novion, ONERA.
- [13] Echantillon de D. Fruchart, CECM, Vitry.
- [14] POPLE, J. A., BEVERIDGE, D. L., Approximate Molecular Orbital Theory (Mc-Graw Hill, New York) 1970.
- [15] HOAREAU, A., à paraître.
- [16] CLACK, D. W., HUSH, N. S., YANDLE, J. R., J. Chem. Phys. 57 (1972) 3503-10.
- [17] CLEMENTI, E., RAIMONDI, D. L., J. Chem. Phys. 38 (1963) 2686-9.
- [18] HERZBERG, G., Molecular Spectra and Molecular Structure, tome I : Spectra of Diatomic Molecules (D. Van Nostrand Co, Princeton, New Jersey, 2^e éd.) 1950, p. 513.
- [19] SIMONS, J., SMITH, W. D., J. Chem. Phys. 58 (1973) 4899-907.
- [20] PITZER, K. S., CLEMENTI, E., J. Am. Chem. Soc. 81 (1958) 4477-85.
- [21] Nous avons déjà rencontré une contradiction assez analogue dans le calcul CNDO de molécules linéaires d'iode I_n

La distance V-C trouvée est donc un peu trop faible eu égard à la progression régulière de Ti à V puis à Cr, qu'on peut observer, par exemple pour les rayons atomiques. Nous nous sommes alors reporté à la distance expérimentale donnée pour Cr_2 par Kant et Strauss [30], 2,34 Å, soit un rayon de covalence expérimental pour Cr de 1,17 Å. Comme le rayon atomique de Cr est 1,28 Å [29], cela conduit à un rayon de covalence pour V de 1,24 Å, soit une distance V-C de 1,896 Å, valeur qui se trouve bien intermédiaire entre celle de CrC et celle de TiC.

On obtient donc ainsi deux valeurs de la distance V-C, mais qui sont toutes deux situées entre 1,8 et 1,9 Å. Il est intéressant de constater que le calcul CNDO avec les paramètres choisis, conduit justement à une valeur intermédiaire entre les deux valeurs précédentes, la valeur 1,86 Å. Ceci est donc un facteur plaidant en faveur du jeu de paramètres pris pour le calcul CNDO.

(M. Leleyter, calcul non publié, 1979) pour lesquelles les valeurs de HOMO présentent des alternances contraires à celles des intensités d'émission des amas d'iode et des potentiels d'ionisation mesurés dans des jets supersoniques (P. Mélinon, thèse de 3^e Cycle, Lyon (1981)). L'explication de cette contradiction réside en fait dans l'influence des corrélations entre électrons de valence, très nombreux dans le cas de l'iode (P. Joyes, à paraître). Dans le cas présent (VC_n), on peut également supposer que les effets de corrélation entre électrons de valence, quoique moins importants que pour I_n puisque leur nombre est plus faible, sont loin d'être négligeables et seraient par conséquent responsables des différences observées sur les ions VC_n^+ entre le comportement des stabilités et des énergies d'ionisation. Toutefois, le calcul CNDO conduit ici, à la différence du cas de l'iode, à des alternances des EI_n identiques à celles des grandeurs PIn obtenues dans l'approximation de Hückel (Fig. 9a), c'est-à-dire que les corrélations prises en compte dans le calcul CNDO seraient semble-t-il insuffisantes (le nombre d'électrons de valence par atome étant plus faible que pour l'iode) pour renverser

- les alternances des énergies d'ionisation *EI_n*. Ce point reste donc encore à élucider.
 [22] KITTEL, C., *Théorie Quantique du Solide*, (Dunod, Paris) 1967,
- p. 124 et p. 368-70.
- [23] STOLL, H., PREUSS, H., Phys. Status Solidi b 53 (1973) 519-25.
- [24] Ітон, Н., Ј. Phys. F 4 (1974) 1930-6.
- [25] HOAREAU, A., Thèse de Doctorat d'Etat, Lyon (1977).
- [26] JOYES, P., calcul non publié (1976).
- [27] GUBANOV, V. A., KASIMOV, B. G., KURMAEV, E. Z., J. Phys. Chem. Solids 36 (1975) 861-9.
- [28] GRAY, H. B., loc. cit. référence [11], p. 199.
- [29] HACKSPILL, L., BESSON, J., HEROLD, A., Chimie Minérale, (PUF, Paris) 1958, tome I, p. 79-80.
- [30] KANT, A., STRAUSS, B., J. Chem. Phys. 41 (1964) 3806-8.